

Developer’s Guide

SAP NetWeaver 2004s

Running an Enterprise Portal

Document Version 1.70 – März 2006

SAP AG
Dietmar-Hopp-Allee 16
69190 Walldorf
Germany
T +49/18 05/34 34 24
F +49/18 05/34 34 20
www.sap.com

© Copyright 2005 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in
any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors
contain proprietary software components of other software
vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered
trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex,
MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400, iSeries,
pSeries, xSeries, zSeries, z/OS, AFP, Intelligent Miner,
WebSphere, Netfinity, Tivoli, and Informix are trademarks or
registered trademarks of IBM Corporation in the United States
and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of
the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame,
VideoFrame, and MultiWin are trademarks or registered
trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered
trademarks of W3C®, World Wide Web Consortium,
Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc.,
used under license for technology invented and implemented by
Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver,
and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the
world. All other product and service names mentioned are the
trademarks of their respective companies. Data contained in this
document serves informational purposes only. National product
specifications may vary.

These materials are subject to change without notice. These
materials are provided by SAP AG and its affiliated companies
("SAP Group") for informational purposes
only, without representation or warranty of any kind, and SAP
Group shall not be liable for errors or omissions with respect to
the materials. The only warranties for SAP Group products and
services are those that are set forth in the express warranty
statements accompanying such products and services, if any.
Nothing herein should be construed as constituting an additional
warranty.

Disclaimer
Some components of this product are based on Java™. Any code
change in these components may cause unpredictable and severe
malfunctions and is therefore expressively prohibited, as is any
decompilation of these components.

Any Java™ Source Code delivered with this product is only to be
used by SAP’s Support Services and may not be modified or
altered in any way.

Any software coding and/or code lines / strings ("Code") included
in this documentation are only examples and are not intended to
be used in a productive system environment. The Code is only
intended better explain and visualize the syntax and phrasing
rules of certain coding. SAP does not warrant the correctness and
completeness of the Code given herein, and SAP shall not be
liable for errors or damages caused by the usage of the Code,
except if such damages were caused by SAP intentionally or
grossly negligent.

T yp o g r a p h i c C o nv e nt i o ns

Type Style Represents

Example Text Words or characters quoted from
the screen. These include field
names, screen titles,
pushbuttons labels, menu
names, menu paths, and menu
options.

Cross-references to other
documentation.

Example text Emphasized words or phrases in
body text, graphic titles, and
table titles.

EXAMPLE TEXT Technical names of system
objects. These include report
names, program names,
transaction codes, table names,
and key concepts of a
programming language when
they are surrounded by body
text, for example, SELECT and
INCLUDE.

Example text Output on the screen. This
includes file and directory names
and their paths, messages,
names of variables and
parameters, source text, and
names of installation, upgrade
and database tools.

Example text Exact user entry. These are
words or characters that you
enter in the system exactly as
they appear in the
documentation.

<Example text> Variable user entry. Angle
brackets indicate that you
replace these words and
characters with appropriate
entries to make entries in the
system.

EXAMPLE TEXT Keys on the keyboard, for
example, F2 or ENTER.

I c o n s

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Contents

1 GETTING INVOLVED...2
1.1 Portal Runtime ...2

1.1.1 Portal Applications...2
1.1.2 How Requests Are Handled ..16
1.1.3 Working with the PRT..26
1.1.4 Deployment of Applications ...33
1.1.5 Deployment Policy (Enterprise Portal 5.0) ...33
1.1.6 Testing Components ...33

1.2 Web Dynpro Applications for the Portal ...33
1.2.1 Web Dynpro Java..33
1.2.2 Web Dynpro ABAP..33

1.3 Example...33
1.4 SAP NetWeaver Developer Studio Plug-In ..33

1.4.1 Configuring the Plug-In..33
1.4.2 Managing Enterprise Portals ...33
1.4.3 Managing PAR and JAR Files in the Project ...33
1.4.4 Enterprise Portal Unit Test Studio Perspective..33
1.4.5 Enterprise Portal Web Services Checker Description..................................33
1.4.6 Development Configuration ...33
1.4.7 Registering an Additional Plug-in...33

2 GO AND CREATE..33
2.1 Creating Your First Portal Application ..33

2.1.1 Portal Runtime Basics ...33
2.1.2 Creating the JSPDynPage...33
2.1.3 JSPDynPage Event Handling..33
2.1.4 Data Exchange between JSPDynPage and JSP...33

3 CORE DEVELOPMENT TASKS ..33
3.1 Creating and Managing Content ..33

3.1.1 Managing iViews and Other PCD Objects ...33
3.1.2 Working with XML ...33
3.1.3 Creating Administration Interfaces...33
3.1.4 Client-Side Eventing..33

3.2 Uniform Resource Identifier (URI) ..33
3.3 Uniform Resource Locator (URL)...33
3.4 Uniform Resource Name (URN) ..33

3.4.1 Page Builder..33
3.4.2 HTML-Business for Java ...33
3.4.3 User Management Engine...33

3.5 Changes in the LoginModule Implementation ..33
3.6 ServiceUserFactory ...33

3.6.2 User Agent Service ...33
3.7 Modifying the Desktop and Navigation...33

3.7.1 Navigating in the Portal ...33
3.7.2 Creating Custom Layouts ..33
3.7.3 Object-Based Navigation...33

3.8 Connecting to Backend Systems ...33
3.8.1 Application Integrator ..33
3.8.2 Connector Framework ...33
3.8.3 Dynamic System Resolution..33

3.9 Specialities in the Portal...33
3.9.1 Implementing an External-Facing Portal..33

4 ENSURING QUALITY ..33
4.1 Developing Well Performing Portal Applications ..33

4.1.1 Server Side Programming ...33
4.1.2 Java Programming ..33
4.1.3 Portal Application Programming Model ...33
4.1.4 Enterprise Portal Services ...33
4.1.5 Database Access ..33
4.1.6 Enterprise Portal Performance Ruleset for JLin...33
4.1.7 Checklist for Reviews ..33

4.2 File Access ..33
4.2.1 Ensuring Supportability with Metrics and Audits ..33
4.2.2 References/Bibliography ...33

4.3 General Rules and Guidelines for Managing Exceptions33
5 REFERENCE..33

5.1 Portal APIs...33
5.2 Samples...33

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 1

Running an Enterprise Portal
Purpose
This section describes how to build applications for the portal. The guide explains how to build
portal applications and how to make use of services provided by the portal or the underlying
J2EE engine.

The guide is divided into the following sections:

● Getting Involved [Page 2]: Describes basic concepts about the portal that you need in
order to build portal applications. It also describes the SAP NetWeaver Developer
Studio features that enable you to more easily build applications.

Portal Applications can be built using one of the following technologies:

○ Portal Runtime: The Portal Runtime [Page 2] (PRT) is the underlining engine
on which the portal runs. The PRT provides the infrastructure for creating PRT-
based portal components, which generate HTML for display, and portal services,
which provide general functionality to components and other services.

○ Web Dynpro: This is the preferred method for building user interfaces. You can
build Web applications with Web Dynpro, and then display the applications in
the portal.

Web Dynpro is described in detail in Web Dynpro for Java [External] and Web
Dynpro for ABAP [External]. The best method for displaying Web Dynpro
applications in the portal is described in Web Dynpro Applications for the Portal
[Page 33].

● Go and Create [Page 33]: Describes how to build a simple portal application using the
PRT.

● Developing Applications [Page 33]: Describes what you can do within a portal
application with the help of built-in portal services.

● Ensuring Quality [Page 33]: Describes the techniques for making sure that your
applications are written properly.

● Reference [Page 33]: Provides the Javadocs for portal and portal runtime APIs, as well
as other vital information about the portal.

Prerequisites
The guide assumes that you have the basic knowledge of the following areas:

● Java and servlet programming.

● Basic operating system commands for navigating in the file system, copying and editing
files.

Some portal services require knowledge of the following:

● JSP (Java Server Pages)

● HTML

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 2

1 Getting Involved
This section describes basic concepts about the development and deployment of portal
applications, and includes the following:

● Portal Runtime [Page 2]

● Web Dynpro Applications for the Portal [Page 33]

● SAP NetWeaver Developer Studio Plug-In [Page 33]

●

1.1 Portal Runtime

Purpose
The Portal Runtime (PRT) provides a Java-based framework for running portal applications,
which produce content for display in the portal.

The PRT is packaged as a J2EE Web application called the Enterprise Portal Base
Component (EPBC).

The EPBC file contains three main parts:

● Libraries and Configuration Files: PRT and its configuration

● Core Applications: Core PRT services. These applications are not stored in the PCD
but are deployed on each server node. Core applications have the following
characteristics:

○ Provide core functionalities, such as authentication and PCD.

○ Loaded before other applications when the portal is initialized.

○ Never loaded into the Application Repository.

● Portal Applications: Basic portal applications shipped with the portal and stored in the
Application Repository.

Regular applications are started only when required, either because the application is
marked to be loaded on startup (by setting in the deployment descriptor) or because an
element of the application has to be executed.

PRT Services
The PRT provides the following J2EE services:

● Portal Runtime Container: Manages the following runtime processes:

○ Deployment of portal applications

○ Communication between portal applications and J2EE applications.

● PRTBridge: Provides a link between portal runtime processes and the J2EE engine
cluster configuration. It is installed as a J2EE engine service.

1.1.1 Portal Applications
A Portal Runtime application defines a collection of portal objects, which are of two types:

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 3

● Portal Component: Produces HTML output to be displayed in an iView in the portal,
and is triggered by an HTTP request, as described in Components [Page 3].

● Portal Service: Provides a service, that is, some sort of processing but is not bound to
a specific HTTP request, as described in Services [Page 3].

An application is a set of files – java classes, HTML, JSP and others – that define a set of
components and services. The files are bundled and zipped into a single file with the
extension .par. Such a file is known as a PAR file. Portal administrators upload PAR files in
order to make the enclosed components and services available.

For more information on how a PAR file is constructed, see PAR Files [Page 7].

1.1.1.1 Components

Definition
A portal component produces HTML output to be displayed in an iView of the portal. The
component can provide all the HTML for an iView, or can provide a fragment of HTML to be
included within the HTML output of another component.

Content administrators create iViews from portal components. The HTML produced by the
portal component is displayed in the iView. For more information on iViews, see the SAP
NetWeaver documentation on the Help Portal (help.sap.com) → SAP NetWeaver →
People Integration → Portal → Administration Guide → Content Administration →
iViews [External].

You create a portal component by doing the following:

● Write a java class that extends AbstractPortalComponent, which implements
IPortalComponent.

Note: You could write your own class that implements IPortalComponent,
but it is strongly advised to simply extend AbstractPortalComponent.

● Add the java class and any related files (such as HTML or JSP files) to a PAR file.

● Modify the deployment descriptor (portalapp.xml file) of the PAR file to provide
information about the component, such as the name of the component, the name of the
implementing class and configuration properties.

For more information on how a PAR file is constructed, see PAR Files [Page 7].

1.1.1.2 Services

Definition
A portal service provides processing that is not bound to a specific request. A service can be
called by a component or by other services.

For example, the portal provides a transformation service for transforming XML, as well as the
EPCF service for creating Javascript in an iView that enables client-side eventing between
iViews.

A service cannot be personalized.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 4

You create a portal service by doing the following:

● Write a java class that implements IService. The class includes the IService
methods, such as init() and destroy(), as well as custom methods that you want
to expose through the service.

You generally create a java class for a service with the help of the portal plug-in to
NetWeaver Developer Studio, which creates generic implementations of the standard
IService methods. For more information on the plug-in, see SAP NetWeaver
Developer Studio Plug-In [Page 33].

● Add the java class to a PAR file.

● Modify the deployment descriptor (portalapp.xml file) of the PAR file to provide
information about the service, such as the name of the service, the name of the
implementing class and configuration properties.

For more information on PAR files, see PAR Files [Page 7].

1.1.1.3 Object Names, Aliases and References
This section describes how to refer to portal objects from within your component or service,
and includes the following:

● Object Names [Page 4]: Describes how to refer to applications, components and
services.

● Object Aliases [Page 5]: Describes how to create an alias for an application and
service and how to use these aliases to refer to applications, components and services.

● Object References [Page 5]: Describes how to retrieve a reference to an application
resource, component or service from within a component or service, and how to add a
reference to an another application so that your application can use thecomponents
and services of another applications.

1.1.1.3.1 Object Names
The following rules apply for the naming of portal objects:

● Applications are named for the PAR file that defines the application, without the .par
extension.

