RSA Algo Basics
Setup
- Choose 2 Large Prime Numbers p and q
- $n = p \times q$(n is the modulus for both the public and private exponent)
- Compute Euler Totient $\Phi(n) = (p -1) \times (q -1)$
Euler's Totient Function $\Phi(n)$ is defined to be the number of positive integers less than or equal to n that are coprime to n
- Let Public Key $pubkey$ be some large number (Random Large Number)
- Private Key $prikey$ = $pubkey \times modInverse(\Phi(n))$
Encrypt Message
- $message \times modPow(publicKey, n)$
Decrypt Message
- $message \times modPow(privateKey, n)$
page revision: 16, last edited: 07 May 2009 14:49