For example, the application defined in myApplication.par is called
myApplication.

● Services and components are named after the name of the application, followed by a
period (.), followed by the name of the component or service as defined in the
application’s deployment descriptor.

For example, the name of the component called myComponent that is defined in
myApplication.par is called myApplication.myComponent.

For more information on how to name components and services, see Deployment Descriptor
(portalapp.xml) [Page 8].

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 5

1.1.1.3.2 Object Aliases
You can define an alias for an application and a service, generally for reasons of
compatibility.

Alias are defined in the alias attribute of the <application> or <service> element in the
deployment descriptor.

The following rules apply to the use of aliases:

● An application alias can be used instead of the name of the application in all cases.

● A component cannot have an alias, but you can use the application alias in the
component’s fully qualified name.

● A service alias can be used instead of the name of the service. However, you must
either use the service alias (without the application name or alias) or the service name
preceded by the application name or alias.

Example
myApplication.par defines the following entries:
<application alias="myAlias">
 <services>
 <service name="myService" alias="myServiceAlias" />
 </services>
 <components>
 <component name="myComponent" />
</components>
</application>

The following shows the valid names for each type of portal object defined above:

● Application: myApplication or myAlias

● Component: myApplication.myComponent, myAlias.myComponent

● Service: myApplication.myService, myAlias.myService, myServiceAlias

1.1.1.3.3 Object References
The following table shows how to access components, services and resources in the current
application or in another application.

Object How to Reference

Component A component can reference another component by retrieving an
IPortalComponentContext object for the component from the
IPortalComponentRequest object, as in the following example:

request.getComponentContext("myApplication.myComp");

The above example gets a reference to the myComp component defined in the
myApp application. You can use the object, for example, to add a component
to the POM tree, or to get information and resources from the component.

Service A component or service can reference a service by retrieving an IService

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 6

object for the service. The IService object can then be cast into the interface
for the corresponding service.

PortalRuntime.getRuntimeResources().getService(
 ITransformerService.KEY);

The above example gets a reference to the transformation service.
PortalRuntime is a member of the
com.sapportals.portal.prt.runtime package.

Resource A component can reference a Web resource packaged in its application or in
another application by retrieving an IResource object for the resource from
the IPortalComponentRequest object, as in the following examples:

For a resource in the same application:

request.getResource(IResource.IMAGE,"images/myImage.gif");

For a resource in another application:

request.getResource(
 "myApp",IResource.IMAGE,"images/myImage.gif");

A component can use a Web resource, for example, to create a link to the
resource or to include it in its content.

Property
(component)

A component can reference one of its profile properties, which are defined in
<property> elements in the <component-profile> element in the
component’s deployment descriptor.

You can also access properties defined by the semantic object in which the
component is running. For example, if the component is run as an iView, the
iView semantic object defines properties, such as
com.sap.portal.pcm.Title for the iView’s name.

The property value is first defined in the deployment descriptor, and then can
be modified by an administrator for the specific iView, and then can be
modified by the current user if the property is defined as personalizable.

The following retrieves the value of myProperty:

IPortalComponentProfile profile =
 request.getComponentContext().getProfile();

String propertyValue = profile.getProperty("myProperty");

The properties defined in the <component-config> element cannot be
referenced.

Property
(service)

A service can reference one of its profile properties, which are defined in
<property> elements in the <service-profile> element in the
component’s deployment descriptor, within the service’s init() method.

The init() method is passed a IServiceContext object, which you can
use as follows to retrieve a property value:.

String propertyValue =
 serviceContext.getServiceProfile()
 .getProperty("myProperty");

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 7

Referencing Other Applications
To access components and services defined in another application, your application must
reference the other application in a <property> element of the <application-config>
element of its deployment descriptor.

For example, the following enables your application to make use of components and services
in the application called com.sap.myApp:

<property name="SharingReference" value="com.sap.myApp"/>

The above reference is required in order to access components or services in
com.sap.myApp, but not required for accessing the application’s resources. For more
information about <property> elements in the <application-config> element of the
deployment descriptor, see Application Configuration [Page 9].

1.1.1.4 PAR Files
Portal applications are packaged in PAR (Portal Archive) files. A PAR file is a standard ZIP
file with a .par extension that contains all Java classes, Web resources and other files
required to run the application.

Within the portal, the name of the PAR file is the name of the application. The fully qualified
name of any component or service defined in the PAR is the name of the PAR file, followed
by a period (.) and then the name of the component or service.

The files contained in a PAR file are divided into two types:

● Web resources

All files in a PAR file that are accessible directly via an HTTP request, such as:

○ HTML

○ Images

○ Stylesheets (.css)

The Web resources of a PAR also include a manifest file (manifest.mf in the META-
INF folder), which provides version information. The folder and file are not required, but
are recommended for tracking versions of your application.

Web resource files can be located anywhere outside the top-level PORTAL-INF folder.

You can create links to these files directly. For more information, see Creating URLs to
Web Resources [Page 24].

● Java Classes and Deployment Descriptor

Java classes that implement the component and services defined in the PAR file, plus
the deployment descriptor (portalapp.xml). The deployment descriptor specifies the
components and services contained in the PAR file, and defines the configuration for
the application, components and services. For more information the deployment
descriptor, see Deployment Descriptor (portalapp.xml) [Page 8].

The PAR file’s Java classes and deployment descriptor are located in the top-level
PORTAL-INF folder.

In the PORTAL-INF folder, the following folders have special purposes:

Folder Description

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 8

lib Contains all application library files (JAR) that can be referenced by
other portal applications.

classes Contains all class files and other resources (such as resource
bundles) that can be referenced by other portal applications.

private/lib Contains all application library files (JAR) that are used exclusively by
the application.

private/classes Contains all class files and other resources (such as resource
bundles) that are used exclusively by the application.

The following diagram provides an overview of the typical PAR file:

Contains deployment descriptor
(portalapp.xml)

Non-Web Resources

Web Resources

1.1.1.4.1 Deployment Descriptor (portalapp.xml)
The deployment descriptor of a PAR file is an XML file that defines the components and
services contained in the PAR, including the initial configuration and the parameters that can
be modified by administrators and users. The descriptor also contains configuration
information for the entire application.

Even if you provide a Java class file for a component (or service), the
component does not exist unless it is defined in the deployment descriptor.

The <application> element is the root element and is mandatory.

The following are the elements that you can define inside the <application> element:

• <Application-Config>: Defines configuration for the entire application, such
as the application’s security zone and whether the application should be loaded
as soon as it is deployed.

• <Components>: Defines the components that are part of the application. This
element specifies each component’s implementation class and safety level, as
well as configurable parameters.

• <Services>: Defines the services that are part of the application. This element
specifies each service’s implementation class and safety level, as well as
configurable parameters.

• <Registry>: Defines entries in the portal registry.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 9

The following illustrates the structure of the deployment descriptor:

<application>

<application-config>

<components>

<registry>

<property>

<component>

<component-config>

<component-profile>

<property>

<property>

<services>
<service>

<service-config>

<service-profile>

<property>

<property>

<entry>

Application
Configuration

Components

Services

Registry Entries

Configuration for the application, each component and each service is specified by
<property> elements located within the appropriate element. For example, a component
can be configured by adding <property> elements to the <component> elements for the
component you want to configure.

Each <property> elements contains name and value attributes.

1.1.1.4.1.1 Application Configuration
The <application-config> element specifies the configuration for the entire application.
It may contain an unlimited number of property elements.

The following is an example of the <application-config> element.
<application-config>
 <property name="SharingReference"
 value="com.sap.portal.contentproviders"/>
 <property name="releasable" value="false"/>
 <property name="startup" value="true"/>
 <property name="Vendor" value="sap.com"/>
 <property name="SecurityArea" value="NetWeaver.Portal"/>
</application-config>

The following are standard properties for an application.

Property Value Description

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 10

PrivateSharingReference List of portal application
names or aliases,
separated by commas
(,)

Enables references to other
portal application APIs that you
want to call from this application's
(non-public) implementation.

releasable true (default), false Indicates whether the system can
release instances of this
application when the system runs
low on memory.

Since applications can be
deployed during runtime, all
applications can be released and
application instances can be
dropped at any time by the
system.

SecurityArea Any valid string String identifying the security
area for the application, for
example, NetWeaver.portal.

This property, along with the
Vendor property, are used to
define the security zone for this
application. For more information
on security zones, see
Permission Model [Page 26].

ServicesReference Equivalent to
SharingReference.

SharingReference List of portal application
names or aliases,
separated by commas
(,)

Enables references to other
portal application APIs that you
want to call from this application's
API definition.

startup true, false (default) If set to true, the application is
initialized on startup of the J2EE
engine. This results in the
application being deployed locally
at startup.

Testable true, false (default) If set to true, indicates to the
PAR Unit Test Studio that the
application contains testable
entities.

For more information, see
Testing Components [Page 33].

Vendor Any valid string String identifying the company or
organization that provided the
application, for example,
sap.com.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 11

1.1.1.4.1.2 Components
The <components> element defines the portal components that are part of this application,
and includes configuration information for each. The element includes one or more
<component> elements, each of which defines one portal component.

The following is an example of a <components> element:
<components>
 <component name="CP_SEARCH">
 <component-config>
 <property name="ClassName"
value="com.sap.portal.MyComponent"/>
 <property name="SafetyLevel" value="low_safety"/>
 </component-config>
 <component-profile>
 <property name="url" value=""/>
 <property name="transformers.pipe" value=""/>
 </component-profile>
 </component>
</components>

Each <component> element contains a name attribute, which defines the name of the
component.

Each <component> element contains the following elements:

● <component-config>: Provides static configuration that cannot be changed by an
administrator or personalized by an end user.

The following are standard properties for component configuration:

Name Description

AuthRequirement The initial minimal authentication needed to execute the
component. This property is supported for backward compatibility
only.

The property can be one of the following values:

● User: Authenticated user

● Admin: Administrator

● None: Anonymous user

● <role list>: Users with the listed role

ClassName The name of the implementation class of the portal component.

ComponentType The type of component, which can be one of the following:

● servlet

● jspnative

The property is not required. If blank, an implementation of
IPortalComponent must be specified by the ClassName
property.

JSP If ComponentType is set to jspnative, this property specifies
the path of the JSP page that implements the portal component.
This path is relative to the PORTAL-INF folder).

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 12

ResourceBundleName The name of the component’s resource bundle, which is used to
store localized text strings.

The resource bundle should be placed in the /PORTAL-
INF/private/classes folder.

Specify the resource without the .properties extension but
include the file in the PAR with the extension.

SafetyLevel The safety level for the component.

For more information, see Permission Model [Page 26].

● <component-profile>: Provides configuration that can be changed by an
administrator or personalized by an end user. For each property, different values can
be set for each iView derived from the component, and for each end user (if
personalization is permitted).

The following are standard properties for a component profile:

Name Description

ALLOW_BROWSER Indicates whether the portal uses the browser cache to render the
component. The value can be one of the following:

● Yes: The content is stored in the browser cache and in
the PRT cache.

● No: The content is stored in the PRT cache, but not in the
browser cache.

● BrowserCache: The content is stored in the browser
cache, but not in the PRT cache.

CachingLevel The scope of the cache, which can be one of the following:

● Shared: The cache content is shared among all users.

● User: The content is private for each user.

● Session: The content of the component is cached for the
(servlet) session, whether or not a user is connected. This
level is used to cache information related to the browser's
sessions.

EPCFLevel Indicates whether the enterprise portal client framework (EPCF) is
used.

If two or more embedded iViews with different EPCFLevel values
are rendered on a page (within the same frame), the effective level
is computed as the maximum of all EPCFLevel values on the
page.

The property can have the following values:

● 0: This component does not use EPCF. Neither scripts nor
applets are included.

● 1: This component uses all EPCF features implemented
with pure JavaScript.

● 2: This component uses all EPCF features implemented
with pure JavaScript and applets.

The default value is level 2.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 13

ValidityPeriod The length of time, in milliseconds, that the cache is valid.

The component can also define custom parameters.

Each <component-profile> property can have the following sub-properties that
define the property’s personalization behavior:

Name Description

description A text token that can be resolved by the component's resource
bundle. The locale-sensitive descriptive text for the property can
be used in user interfaces.

inheritance Indicates whether any changes in this property within a
descendent object is recognized by the Portal Runtime.

● final: Changes to the property value are not recognized by
the Portal Runtime

● non-final: Changes to the property value are recognized by
the Portal Runtime (default).

Not matter the setting of the inheritance sub-property, a
descendent object can store a different value for the property. The
inheritance sub-property determines whether this value has
any effect.

A descendent object may have a different value for the property,
but with the inheritance sub-property set to final, this value
has no effect. If the inheritance sub-property is changed to
non-final, the changed value in the descendent object would
then have an effect.

You cannot set the inheritance sub-property to
final in an iView unless that iView specifies a value
for the property.

personalization Indicates whether this property can be personalized. The value
can be one of the following:

● none: No personalization

● no-dialog: Personalization is enabled, but only through
code. The property does not appear in the standard
personalization window.

● dialog: Personalization is enabled and the property
appears in the standard personalization window.

The default is dialog.

plainDescription A description of the property for use in user interfaces, which is
used if no description property is specified.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 14

type Specifies the type of property. This value determines what types of
controls are displayed for modifying this property.

The value can be one of the following:

● select[<option>(,<option>)]

● boolean

If blank, the property is treated as a string and edited in a textbox.

These sub-properties have no meaning to the Portal Runtime. They are used during
personalization or at design time by administration tools.

The following is an example of the declaration of a property named Color with sub-
properties personalization and type:

<property name="Color" value="red">
 <property name="personalization" value="dialog"/>
 <property name="type" value="select[red,green]"/>
</property>

1.1.1.4.1.3 Services
The <services> element defines the portal services that are part of this application, and
includes configuration information for each. The element includes one or more <service>
elements, each of which defines one portal service.

The following is an example of a <services> element that defines one service.
<services>
 <service name="ContentProvider" alias=”MyServiceAlias”>
 <service-config>
 <property name="className"
value="com.sap.portal.MyService"/>
 <property name="startup" value="false"/>
 </service-config>
 <service-profile>
 <property name="MyProperty " value="true"/>
 </service-profile>
 </service>
</services>

Each <service> element can contain the following attributes:

● Name: The name of the service

● Alias: An alias for the service that can be used instead of the fully qualified name. This
attribute is optional.

Each <service> element contains a <service-config> element that provides
configuration for the service.

The following are standard properties for service configuration.

Name Description

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 15

ClassName The name of the implementation class of the portal service. This class must
implement the IService interface.

startup If set to true, the service is started at when the portal is started. If set to
false or left blank, the service is started on demand.

Each <service> element can also contain a <service-profile> element that provides
custom properties that can be modified by the system administrator.

There is only one set of values for these properties of a service.

1.1.1.4.1.4 Registry
The <registry> element defines any entries to be added or modified in the registry.

The following is an example of a <registry> element:
<registry>
 <entry path="/runtime/transformers" type="subcontext"/>
</registry>

The <registry> element can contain one or more <entry> elements, each of which
defines one of the following:

● Registry Entry: A key-value pair. The entry is placed in the path specified by the
registry subcontext specified by the path attribute. The key is the final part of the path
attribute and the value is specified by the name attribute.

For example, the following creates the key myTransformer with the value
TransformerProvider in the subcontext runtime/transformers:

<entry path="runtime/transformers/myTransformer"
 name="TransformersProvider" type="service"/>

Any other values specified in the entry are attributes of the registry entry. In the
example above, type is an attribute of the TransformersProvider entry with the
value service.

● Registry Subcontext: A new subcontext to be created in the existing registry
subcontext specified by the path attribute. The type attribute must be subcontext.

The following creates the subcontext transformers in the runtime registry
subcontext:

<entry path="/runtime/transformers" type="subcontext"/>

1.1.1.4.1.5 Deployment Descriptor Example
The following is an example of a deployment descriptor (portalapp.xml) file for an
application that contains one portal service and one portal component.
<application>

 <application-config>
 <property name="releasable" value="true"/>
 </application-config>

 <components>
 <component name="ChatRoom">
 <component-config>
 <property name="ClassName"

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 16

 value="com.sap.portal.exampleapp.impl.ChatRoom"/>
 </component-config>
 <component-profile>
 <property name="diplayHistory" value="10">
 <property name="plainDescription" value="No. of messages"/>
 <property name="personalization" value="dialog"/>
 </property>
 <property name="diplayStyle" value="list">
 <property name="type" value="select[list,history]"/>
 <property name="personalization" value="dialog"/>
 </property>
 </component-profile>
 </component>
 </components>

 <services>
 <service name="ChatService">
 <service-config>
 <property name="startup" value="true"/>
 <property name="className"
 value="com.sap.portal.exampleapp.impl.ChatService"/>
 </service-config>
 <service-profile>
 <property name="chatHistory" value="100"/>
 </service-profile>
 </service>
 </services>

</application>

1.1.2 How Requests Are Handled
The Portal Runtime is an HTTP servlet (called prt) contained in a J2EE application (called irj),
which runs in the SAP J2EE Web container. The servlet is the entry point for all requests,
which are handled by the following components of the Portal Runtime:

● Dispatcher: This is the prt servlet that receives the request. It selects the appropriate
connection based on the request parameters, and passes the request to this
connection.

● Connection: The connection does the following:

○ Treats servlet request and forwards it to the request manager (for the standard
Portal Runtime connection, called portal).

○ Creates portal request and response objects for the request.

○ Manages user authentication

○ When requested, creates URLs for this connection.

○ Defines the hooks for the request. For more information on Hooks, see Hooks
[Page 24].

● Request Manager: The request manager does the following:

○ Builds the POM tree and processes POM and request events.

○ Executes the portal components involved in the request and retrieves the
content.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 17

● Object Broker: The object broker manages the creation and lifecycle of all portal
component and service objects. It manages all class loading and dependency issues.

Developers of portal applications have the greatest control in what occurs within the request
manager, especially what occurs during the creation of the POM tree and content, as
described in Portal Object Model (POM) [Page 17].

1.1.2.1 Portal Object Model (POM)
In order to generate the HTML content for a specific HTTP request, the portal creates a POM
(Portal Object Model) tree of all components that will be involved in generating HTML for the
request.

Often, there is only a single component for generating the content. But a component can
delegate to another component the task of generating the HTML for the request, or can
include the HTML from another component in its response. These are done during POM
creation.

During the creation of the POM, the Portal Runtime calls methods of the components involved
in the request. Afterward, during content creation, the Portal Runtime calls other methods of
the components. These methods are described in Event Cycle.

POM Structure
A node called the Portal Node is always the root of the POM, and is created automatically.
The first child of this node is a node that represents the component specified in the request
URL. This component can then include other components in the request by creating other
nodes within the POM.

The following is a simple POM with one component, which could represent a request for a
single iView that is rendered using the component com.sap.portal.myComponent:

Portal
Node

Node A
Represents component

com.sap.portal.myComponent

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 18

The following is a more complex POM with several components involved in the request:

Portal
Node

Node A
(Page Builder)

Represents the
Page Builder component

Node B
(component)

Node C
(Page Builder)

Node E
(component)

Node D
(component)

The above tree represents a page that includes an iView (component) and another page,
which includes two iViews (components). The Page Builder component is a major user of the
POM mechanism.

1.1.2.2 Request Flow
The following illustrates the POM process flow for handling a request:

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 19

Request

Create Portal Node

Create Node
for Component

listed in Request

doOnNodeReady()

doOnPOMReady()

Execute Request Events

doOnBeforeContent()

A component can create a
new node in one of these
methods. This would trigger
immediately the
doOnNodeReady() method
in the new node.

If the new node (B) was created
in the doOnPOMReady() method
of the first node (A), the
sequence of events would be as
follows:
• doOnPOMReady in A

(Node B is created)
• doOnNodeReady in B
• doOnPOMReady in A

(completes)
• doOnPOMReady in B

A POM node can fire a
component event during
POM creation or content
creation, triggering a
handler method in the
target node.

doContent()

doOnAfterContent()

Done

Main content creation method.

doContent() is called in default
mode. For mode XXX, doXxx()
is called instead.

POM
Creation

Content
Creation

The following is the sequence of method calls during POM creation and content creation:

● doOnNodeReady(): Called on a component when the node representing the
component is added to the POM tree. Called once for each component.

● doOnPOMReady(): Called on each node when no more nodes are to be added to the
POM tree. The Portal Runtime traverses the tree from top to bottom, calling the method
for each component.

If a node is created in a doOnPOMReady() method, the new node’s
doOnNodeReady() method is called and then the doOnPOMReady() method finishes
execution. The doOnPOMReady() method of the new node is then called.

● Request Event Handlers: Called if there are request events for special nodes.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 20

● doBeforeContent(): Called just before content creation. The Portal Runtime
traverses the tree from bottom to top, calling the method for each component.

● doContent(): Called to retrieve content from the top-most component in the POM
tree. doContent() is called only in default mode. An alternative method is called for
other modes. See Modes.

It is up to this mode to invoke the doContent() (or alternative method) of any other
nodes in the POM tree.

● doAfterContent(): Called on each node when that component’s doContent() (or
alternative method) is finished.

Calls to doOnNodeReady(), doOnPOMReady() and request event handlers are part of the
POM creation phase. Calls to doBeforeContent(), doContent() (or an alternative
method if the mode is not the default mode) and doAfterContent() are part of the content
creation phase.

1.1.2.2.1 Including Another Component's Content
During content creation, a component can include in its response the content from another
component, as shown below:
INode childNode = request.getNode().getFirstChild();
response.include(request,childNode);

The component must be represented by a node in the POM tree.

1.1.2.2.1.1 Creating and Adding Nodes
To add a component node, do the following:
...

1. Create a portal component context for the component.
IPortalComponentContext portalContext =
 request.getComponentContext("myApp.myComp");

2. Create a component node.
IComponentNode componentNode = request.getNode().getPortalNode()
 .createComponentNode("myNode",portalContext);

3. Add the node to the POM tree. For example, the following adds a node to the portal
node:

request.getNode().getPortalNode().addChildNode(componentNode);

Removing a Node
To remove a child node, a node can call removeChildNode()and supply a reference to the
node to be removed.

1.1.2.3 Modes
A portal component’s mode determines which method is called during content creation.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 21

If no mode is specified, the component is rendered in the default mode, which causes the
component’s doContent() method to be called. For any other mode named XXX, the
component’s doXxx method is called.

For example, in help mode, the doHelp() method is called instead of doContent().

For a component or for all components, you can designate a delegate component for handling
any request for a specific mode. For more information, see Delegation [Page 21].

How the Mode is Set
The mode can be set in the following ways:

● Request URL: The request URL may contain a parameter named prtmode whose
value is the mode.

● Manually During POM Creation: During the creation of the POM, you can set the
mode of a specific node with the setNodeMode() method of the INode interface.

AbstractPortalComponent implements the methods for some of the built-in modes, such
as edit and help mode (with doEdit() and doHelp() methods), but does not implement
doContent() for the default mode. You must implement this mode.

1.1.2.3.1 Delegation
Instead of implementing a method within your portal component for a specific mode, you can
specify another component to be called when your component is called in a specific mode.

This delegation is specified in the component’s deployment descriptor:
<component name="mycomp">
 <component-config>
 <property name="ClassName" value="com.sap.MyComponent"/>
 <property name="mode" value="edit">
 <property name="delegate" value="DelegateComp.default"/>
 </property>
 </component-config>
</component>

When delegating for XXX mode, the doXxx() method is called on the delegate component.
In the above example, doEdit() is called on DelegateComponent.default.

The subsequent request events are also sent to the delegate component until the mode is set
to default.

Mode Delegation
You can create a component that serves as the delegate component for all components that
are called in a specific mode.

To specify a delegate, add a registry entry with the name of the delegate component in a
subcontext named for the mode, and place this subcontext under the /runtime/prt.modes
subcontext.

The following example shows how to specify the myApp.adminDelegate component as the
delegate for all components that are called in admin mode:
<registry>
 <entry path="/runtime/prt.modes/admin"
name="myApp.adminDelegate"
 type="component” rebind="false"/>

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 22

</registry>

1.1.2.4 Events
You can define, fire and handle events during a portal request. The portal defines the
following types of events:

● Request Events: Events defined in the request URL. For example, you may have a
component that displays a form that gets submitted to the same component, but with a
slightly modified URL that includes a request event that indicates that the Submit button
was clicked.

For a request event named XXX, the portal tries to call
doXxx(IPortalComponentRequest, IPortalRequestEvent) prior to content
creation.

If no such method exists, doRequestEvent(IPortalComponentRequest,
IPortalRequestEvent) is called. The IPortalRequestEvent object contains the
name of the event and any data.

For information on generating a URL with a request event, see Creating URLs to
Components [Page 23].

● Portal Object Model (POM) Events: Predefined events that occur during POM
creation and content creation. For a list of events, see Request Flow [Page 18].

● Component Events: A POM node can fire an event to other nodes in the POM. The
following is an example of firing a component event:

IPortalNode myPortalNode = request.getNode().getPortalNode();
IPortalComponentEvent myEvent =
 myPortalNode.createPortalComponentEvent("myEvent");
myPortalNode.fireEventOnNode(myEvent,myNode);

For a component event named XXX, the portal tries to call
doXxx(IPortalComponentRequest, IPortalRequestEvent) immediately.

If no such method exists, doComponentEvent(IPortalComponentRequest,
IPortalComponentEvent) is called. The IPortalComponentEvent object
contains the name of the event and any data.

A node can filter the events it receives and choose to accept or reject each event. The
method accept() is called on the node component before event handling occurs. If
accept() returns true, the event is handled as usual; if false is returned, the event
is ignored.

1.1.2.5 Request URL
This section describes how the request URL is constructed.

The format of portal URLs may change. Therefore, to create a URL, use the
Portal Runtime API, as described in Creating Request URLs.

The following is a sample URL, which is relevant when using the standard portal
connection.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 23

Host

http://ilgm16:50000/irj/servlet/prt/portal/prteventname/HtmlbEvent/prtroot/com.sap.ButtonExample

Servlet
Name

Request
Event

Portal Component
(1st node in the POM)

Web
Application

Connection

A portal request URL generally contains the following parameters:

● Web Application (irj): The name of the J2EE Web application that contains the
Portal Runtime.

● Servlet Name (prt): The name of the servlet that handles the request. This is the
dispatcher servlet.

● Connection (portal): The connection for this request. The default connection for
Portal Runtime applications is portal. There are special connection objects (for
example, for WSRP or Knowledge Management requests).

● Root Component (prtroot): The root component that is being requested.

● Mode (prtmode): The mode of the request.

● Request Event (prteventname): The name of a request event to be fired for this
request.

● Request Event Target (prttarget): The node in the POM that receives the request
event.

The web application, servlet and connection parameters are single values (with the standard
value shown in parentheses).

The root component, mode, request event and target parameters are key-value pairs (with the
key shown in parentheses).

1.1.2.5.1 Creating URLs to Components
You may want to create links between portal components by putting the URL of a portal
component in a hyperlink tag (<a>). The Portal Runtime includes an API for creating URLs to
portal components.

Never hardcode URLs. Always use the API to create the URLs.

Procedure
...

1. Create a IPortalComponentURI object from the request object. This object is a
helper class in creating the URL.

IPortalComponentURI componentURI = request.createPortalComponentURI();

2. Set the name of the component. In the example below, the link is to the portal
component myApplication.myComponent.

componentURI.setContextName("myApplication" + "." + "myComponent");

3. Set the request event, if necessary.
IPortalRequestEvent myRequestEvent = request.createRequestEvent("myEvent");
componentURI.setPortalRequestEvent(myRequestEvent);

You can add parameters in the request by adding an IPortalRequestEventData
object – which contains key-value pairs – to the IPortalRequestEvent object.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 24

4. Set the target of the request event, if necessary. In the example below, the target is the
current component.

componentURI.setTargetNode(request.getNode());
componentURI.setPortalRequestEvent(myRequestEvent);

5. Set the mode, if necessary.
componentURI.setNodeMode(NodeMode.EDIT_MODE);

6. Create the URL string with the following:
componentURI.toString();

1.1.2.5.2 Creating URLs to Web Resources
This section explains how to create links to Web resources contained in your portal
application. Web resources are the files in your application that are accessible directly via an
HTTP request.

The following code retrieves the URL to the XML file BugsReminder.xml and outputs it to
the response:
IResource myResource =
 request.getResource(IResource.XML,"xml/BugsReminder.xml");
response.write(myResource.getResourceInformation().getURL(request));

Never hardcode URLs. Always use the API to create the URLs.

1.1.2.6 Hooks
The Portal Runtime has defined some points during the request cycle where you can add
your own processing. Those entry points, which are called hooks, are defined by the
connection and are run for every request.

Hooks affect every request to the portal, and are designed for special situations.
Because hooks can have wide-ranging and dangerous side-effects, it is strongly
recommended not to implement new hooks.

The following types of hooks can be defined (for the portal connection only):

● POM Hooks: Executed whenever a POM node is created.

● Event Hooks: Executed before any event is fired. It could replace the event, forward it
to another object or cancel the publishing.

● Document Hooks: Executed before and after construction of the HTML document.

● Response Hooks: Executed before and after the service() method of the component.
The hook can substitute the original response and is notified when the component has
finished using the response object.

● Component Hooks: Executed before the service() method of the component. It could
add content or replace the content.

The hooks to be executed are defined in the portal registry under /runtime/hooks.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 25

1.1.2.7 Portal Registry

Purpose
The portal registry stores configuration information for the Portal Runtime. This information is
for use by the Portal Runtime, and you should not modify the registry.

However, some applications may require you to create a registry entry. For example, if you
create a new XML transformer, you must register the transformer by adding a registry entry at
/runtime/transformers. A registry entry can be created by adding an <entry> element
in your application’s deployment descriptor.

For more information on creating registry entries, see Registry [Page 15].

Viewing the Registry
To view the registry, run the Portal Registry Browser by clicking System Administration →
Support → Portal Runtime → Portal Registry Browser. The following is displayed:

The Name column displays either a subcontext, in which it is displayed as a link, or the name
of a registry entry. For a registry entry, the Class name column displays the value of entry.

For example, to view registered transformers, click the runtime subcontext, and then click
the transformers subcontext. The registry entries in the Name column represent the names
of transformers, and the value for each in the Class name column represents the service that
implements the transformer.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 26

The links that are displayed after You are here indicate the subcontext that you are
currently viewing. Use these links to navigate back up the JNDI tree.

1.1.3 Working with the PRT

Purpose
This section describes key considerations when building portal components and services, and
includes the following:

● Permission Model [Page 26]

● Internationalization [Page 27]

● Customizing Caching [Page 30]

● Writing JSP Pages [Page 33]

● Web Services [Page 33]

● Integrating with the SAP J2EE Engine [Page 33]

1.1.3.1 Permission Model

Purpose
Access to portal content is controlled via permissions, which are set by the portal
administrator.

One mechanism for controlling access to portal components and services in the portal is via
security zones, as follows:
...

1. Developers assign their components and services to a security zone, by specifying the
security zone in the portalapp.xml.

2. Once the components and services are deployed to the portal, a portal administrator
assigns permissions on the security zone. The permissions of a security zone control
access to all components and services in that security zone.

The security zone for a component or service is specified by the following portalapp.xml
properties:

● Vendor Name (such as com.sap), the default is UndefinedVendor

● Security Area (such as NetWeaver.Portal), the default is
UndefinedSecurityArea

● Safety Level (such as high_safety), the default is UndefinedSafetyLevel

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 27

The portal system administrator sets the permission for each security zone, and all
components and services in the zone inherit these permissions.

A service’s permission only affects access to the service when exposed as a
Web service. All components, no matter the user who generated the request,
have permission to access all services.

For more information on security zones, see Security Zones [External].

For more information on portal permissions, see Portal Permissions [External]

Setting the Security Zone
The security zone for a component is defined by properties in two places in the deployment
descriptor (portalapp.xml) file for the application in which the component is deployed:

● <application-config>: The Vendor and SecurityArea properties set the vendor
name and security area for all components in the application.

<application-config>
 <property name="Vendor" value="sap.com"/>
 <property name="SecurityArea" value="MyCompany"/>
</application-config>

● <component-config>: The SafetyLevel property for each component sets the
safety level for that component.

<component-config>
 <property name="ClassName" value="com.sap.portal.myComponent"/>
 <property name="SafetyLevel" value="low_safety"/>
</component-config>

During deployment, an application’s components and services are placed in the appropriate
security zone, as defined in the portalapp.xml. A portal administrator can then modify the
permissions on the security zone or on the component or service.

Content developers and portal administrators should work together in
determining what security zones to create and in which security zones to place
each component and service.

Changing the Security Zone
To change the security zone for a deployed component or service, change the Vendor
Name, Security Area and Safety Level properties in the portalapp.xml file
and redeploy the application.

1.1.3.2 Internationalization

Purpose
To enable your portal application to be displayed in different languages, you must create
resource bundles that hold all language- or country-specific text strings or other resources.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 28

You can create a different resource bundle for each locale-country combination that you want
to support, and then add these resource bundles to your PAR file. Your components can
retrieve strings or other resources from these files.

Resource Bundles in PAR Files
The first part of the internationalizing process is resourcing. This involves isolating the locale-
specific resources of the source code into modules called resource bundles. Those modules
can then be independently added to or removed from the application.

For a portal application, all the locale-specific strings and objects are stored in a set of
resource bundles – generally .properties files – packaged with the PAR file.

Place resource bundles either in PORTAL-INF/private/lib (when packaged in JAR files) or
in PORTAL-INF/private/classes (as individual files).

Administration Tools
The portal comes with tools that enable content administrators to internationalize strings that
they define in an iView, page or workset, such as the name of the iView or the value of iView
properties.

Content administrators can also provide translations for text strings within resource bundles,
essentially creating new resource bundles for locales that are not supported.

For more information, see Portal Content Translation [External].

1.1.3.2.1 Lookup of Resource Bundle
The resource bundle that is retrieved by a portal component is based on the resource bundle
name defined in the deployment descriptor, plus the regional settings for the current user.

The rules for selecting the locale-specific resource bundle are defined by the Java
programming language.

The locale is determine by the following properties in the order shown:
...

1. Component locale

This locale is defined by the following component profile properties:

○ ForcedRequestLanguage

○ ForcedRequestCountry

This enables you to force a component to use a specific local, such as for
administration components.

2. Portal mandatory locale

This locale is defined in prtDefault.properties by the following properties:

○ request.mandatorylanguage

○ request.mandatorycountry

This locale is useful for administrators setting up a portal environment.

3. User locale

This locale is defined in the profile of the current user.

4. Request locale

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 29

The request locale is defined by the browser. This is used, for example, for anonymous
users or users that do not have locales defined in their profiles.

5. Portal default locale

This locale is defined in prtDefault.properties by the following properties.

○ request.defaultlanguage

○ request.defaultcountry

6. System default locale

This is the Java default locale defined by the system, either by the operating system or
by the JVM.

For example, if the current default locale is en_US, the locale of the component is fr_CH and
the resource bundle name is localization, the portal will look for resource bundles in the
following order:
...

1. localization _fr_CH

2. localization _fr

3. localization _en_US

4. localization _en

5. localization

The resource bundles must be in the PORTAL-INF/private/ folder.

1.1.3.2.2 Accessing Strings
Accessing resource strings in a portal component is similar to accessing resource strings from
any Java application. Retrieve the resource bundle object (ResourceBundle) and then call
getString() for your string, as shown below:
import com.sapportals.portal.prt.component.*;
import com.sapportals.portal.prt.resource.*;
import java.util.ResourceBundle;

public class HelloWorldComponent extends AbstractPortalComponent {

 public void doContent(
 IPortalComponentRequest request,
 IPortalComponentResponse response) {

 ResourceBundle resource = request.getResourceBundle();
 response.write(resource.getString("GREETING"));
 }

In the example above, the request object retrieves a resource bundle whose name is
indicated by the ResourceBundleName property in the <component-config> element for
the current component in the deployment descriptor.

You can retrieve a resource bundle for another component by creating an
IPortalComponentContext object for the other component, and then getting its resource
bundle, as shown in the following example:
IPortalComponentContext myPortalComponentContext =
 request.getComponentContext("myApp.myComp");
ResourceBundle resource =

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 30

 myPortalComponentContext.getResourceBundle(request.getLocale());

1.1.3.2.3 Encoding
Data sent from the browser to a portal component for processing is converted based on the
following properties, which are defined in the portal configuration file:

Name
Default
Value Description

runtime.doubleByteSupport true Convert data from browser.

If
runtime.doubleByteSupport
is set to false, the encoding is
the encoding defined at the
servlet container level.

runtime.doubleByteSupport.encoding UTF-8 Encoding for decoding data from
browser and encoding data sent
to browser.

Data is read in Unicode format and then manipulated accordingly. The locale of the browser is
found with the getLocale() method of the original servlet request.

1.1.3.3 Customizing Caching

Purpose
The portal implements a persistent cache for storage of portal content of requests of type
content. The portal provides the following ways of controlling the cache for a portal
component:

● Component Profile [Page 30]: You can set profile properties in the deployment
descriptor.

● Caching Interfaces [Page 31]: You can implement interfaces defined by the
com.sapportals.portal.prt.component package.

1.1.3.3.1 Component Profile
The following table describes the profile properties that you can define in the deployment
descriptor – in the <component-profile> element for your component – in order to control the
caching of your component’s content:

Property Description

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 31

CachingLevel Indicates the type of cache, as follows:

● None (default): The component is not cached.

● Shared: The component’s content is cached and the cache is
shared among all the users.

● User: The component’s content is cached separately for each
user.

● Session: The component’s content is cached all the time the
(servlet) session is running, whether or not a user is
connected. This level is used to cache information related to
the browser's sessions.

ValidityPeriod Indicates how long the cache is valid, in milliseconds.

-1 indicates the cache never expires.

ALLOW_BROWSER Indicates if browser caching is used:

● Yes (default): Browser caching enabled.

● No: Browser caching disabled, for cases where you do not
want to store cache locally.

● BrowserOnly: Only browser caching is used; server stores
only cache meta-data.

The following is a deployment descriptor that defines a component with a CachingLevel of
session and ValidityPeriod of 2 seconds:
<application>
 <application-config/>
 <components>
 <component name="session">
 <component-config>
 <property name="ClassName" value="myApp.myCompnent"/>
 </component-config>
 <component-profile>
 <property name="CachingLevel" value="Session"/>
 <property name="ValidityPeriod" value="2000"/>
 </component-profile>
 </component>
 </components>
</application>

1.1.3.3.2 Caching Interfaces
The com.sapportals.portal.prt.component package defines the following interfaces
that, if implemented by a component, control the caching of the component’s content:

● ICachablePortalComponent [Page 32]: Determines the caching level and whether the
cache has expired.

● ICacheValidator [Page 33]: Determines whether the cache is still valid based on a
string that was stored with the cache.

● ICacheDiscriminator [Page 33]: Enables the storage of different caches for this
component and to label each cache. When called again, the component can specify a
label and the cache with that label is returned, if it exists.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 32

A portal administrator can force the use of the cache properties defined in the
component profile instead of these caching methods by setting the component
profile property ForceProfileCachingParams to true.

Automatic Caching Expiration
Cached content expires automatically in the following cases:

● A request or a component event is sent to the component.

● The mode is REFRESH.

● An exception is raised during the request cycle.

1.1.3.3.2.1 ICachablePortalComponent
The ICachablePortalComponent interface defines the following methods for determining
the caching level and whether the cache has expired:

● getCachingLevel: Sets the caching level, either none, shared, session or user.
public CachingLevel getCachingLevel(
 IPortalComponentRequest request)

Returns a CachingLevel object that represents a caching level. For example, a
component can change its caching level at runtime and decide not to be cached,
depending on request parameters.

If this method is not implemented, the default implementation from
AbstractPortalComponent returns the value set in the CachingLevel property.

● hasExpired: Determines if the cache has expired. True indicates the cache has
expired.

public boolean hasExpired(IPortalComponentRequest request,
 long creationTime,
 long currentTime)

If this method is not implemented, the default implementation from
AbstractPortalComponent returns the value set in the ValidityPeriod
property.

Example
The following is an example of how to use the ICachablePortalComponent interface:
import com.sapportals.portal.prt.component.*;

public class MyComponent extends AbstractPortalComponent
 implements ICachablePortalComponent {

 public boolean hasExpired(IPortalComponentRequest request,
 long creation,
 long current) {
 if ((current - creation) > 10000) {
 return true;
 }
 return false;

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 33

 }

 public void doContent(IPortalComponentRequest request,
 IPortalComponentResponse response) {
 long current = java.lang.System.currentTimeMillis();
 response.write("<H2>" + new java.util.Date(current) +
"</H2>");
 }
}

1.1.3.3.2.2 ICacheValidator
The ICacheValidator interface enables you to save a string value (validation key) with the
cache and then, during the next request, determine whether the cache is still valid based on
the string that was stored.

The interface defines the following methods:

● isCacheValid: Determines whether the cache is still valid. The key that was stored
with the cache is passed to the method to help determine the validity of the cache.

public boolean isCacheValid(IPortalComponentRequest request,
 String key);

The key parameter is the string that was returned from the getValidationKey()
method during the last request.

● getValidationKey: Returns a key to be passed to the isCacheValid() method
on the next request.

public String getValidationKey(IPortalComponentRequest request);

Example
The following code displays an applet, whose size is read from the component profile. The
ICacheValidator interface is used to invalidate the cache when these values change:

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 34

public class DisplayAppletComponent
 implements ICacheValidator, ICachablePortalComponent {

 public void doContent(
 IPortalComponentRequest request,
 IPortalComponentResponse response) {

 // Display applet of a certain size
 int witdh = getAppletWidthFromProfile(request);
 int height = getAppletHeightFromProfile(request);
 displayApplet(width, height);
 }

 public CachingLevel getCachingLevel() {
 return CachingLevel.USER;
 }

 /**
 * The method determines if the key has changed. If it has,
 * the cache is invalidated.
 **/
 public boolean isCacheValid(IPortalComponentRequest request,
 String key) {
 int witdh = getAppletWidthFromProfile(request);
 int height = getAppletHeightFromProfile(request);
 String newKey = computeKey(width, height);
 return key.equals(newKey);
 }

 /**
 * Saves with the cache a key based on profile properties
 **/
 public String getValidationKey(IPortalComponentRequest request)
{
 int width = getAppletWidthFromProfile(request);
 int height = getAppletHeightFromProfile(request);
 // Computes a key with the width and height
 String key = computeKey(width, height);
 return key;
 }

 private String computeKey(int width, int height) {
 String key = "" + width + "|" + height;
 return key;
 }
}

1.1.3.4

1.1.3.4.1.1 ICacheDiscriminator
The ICacheDiscriminator interface enables you to save different caches for a
component, each with a different label, or cache discriminator. When another request is made
for the component, the portal requests the cache discriminator from the component and then
retrieves cached content if one of the caches has the specified cache discriminator.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 35

The interface defines the following method:

● getCacheDiscriminator: Returns a string for labeling the component’s content
when placed into the cache.

public String getCacheDiscriminator(IPortalComponentRequest request)

Example
A component displaying weather reports can cache content for each city.
package com.sapportals.portal.prt.test.component;
import com.sapportals.portal.prt.component.*;
import com.sapportals.portal.prt.event.IPortalRequestEvent;

public class WeatherComponent implements ICacheDiscriminator {
 private final String SELECTED_CITY = "SelectedCity";
 private final String CITY_PROPERTY = "City";

 public void doContent(IPortalComponentRequest request,
 IPortalComponentResponse response) {
 String cityName =
 (String) request.getNode().getValue(CITY_PROPERTY);

 // Add content here
 }

 /**
 * Stores the selected city in the component profile
 */
 public void doSelect(IPortalComponentRequest aRequest,
 IPortalRequestEvent event) {
 String cityName =
 (String) aRequest.getParameter("SELECTED_CITY");
 aRequest.getNode().putValue(CITY_PROPERTY, cityName);
 }

 /**
 * Uses the city name as the cache discriminator.
 */
 public String getCacheDiscriminator(
 IPortalComponentRequest request) {
 String cityName =
 (String) request.getNode().getValue(CITY_PROPERTY);
 return cityName;
 }
}

1.1.3.4.2 Browser Caching
The portal supports browser caching using HTTP conditional requests. Enable browser
caching by setting ALLOW_BROWSER property in the component’s profile.

The following are the steps that occur if browser caching is enabled:
...

1. If browser caching is enabled, an HTTP header LastModified is sent to the browser
with the last-modified time.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 36

2. After receiving a response with a LastModified header, the browser sends an
If-Modified-Since header to the server if the same request is made again. The
header contains the time from the LastModified header.

3. The If-Modified-Since value can be compared to the cached content timestamp of
the root node.

If they match, the HTTP response header NOT_MODIFIED is sent to the browser.

Otherwise, the content is regenerated, stored in the cache, and sent again to the
browser.

A portal component can use browser caching if:

● The root component node is cached.

● All cached nodes in the Portal Object Model (POM) have the property
ALLOW_BROWSER set to Yes or BrowserOnly in their profile, as shown below:

<component name="user2">
 <component-config>
 <property name="ClassName" value="myApp.myComponent"/>
 </component-config>
 <component-profile>
 <property name="CachingLevel" value="User"/>
 <property name="ALLOW_BROWSER" value="BrowserOnly"/>
 </component-profile>
</component>

1.1.3.5 Writing JSP Pages

Purpose
The Portal Runtime enables you to run JSP pages in the portal, and to write portal
components as JSP pages.

The portal has its own implementation of JSP, so not all previously written JSP
pages can be run in the portal. For more information on differences in the portal
implementation of JSP, see JSP Objects and Directives.

The following shows the JSP versions used by the Portal Runtime and the SAP J2EE engine
for different versions of the portal:

Portal Version Portal Runtime SAP J2EE Engine

SP2 J2EE 1.2 (JSP 1.1) J2EE 1.2 (JSP 1.1)

NetWeaver 04 J2EE 1.2 (JSP 1.1) J2EE 1.3 (JSP 1.2)

All JSP files must be placed in the private area (PORTAL-INF folder) of the PAR in which they
are packaged.

When the JSP is first accessed, the portal creates a .java file that defines a class that extends
AbstractPortalComponent that is based on the JSP page, and then compiles the file into
a .class file. When the JSP is called, it is this class that is executed, not the JSP. The name
of the java file is _sapportalsjsp_[name of JSP file].java.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 37

The package name of the new portal component class is based on the folder in which the JSP
is placed. For example, for a JSP page whose path is
PORTAL-INF/jsp/select/customer/default/entry.jsp, the java class
_sapportalsjsp_myJSP in package jsp.select.customer.default is created in the
file _sapportalsjsp_myJSP.java.

The portal places the .java and .class files in a new folder called work in the /WEB-
INF/portal/portalapps/<application name> folder, where application name is
the portal application in which the JSP is packaged.

Development Vs. Production Mode
In production mode, a change in the JSP page on the file system of the portal does not cause
the JSP to be recompiled. For performance reasons, the page is recompiled, if necessary,
only when the application in which the page is packaged is redeployed.

During development and testing, it may be easier to make changes to a JSP on the file
system than to make changes in NetWeaver Developer Studio and then redeploy the
application. Therefore, in development mode, the JSP page is checked to see if it was
modified each time the page is called.

Encoding
When a portal application uses a JSP resource that contains double-byte characters, the
portal needs to know the character set used to create the file. The portal can then parse the
file in the correct encoding and generate the corresponding output in UTF-8 encoding (or in
the encoding specified in the runtime.doubleByteSupport.encoding property in the
prtcentral.properties configuration file).

Specify the encoding in the pageEnconding attribute of the page directive in the JSP file:
<%@page pageEncoding="shift_JIS" %>

1.1.3.5.1 Packaging JSP Pages
JSP pages can be packaged as a portal component, or as a resource contained in a portal
application.

● Portal Component: You can define a portal component, and provide as the
implementation a JSP page instead of a Java class that extends
AbstractPortalComponent, as described in JSP as Portal Component [Page 33].

You define the portal component in the application’s deployment descriptor, and specify
that the portal run the JSP page whenever the component is called.

● Standalone Resource: You can call and execute a JSP page from within a portal
component, as described in JSP as Standalone Resource [Page 33]. The output of the
JSP page is included in the output for the component.

1.1.3.5.1.1 JSP as Portal Component
To create a portal component from a JSP page, create a <component> element in the
deployment descriptor of your application.

Specify the following properties in the <component-config> element:

Property Value

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 38

JSP The path to the JSP file that is run when the component is called.

The path is relative to the PORTAL-INF folder of your PAR.

ComponentType jspnative

You do not have to create a className property.

1.1.3.5.1.2 JSP as Standalone Resource
To execute a JSP file within a component and include the output in the output of a
component, specify the JSP page in the include() method of the portal request object.

The following shows how to include the output from a JSP page contained in the same
application as the calling component:
public class CheckBoxComponent extends AbstractPortalComponent {
 public void doContent(
 IPortalComponentRequest request,
 IPortalComponentResponse response) {

 IResource jspResource =
 request.getResource(IResource.JSP, "jsp/checkres.jsp");
 response.include(request, jspResource);
}

Above, the JSP page checkres.jsp in the directory /PORTAL-INF/jsp is executed.

The following shows how to include a JSP page that is packaged in a different application:
 public class CheckBoxComponent extends AbstractPortalComponent {
 public void doContent(
 IPortalComponentRequest request,
 IPortalComponentResponse response) {

 IResource jspResource =
 request.getResource("JSPValidation", IResource.JSP,
 "/jsp/include/checkres.jsp");
 response.include(request, jspResource);
 }

Above, the JSP page checkres.jsp in the directory /PORTAL-INF/jsp/include of the
application JSPValidation is executed.

1.1.3.5.2 JSP Objects and Directives
You can access the standard JSP objects from within your page. However, some of the
objects are portal implementations and not the standard Java implementations, and therefore
provide different functionality.

Objects
The following table shows the JSP objects accessible from within a JSP page:

Object Class Description

request javax.servlet.ServletRequest Standard request object

response com.sapportals.portal.prt. Portal response object

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 39

 IPortalComponentResponse

pageContext javax.servlet.jsp.PageContext Standard page context
for this JSP page.

(The forward
functionality is not
supported.)

componentRequest com.sapportals.portal.prt.
 IPortalComponentRequest

Portal component
request object

session javax.servlet.http.HttpSession Standard session object

application javax.servlet.ServletContext Standard servlet context

out javax.servlet.jsp.JspWriter Standard object for
writing to output stream

config javax.servlet.ServletConfig Standard object for
writing to output stream

page com.sapportals.portal.prt.
 IPortalComponentContext

Standard servlet
configuration object

exception java.lang.Throwable Standard exception
object, for use by error
pages to view the error
that caused the page to
be called.

Directives
The following directives have special implementations:

● Page [Page 33]

● Include [Page 33]

1.1.3.5.2.1 Page Directive (ErrorPage Attribute)
The errorPage attribute of the page directive enables you to handle errors by calling a
portal component as well as another Web resource, such as a JSP or HTML page.

The following is an example of a page directive:
<%@ page errorPage="prt:component:MyComponent" %>

The following are the types of values that are valid for the errorPage attribute:

Type of Resource Syntax

JSP or HTML page in the
current portal component

error.html or error/myError.html

The value is a path, relative to the JSP page.

JSP or HTML page in
another portal component

prt:componentres:MyApp.MyComp,error/error.jsp

Portal component prt:component:MyApp.MyComp

MyApp.MyComp is a full-qualified name of a component.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 40

1.1.3.5.2.2 Include Directive
The include directive enables you to add the content produced by a portal component, in
addition to another JSP page or a static page.

Directive Description

<jsp:include page="[path]" /> The file is considered static content and is included
in the output, as is. Use this directive for HTML and
other static content.

<%@ include file="[path]" %> The file is considered as JSP code and is parsed
and executed before it is added to the output.

The following values are valid for the page or file attribute:

Type of Resource Syntax

JSP or HTML page in the
current portal component

myInclude.html or myIncludes/myInclude.html

The value is a path, relative to the JSP page.

JSP or HTML page in
another portal component

prt:componentres:MyApp.MyComp,
myIncludes/myInclude.html

Portal component

(for page attribute only)

prt:component:MyApp.MyComp

MyApp.MyComp is a full-qualified name of a component.

1.1.3.5.3 Tag Libs
JSP pages in the portal can use custom tag libs by doing the following:

● Package the class files that implement the tag lib in the lib or classes directory of the
PAR file’s PORTAL-INF folder.

● Add a directive to any JSP file that references the tag lib’s .tld file, as follows:
<%@ taglib uri="<uri>" prefix="[prefixname]" %>

The following shows the format for the uri attribute, above:

URI Description

Path of .tld file The path to the tag lib’s .tld file, relative to the JSP file.

Alias to .tld file, in the
following format:

prt:taglib:<alias>

An alias for the path to the .tld file is defined by a
<property> element in the <component-profile>
element.

For example, an alias for the portal’s HTMLB tag lib can be
created by adding a property called tlhtmlb and set the
property to
/SERVICE/com.sap.portal.htmlb/taglib/htmlb.tld.

The directive’s URI can then be set to prt:taglib:tlhtmlb.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 41

1.1.3.5.3.1 Built-In Tag Libs
All JSPs in the portal that are compiled in a portal component can use built-in portal tag libs
by doing the following:

● Add a directive to any JSP file that references the tag lib. The following shows the
directives for the HTMLB and Layout tag libs:

<%@ taglib uri="/SERVICE/com.sap.portal.htmlb/taglib/htmlb.tld"
prefix="hbj" %>

<%@ taglib
uri="/SERVICE/com.sap.portal.pagebuilder/taglib/layout.tld"
prefix="lyt" %>

● Add a ServicesReference reference to the tag lib service. The following shows the
reference for the HTMLB and Layout tag libs:

<property name="ServicesReference" value="com.sap.portal.htmlb"/>

<property name="ServicesReference"
value="com.sap.portal.pagebuilder"/>

1.1.3.5.4 Beans
JSP pages in the portal can reference Java beans as in standard JSP pages.

In the portal the scope attribute of the <jsp:bean> action, which is used to instantiate a bean,
acts somewhat differently, as shown in the following table, which lists the values that are valid
for the scope attribute:

Scope Description How to Reference Bean from
Component

page Bean is accessible within the
current page.

pageContext object

request Bean is accessible within the
current request.

request object

session Bean is accessible within the
current user session.

PortalComponentSession object, from
request.getSession()

application Bean is accessible from pages
that process requests that are
in the same application as the
one in which they were
created.

PortalComponentContext object

All references to the object are released
when the the
PortalComponentContext object is
reclaimed.

1.1.3.5.5 Servlets
The Portal Runtime enables you to run servlets and package them as portal components.

Procedure
...

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 42

1. Create a servlet, that is, a java class that extends HttpServlet.

2. In the deployment descriptor of your portal application, define a configuration property
named ComponentType and assign it a value of servlet, as shown below:

<components>
 <component name="ServletTest">
 <component-config>
 <property name="ClassName"

value="com.sapportals.portal.prt.component.ServletTest"/>
 <property name="ComponentType" value="servlet"/>
 </component-config>
</component>

3. Put the compiled servlet class in the private lib or classes folder.

1.1.3.6 Web Services
The Web AS engine provides tools for creating Web services from existing components, such
as enterprise Java beans or Java classes.

● To create a Web service that exposes a portal service, see Exposing Portal Services
as Web Services [Page 33].

● To call a Web service from a portal service or application, see Calling a Web Service
[Page 33].

1.1.3.6.1 Exposing Portal Services as Web Services
To expose a portal service as a Web service, use the Web Service Creation Wizard, which is
part of the NetWeaver Developer Studio.

Prerequisites
● The portal service must be created as part of a standalone portal application packed in

a development component (DC).

When creating the DC for the portal application that will contain the portal service,
select Portal Application Standalone in the new development component wizard.

● The portal interface on which the portal service and Web service are based must be
defined in the same project as the portal service.

Procedure
...

1. In NetWeaver Developer Studio, open the Web Services perspective.

2. Right-click the interface that you want to expose, and select New → Web Service.

The Web Service Creation Wizard is displayed. For information on running the wizard,
see Web Service Creation Wizard [External].

The wizard requires you to specify whether the new Web service will call the
current portal service using an existing alias, or whether you want to create a
new alias for the service.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 43

It is recommended that you create a new alias. This creates a new portal service
based on the same interface. This enables you to set different configuration
parameters, including security parameters, for the service when it is called from
within the Web AS and when called via a Web service.

3. Build the project, which creates an .sda file.

4. Deploy the .sda file via the Software Deployment Manager (SDM).

Results
The Web Service Creation Wizard creates the following files:

● <Web Service Name>Wsd.wsdef

● <Web Service Name>Vi.videf

● ws-deployment-descriptor.xml

When the project is built into an .SDA file and deployed, the Web AS creates a Web service
based on these files. For more information on these files, see Creating a Web Service
[External].

When a Web service call is received, the Web AS dispatches the call to a Portal Runtime
application (Portal Runtime Web Service Container), which makes the required portal service
call and returns the response.

Checking Deployment
The new Web service is deployed to the Web AS. To check the deployment, open the Web
Services Navigator to view all the Web services deployed to the Web AS.

The Web Services Navigator is located at http://<server>:<port>/wsnavigator.

1.1.3.6.2 Calling a Web Service
To call a Web service from a portal component or service, you need to create a J2EE
deployable proxy for the Web service, and then call the proxy.

For information on creating a deployable proxy for a Web service, see Consuming a Web
Service [External].

For more information on calling a J2EE application, see Calling J2EE Applications from Portal
Applications [Page 33].

1.1.3.7 Integrating with the SAP J2EE Engine

Purpose
This section describes how to integrate portal components and services with the SAP J2EE
Engine, and describes the following tasks:

● Calling Portal Applications from J2EE Applications [Page 33]

● Calling J2EE Applications from Portal Applications [Page 33]

● Packaging PARs in J2EE Applications [Page 33]

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 44

1.1.3.7.1 Calling Portal Applications from J2EE Applications
This section describes how J2EE applications can access portal components and portal
services.

Procedure
...

1. Specify the reference tag.

The reference tag is specified in the application-j2ee-engine.xml. It has the
following specifics:

○ Attribute: reference-type.

■ Attribute value: hard or soft.

References to portal applications are treated in a unique way. This means there is no
difference if hard or weak reference type is used.

2. Specify the reference-target tag.

○ Tag value: The name of the portal application or an alias defined for it:

■ Attribute: target-type. Attribute value: application.

The value application identifies the reference target as the portal application:

■ Attribute: provider-name. Attribute value: sap.com.

The value of this attribute should correspond to the property Vendor of the
portalapp.xml. By default, if no Vendor is provided in the portal application
descriptor of the referenced application, the provider-name in the application-
j2ee-engine.xml is sap.com..

<reference-target target-type="application" provider-name="sap.com">
com.sap.portal.core.examples.PARInEARPortalApp
</reference-target>

3. Access the application.

The application is accessed via JNDI. The lookup is made to the portal registry. There
is currently no JNDI schema defined for the portal registry. Therefore, the object factory
for the portal registry must be specified in the environment of JNDI through:

○ the environment variable: Context.INITIAL_CONTEXT_FACTORY. It must
have the value:
com.sapportals.portal.prt.registry.PortalRegistryFactory.

○ The lookup is made using the following JNDI path:
/broker/services/<service name>, and you can use one of the following
notations:

■ <service name> is the key of the service as defined in its interface.

■ <application name>.<service name> can be used as defined in
the portalapp.xml file of the application which provides the service.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 45

Example
The following is an example of a WebDynpro application that uses the portal transformation
service to transform an XML file into HTML. The XML file is in RSS format, a common format
for providing news on the Internet. The example shows how to read the current news from
Yahoo and transform the XML to HTML using an XSL style sheet located in c:\temp.
import
com.sapportals.portal.prt.service.xsltransform.IXSLTransformService;
import
com.sapportals.portal.prt.service.xsltransform.IWPXSLTransformer;

public class HelloWorld {
 public void wdDoInit() {
 String output;
 String line;
 String rssStyleSheetFileName = "c:/temp/rsshtml20.xsl";
 String topStoriesURLName =
 "http://rss.news.yahoo.com/rss/topstories";
 URL rssStyleSheetURL = null;
 URL topStoriesURL = null;
 StringBuffer news = new StringBuffer();
 StringBuffer styleSheet = new StringBuffer();

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sapportals.portal.prt.registry.PortalRegistryFactory");

 InitialContext context = new InitialContext(env);

 IXSLTransformService xslTransformService =
 (IXSLTransformService) context.lookup(
 "/broker/services/" + IXSLTransformService.KEY);

 rssStyleSheetURL = new URL("file://localhost/" +
 rssStyleSheetFileName);

 InputStreamReader iReader =
 new InputStreamReader(rssStyleSheetURL.openStream());
 BufferedReader bReader = new BufferedReader(iReader);

 while ((line = bReader.readLine()) != null) {
 styleSheet.append(line);
 }

 IWPXSLTransformer rssTransformer =
 xslTransformService.getTransformer(
 new StringReader(styleSheet.toString()));

 topStoriesURL = new URL(topStoriesURLName);

 iReader = new InputStreamReader(topStoriesURL.openStream());
 bReader = new BufferedReader(iReader);

 while ((line = bReader.readLine()) != null) {
 news.append(line);
 }

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 46

 output = rssTransformer.transform(news.toString());
 }
}

1.1.3.7.1.1 Accessing the PCD from a J2EE Application
J2EE applications can access content stored in the Portal Content Directory (PCD) using
JNDI.

In the following example, a Web Dynpro application accesses an object in the PCD. The
content of the PCD is protected against impermissible access. Therefore, the SAP UME user
must be put in the JNDI environment to identify the current user. In the example below this
user is obtained from the Web Dynpro specific user.

The example shows the lookup of the data only. The IntialContext is a javax.naming
class.
import com.sap.tc.webdynpro.services.sal.um.api.WDClientUser;
import com.sap.security.api.IUser;

// class implementation

 // method implementation

 // getting the SAP user.
 IUser currentUser =
WDClientUser.getCurrentUser().getSAPUser();

 Hashtable env = new Hashtable();
 env.put(Context.SECURITY_PRINCIPAL, currentUser);

 try {
 InitialContext context = new InitialContext(env);

 Object obj = context.lookup(
 "pcd:/com.sap.portal.system/applications/
 com.sap.portal.ivs.global/services/producer");

 } catch (NamingException e) {
 // handle the exception
 }

1.1.3.7.2 Calling J2EE Applications from Portal Applications
Portal applications can access J2EE applications, such as EJBs and servlets, as follows:

...

1. Specify the reference.

The reference is defined in portalapp.xml either in PrivateSharingReference
or PublicSharingReference using the J2EE application prefix SAPJ2EE::.

<property name="PrivateSharingReference"
value="SAPJ2EE::sap.com/Hello"/>

2. Access the application.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 47

The application is accessed via JNDI. The following is an example of a portal
component accessing an EJB.

public void doContent(
 IPortalComponentRequest request,
 IPortalComponentResponse response) {
 String key = "Hello/Stateless/HelloStatelessBean";

 try {
 Context context = new InitialContext();

 Object obj = context.lookup(key);
 HelloHome home =
 (HelloHome) P4ObjectBroker.init().narrow(obj,
HelloHome.class);
 Hello hello = home.create();
 response.write("Bean message: " + hello.getMessage());

Referencing Elements
You can reference an application, connector, library, interface or service by specifying the the
J2EE object in the portalapp.xml, either in the SharingReference or
PrivateSharingReference property. Whether you should use SharingReference or
PrivateSharingReference depends on your purpose:

● If the referenced application, library or service has to be used in the API of the portal
application, use the SharingReference.

● If the reference is for the core of the portal application, use
PrivateSharingReference.

The format of the J2EE object in the SharingReference or PrivateSharingReference
property is as follows:

● Application: SAPJ2EE::<provider prefix/application name>

● Connector: SAPJ2EE::<provider prefix/connector name>

● Service: SAPJ2EE::service:<service name>

● Library: SAPJ2EE::library:<library name>

● Interface: SAPJ2EE::interface::<interface name>

The format includes the provider prefix for an application or connector, but not
for services, libraries and interfaces. The provider prefix is separated from the
application name by slash (/).

For more information on sharing references, see Application Configuration [Page 9].

Example
This is an example of a portal application referencing the J2EE application sap.com/Hello,
the J2EE Engine service P4 and the library TestLibrary. The references are specified in
PrivateSharingReference. This means that the references are established between the
core of the portal application and the referenced application, service and library.
<application>
 <application-config>
 <property name="SharingReference" value=""/>

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 48

 <property name="PrivateSharingReference"
 value="SAPJ2EE::sap.com/Hello,

SAPJ2EE::service:p4,SAPJ2EE::library:TestLibrary"/>
 </application-config>
</application>

1.1.3.7.3 Packaging PARs in J2EE Applications
A PAR file can be packaged in an Enterprise Application Archive (EAR) file. When the EAR
file is deployed using J2EE deployment facilities, the PAR is forwarded to the PRT container.

When a PAR file is deployed in EAR file, it cannot later be deployed with the standard
deployment tools. It should always be deployed in an EAR file.

Procedure
To use the portal application through a J2EE Application, the portal application must be
started as a reference. List the module in the application-j2ee-engine.xml
deployment descriptor of the J2EE application in the deployment reference. The reference
contains the following tags:

Tag Value

modules-additional <none>

module <none>

entry-name <the name of the portal application including
the extension>

container-name PortalRuntimeContainer

Cluster Considerations
● When Deploying: If a PAR is deployed as part of an EAR in a cluster, then only the

J2EE node in which the deployment was triggered will receive the PAR file in its PRT
container. This container then uploads the PAR in the PCD and triggers the update of
the local deployment of all portal nodes. The PRT containers on all other nodes will
only be notified about the deployment.

● When Undeploying: The PRT container on the node on which undeploy was triggered
will remove the PAR from the PCD and notify all portal nodes to remove the local
deployment. The PRT containers on the other nodes do nothing.

Multiple File Deployment
If multiple PARs are contained in one EAR, the PARs are uploaded in one step to the PCD. In
addition, the update of the local deployment on all portal nodes is made in one step too.

If two EAR files contain one and the same PAR file, then the first PAR file will be removed
and replaced by the second PAR file. A warning message is displayed in the portal log files.

Example
This is the part of a deployment descriptor for an EAR file containing two PAR files:
<modules-additional>
 <module>
 <entry-name>

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 49

 com.sap.portal.core.examples.PARInEARPortalApp.par
 </entry-name>
 <container-type>
 PortalRuntimeContainer
 </container-type>
 </module>
 <module>
 <entry-name>
 test.portal.MyPortalTest.par
 </entry-name>
 <container-type>
 PortalRuntimeContainer
 </container-type>
 </module>
</modules-additional>

1.1.4 Deployment of Applications
Once you create a portal application and bundle it into a PAR file, it must be deployed to a
portal, which can done in the following ways:

● Archive Uploader Tool: A single PAR can be uploaded by the Archive Uploader,
which is available in the portal at System Administrator Support Portal Runtime
Administration Console.

This method is used by administrators and developers.

For more information, see Deploying Applications Via the Archive Uploader [Page 33].

● Eclipse Plug-in: A single PAR can be uploaded from the NetWeaver Developer Studio
directly into a portal via the PAR Export feature of the portal plug-in for Eclipse.

This method is used by developers.

For more information, see Managing PAR and JAR Files in the Project [Page 33].

● Business Package: A collection of PARs and portal content can be packaged together
and deployed via the SAP Deployment Manager.

This method is generally used by administrators.

For more information, see Business Package Administration [External].

● EAR File: PAR files can be included in a standard J2EE EAR file, and the EAR file can
be deployed to the SAP J2EE Engine.

This method is used by administrators and developers.

For more information on packaging a PAR in an EAR file, see Packaging PARs in J2EE
Applications [Page 33].

For more information on deploying EAR files, see Deploying EARs [External], which is
located in the NetWeaver documentation at Application Platform → Java Technology in
SAP Web Application Server → Development Manual → Developing Web Applications
→ Developing J2EE Applications → Creating Enterprise Application Projects.

No matter what method is used to deploy an application, the application is placed into the
application repository and a copy is placed on each node in the cluster. For more information
on the application repository, see Application Repository [Page 33].

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 50

The actions that occur during deployment are described in Deployment Flow [Page 33].

1.1.4.1 Application Repository
All Portal Runtime applications deployed in the portal are stored in the PCD via the
application repository, which provides a special JNDI interface to the PCD. There is one
application repository per cluster, and all nodes share the same content.

The application repository provides information on all available applications, components and
services, as well as application configuration information.

The application repository provides the following JNDI contexts for the PCD:

Context Description

com.sap.portal.system Root context

com.sap.portal.system/archives Lists PAR files deployed.

com.sap.portal.system/applications Lists applications loaded in the repository.

com.sap.portal.system/configuration Lists the configuration for the applications.

Local Deployment
Immediately after an application is uploaded to the application repository, a copy is deployed
locally to each node in order to improve performance by providing fast access to resources
and avoiding extra calls to the repository.

The applications on each node are, in essence, only cached copies of the
applications that are stored in the repository. The copies on each node should
not be modified directly.

1.1.4.2 Deployment Flow
When an application is deployed to the portal, the following occurs:

● The application is deployed to the Application Repository, as described in Deployment
into Application Repository.

● A copy of the application is written to each server node in the cluster, as described in
Deployment to Local Servers.

Deployment into Application Repository
The following describes the steps the PRT takes when you deploy an application:

● The application is placed in the PCD at par:/archives/<application_name>.

● The deployment descriptor is extracted and placed in the PCD at
par:/application/<application_name>.

● Entries for the security zones defined in the application are created, if necessary, in the
PCD at par:/security/<vendor>/<security area>/<safety level>.

● Any resource bundles are stored at
par:/resource_bundles/<application_name>.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 51

● The servers in the cluster are notified that a new application has been deployed.

Deployment to Local Servers
After an application is deployed to the Application Repository, all servers in the cluster are
notified. The following lists the steps in deploying a copy of the application to each server:

● If a previous version of the application is loaded, this instance is dropped. All instances
of applications, components and services that depend on the new application are also
dropped.

Applications can be marked as non-releasable in their deployment descriptor,
but this only protects against dropping instances of the application’s
components and services in case the VM runs low on memory.

No matter the setting of this flag, the components and services are dropped
when the application is redeployed.

● The application is unzipped and copied to the local server.

● All portal applications that were dropped are restarted.

● All services in the application that are marked to be started when the portal is started
are restarted.

How Objects are Instantiated
...

1. When a component or a service of a portal application is accessed, The object broker
checks whether the object is already available and returns it, if available.

2. If the object is not available, the broker tries to get it from the local deployment. The
broker checks the revision number of the application to make sure the local deployment
is up to date, and then loads the class and instantiates the object, if the local version is
up to date.

3. If the local version is not up to date, the new version in the application repository is
deployed on the local file system, and the object broker then loads the class and
instantiates the object.

The portal application runs and remains in the memory unless a new version is deployed or
an administrator decides to release the application. The system can also discard portal
application instances when the Java VM needs to free up memory.

1.1.5 Deployment Policy (Enterprise Portal 5.0)
The DeploymentPolicy property of a component’s configuration determines whether the
local deployment is deleted during deployment. The property’s value can be one of the
following:

● 5.0: The deployment is backward compatible with Enterprise Portal 5.0. The old folder
is not removed and the deployment process simply adds the new content to the folder.

● Blank: A standard deployment is performed. The old deployment folder is removed and
and replaced by the a new one with the new content.

The deployment assumes that the application stores configuration in the application
repository, and not locally.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 52

1.1.5.1 Deploying Applications Via the Archive Uploader
Administrators who deploy portal applications use the Archive Uploader, which enables them
to upload a PAR file to the PCD. The application is automatically copied to each server node
in the cluster.

Procedure
...

1. Run the Administration Console by clicking System Administration → Support →
Portal Runtime → Administration Console. The following is displayed:

2. Select the PAR file that you want to upload by clicking Browse and selecting the PAR

file.

3. Click Upload.

Result
The PAR file is uploaded, and status messages are displayed, indicating whether the
application was stored in the PCD and copied to each server node in the cluster.

1.1.5.2 Checking Deployment
You can use the Administrative Console to check the deployment of a single application or to
check all applications deployed on a node.

For more information on how to deploy and remove portal runtime applications, see Deploying
Applications Via the Archive Uploader [Page 33].

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 53

Single Application
The following describes how to check the deployment of a specific application:
...

1. Run the Administration Console by clicking System Administration → Support →
Portal Runtime → Administration Console. The following is displayed:

2. Under Archive Deployment Checker, select the application that you want to check, and

click Show. The following is displayed:

The console shows a line for each server in the cluster, and shows the version of the
application in the Application Repository and the version deployed on each server. If
the local version is shown in red, the local version is different from the Application
Repository version.

The following buttons are provided for each server:

○ Update: Redeploys to the server the application from the Application
Repository.

○ Delete: Deletes the application from the server. The application remains in the
Application Repository and is redeployed automatically when a request for one
of its components or services is made. The application can also be redeployed
manually by clicking Install.

○ Install: Redeploys the application to the server.

If the application has already been deployed locally, Update and Delete are displayed.
If not, Install is displayed and Not Installed is displayed for the local version
number.

Getting Involved March 2006

Portal Runtime

Running an Enterprise Portal 54

All Applications
With the Application Console, you can also check the deployment of all applications at once.
...

1. Run the Administration Console by clicking System Administration → Support →
Portal Runtime → Administration Console. The following is displayed:

At the top is a list of servers within the cluster.

2. Click the link for the server that you want to check, for example, 2490350 in the above
example. The console lists applications whose version in the Application Repository is
different than the one deployed on the selected server, as in the following:

In the above example, the console shows the application’s version number in the
Application Repository (.0001) and the version deployed locally (.0002).

To see all applications in the Application Repository, click here.

The following buttons are provided for each application:

○ Update: Redeploys to the server the application from the Application Repository
to the server.

○ Delete: Deletes the application from the server. The application remains in the
Application Repository and is redeployed automatically when a request for one
of its components or services is made. The application can also be redeployed
manually by clicking Install.

○ Install: Redeploys the application to the server.

If the application has already been deployed locally, Update and Delete are displayed.
If not, Install is displayed and Not Installed is displayed for the local version
number.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 55

1.1.6 Testing Components
You can use the Enterprise Portal Unit Test LaunchPad in the NetWeaver Developer Studio
to test your component from within the development environment. The LaunchPad runs your
component and displays the output from any test code in the component.

In order to test your component in the LaunchPad, the following is required:

● The component must implement the
com.sapportals.portal.prt.test.ITestable interface.

● The component must contain one or more test methods. A test method is of the form
testXXX, where XXX is any string, with the following parameters:

○ IPortalComponentRequest: The standard portal request object.

○ IPortalComponentTestResponse: A special test response object that
includes methods for testing conditions and logging the results.

The following is an example of a test method.
public void testMyTest(IPortalComponentRequest request,
 IPortalComponentTestResponse response) {

 INode node = request.getNode();
 NodeMode nodeMode = node.getNodeMode();
 response.assert(nodeMode != INode.EDIT, "EDIT Mode not set!",
"");
}

For more information on using the LaunchPad and creating test code, see Enterprise Portal
Unit Test Studio Perspective [Page 33].

1.2 Web Dynpro Applications for the Portal

Purpose
This documentation describes how Web Dynpro application can use SAP Enterprise Portal
services and how Web Dynpro applications can be integrated in the SAP Enterprise Portal.

For this documentation you should be familiar with the Web Dynpro development process.

1.2.1 Web Dynpro Java

Purpose
The SAP Enterprise Portal and Web Dynpro for Java are the strategic user interface
technologies of SAP and are based on the SAP Web Application Server (WebAS) Java. The
SAP Enterprise Portal supports the Web Dynpro application development with functions like:

● Event handling of portal events

● Navigation between Web Dynpro applications within the portal or to any portal content

● WorkProtect mode

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 56

Interaction between the Enterprise Portal and Web Dynpro for Java
With Web Dynpro you create interactive Web-based user interfaces for business applications.
The portal allows the role-based and secure access to different kinds of information
(structured or non-structured), services, and applications using a Web Browser.

Integration of Web Dynpro applications into the Portal

Web Dynpro applications can be integrated into the portal as follows:

● Using a template for the creation of Web Dynpro iViews.

● Accessing your own Web Dynpro administration tools. You can use the Web Dynpro
Content Administrator for the Portal content administration.

● Configuring client-side eventing between Web Dynpro applications and between Web
Dynpro applications and other portal content.

● Creating single sign-on (SSO) between portal, Web Dynpro, and back-end applications.

● Using the WorkProtect mode of the portal to prevent loss of data when executing Web
Dynpro applications.

The portal provides for Web Dynpro applications:

● The navigation in the Web Dynpro-based iViews as well as between them and other
portal content (including object-based navigation).

● Web Dynpro applications automatically use the currently set Portal display theme to
ensure a consistent appearance

1.2.1.1 Web Dynpro Page Builder

Purpose
The Web Dynpro page builder embeds the Web Dynpro UI technology into the portal
platform. Features of the Web Dynpro page builder are:

● Launching a Web Dynpro iView without placing it on a page, for example in the
development process of an iView.

● Providing the service factory to the Web Dynpro iView.

● Defining the portal environment needed for the Web Dynpro iView.

● Store the data of explicit and implicit personalization in the Portal Content Directory
(PCD).

Web Dynpro Java applications are always rendered in embedded mode, without IFrames.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 57

1.2.1.1.1 Creating Web Dynpro Based Portal Content
The portal content administrator creates the portal content from deployed Web Dynpro and
other applications. For Web Dynpro applications we have the following iView types:

● Single full-page iView

The Web Dynpro application in a single iView. Single full-page iViews can be
personalized and can use services from the service factory but the portal does not
know anything about the internal structure of the application.

● Multiple iViews

The Web Dynpro application is divided into several iViews. Multiple iViews are
necessary when the application has to provide role-based or end-user based
customizing of the layout or when features, for example printing, should only be
provided for certain parts of the application.

1.2.1.1.1.1 Single Full-Page iView
A single full-page iView is created with the iView wizard.
...

1. Start the iView wizard.

Select the context menu of the folder that should accommodate the created iViews and
choose New → iView:

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 58

2. Select the option “Web Dynpro application”:

3. Select the option “Create a single full-page iView from each application variant”:

4. Choose the variant of a Web Dynpro application that should be placed on the page.

Browse through the deployed Web Dynpro content. The variant “base” indicates that a
Web Dynpro application does not have different variants.

5. Modify the iView properties if needed.

The generic iView settings, like the iView name or the technical iView, can be changed.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 59

6. Page Creation.

As an option you can create a Web Dynpro page with the single full-page iView.

If the option to create a Web Dynpro page around the iView, the unit iViews will
be created in the selected folder of the portal catalog. Finally delta links to these
unit iViews are created in the portal page.

7. Choose finish to create the iView(s).

You get a summary of the created portal objects, the iView(s) and the page when the
option has been selected (see step 6)..

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 60

1.2.1.1.1.2 Multiple iViews
Multiple iViews are also created with the iView wizard. Steps 1, 2 and 3 are identical to single
full-page iView. In step 4 you can select all the iViews you want to create for the Web Dynpro
application. When you select the variant, all iViews provided by this variant are selected.

When a Web Dynpro application wants to display more than one iView a static iView list can
be used. A static iView list can be declared in the Web Dynpro application as follows:

● Every iView is defined by a ViewContainerUIElement object in the root view of the
application window.

● The root view can define other UI elements in which the ViewContainerUIElements
are placed. These additional UI elements are not rendered if the application is split up
into several iViews.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 61

● The used ViewContainerUIElements should have describing IDs because the IDs
are used as the default iView titles.

Example: Root view defines the iViews Search, Details, PlayList and Cover,
placed in a group UI element:

The group UI element is visible when you start the application as single full-page iView,
but is not rendered when the application is split up into different iViews.

The view hierarchy is displayed as follows (“MainView” as root view):

1.2.1.1.2 Portal Service Factory
With the portal service factory you can access portal services. The portal service factory
makes sure that the services are always available, even when the Web Dynpro application
and the portal are running on different hosts.

The portal service factory provides the following services:

● Page Service

The page service gets information about the current page layout and content and
manipulates the page content by hiding or displaying iViews.

● Tray Service

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 62

With the tray service you add Web Dynpro actions to an iView or page tray.

● Navigation Service

With the navigation service you access the object based navigation (OBN) meta data.

1.2.1.1.2.1 Page Service
The page service provides information about the current layout and content of the page
running the iView.

Get List of Visible iViews
When a Web Dynpro application has more than one iView, the application can get information
which iViews are currently visible on the page.

Example: Get the list of visible iViews.

 IWDPageService pageService = (IWDPageService)

 WDPortalUtils.getService(WDPortalServiceType.PAGE_SERVICE);

 // String array receives iView names
 String[] iViews = pageService.getVisibleIViews();

Modifying the Page Structure
The page service can hide and display iViews of a Web Dynpro application.

Example:

 IWDPageService pageService = (IWDPageService)
 WDPortalUtils.getService(WDPortalServiceType.PAGE_SERVICE);

 // display iView Search
 pageService.showIView("Search");
 // hide iView Details
 pageService.hideIView("Details");

Restricitions
● The layout changes are not saved. When the user navigates to another page and back

he will see the original page.

● Only iViews of the current page layout can be displayed or hidden.

Advanced Modifying of the Page Structure
With dynamic iViews you can define place holders in your page layout. The place holder(s) in
your page layout are defined with the standard page editor. You have to use the Web
Dynpro Dynamic Component iView template that is under:

Portal Content → Content Provided by SAP → Templates → iView Templates

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 63

The iView template is place like any other iView on your page. With the page layout editor you
can define the position of the place holder iView.

Example:

Every dynamic iView place holder has an unique ID which is used to identify place holder at
runtime. The default ID value is DYNAMIC. If the page contains only one place holder you do
not have to change the ID.

If you want to change the ID you have to edit the iView properties of the place holder iView.
The “Dynamic iView ID” property is part of the “Web Dynpro” category.

Example: Changing ID to DETAILS:

To replace the defined place holder or dynamic iView at runtime, you have to specify the
iView with the full PCD path.

Example: Replace iView DETAILS.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 64

 IWDPageService pageService = (IWDPageService)
 WDPortalUtils.getService(WDPortalServiceType.PAGE_SERVICE);

 pageService.setDynamicIView(
 "DETAILS",
 "pcd:portal_content/nw2004sdemo/nw2004sDemo/nwmusicbox"+
 "/extendedmusicbox/java_local_NetWeaverMusicBox_com_sap_"+
 "tc_wd_test_MusicBoxWithHook_Extended_Details");

Example: Hide iView DETAILS.
 IWDPageService pageService = (IWDPageService)
 WDPortaltils.getService(WDPortalServiceType.PAGE_SERVICE);

 pageService.hideDynamicIView("DETAILS");

The specified iView is added with all its properties to the page embedded or isolated,
depending on the iView. The dynamic iView itself does not render any UI.

With the dynamic iView you can extend your Web Dynpro application very convenient to
display content that is not created with Web Dynpro, without IFrames.

1.2.1.1.2.2 Tray Service
The tray service allows you to add any Web Dynpro action to an iView tray or to the page
tray. These actions are displayed as any other default tray entries of an iView or page tray.
After selecting such a tray item the defined Web Dynpro action is triggered for the Web
Dynpro application defining the action.

From the application point of view it is absolutely transparent whether the action is triggered
by a UI element, which is part of the application UI, or by an iView or page tray. It is also
possible to use the same actions for a tray entry and for other UI elements rendered as part of
the standard application UI.

Example: Add an action to the iView tray and to the page tray.

 IWDTrayService trayService = (IWDTrayService)
 WDPortalUtils.getService(WDPortalServiceType.TRAY_OPTION);

 if (trayService != null) {
 trayService.addIViewItem("addItemComment", "Add Comment",
 wdThis.wdGetAddItemCommentAction(), null);

 trayService.addPageItem("addItemComment", "Add Comment",
 wdThis.wdGetAddItemCommentAction(), null);
 }

Usually you call the tray service in the wdDoModifyView() method. Please make sure that
you call this method only once, otherwise you get duplicate tray entries.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 65

1.2.1.1.3 Personalization
You can define application specific properties, which could be used for role-based
customization and/or end-user based personalization.

You can define the scope for every property – some are visible only for the portal content
administrator and some are visible for the portal content administrator and for the end-user.
The portal content administrator can change the scope for every property, as he can for every
other attribute of a page or iView.

1.2.1.1.3.1 Application Specific Property Categories
Application specific property categories help the portal content administrator to handle iViews
easier. You can define categories for each single iView provided by one Web Dynpro
application or one category for all iViews. If you do not define an application specific property
category, the application specific properties are displayed under the generic Web Dynpro
category. All PCD property types can be used.

Example: The generic iView editor displays application specific properties for the NetWeaver
Music Box application.

In addition to the application specific property categories there is a generic “Web Dynpro”
category, containing all technical attributes of a Web Dynpro iView.

Example:

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 66

Application parameters are passed to the Web Dynpro application at runtime.

1.2.1.1.3.2 Accessing Application Specific Properties
Once application specific properties are defined the portal content administrator or the end-
user can change them. To access the properties from the Web Dynpro application, you have
to use the IViewPersonalization class. It allows you to access personalization data for
every iView provided by your Web Dynpro application.

Example:

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 67

/* In this example we store the returned value in a specific context
 * attribute to make it accessible for each Web Dynpro controller. If there
 * is an error while accessing the personalized data we report an
 * exception. Another option would be of course to use in this case any
 * application defined default values.
 *
 * The IViewPropertyWrapper class provides getter methods for all
 * different types of properties like intger, boolean, translatable text
 * strings or enumerations. */

 // Get the iView specific data
 IViewPersonalization searchPersData =
 IViewPersonalizationFactory
 .getIViewPersonalization(
 "Search");

 // Get the needed property
 IViewPropertyWrapper maximumVisibleSearchResults =
 searchPersData.getIViewProperty(
 "NumberOfSearchResults");

 if ((maximumVisibleSearchResults != null)
 && (maximumVisibleSearchResults.getIntValue() > 0)) {
 wdCotext
 .currentResultTableElement()
 .setNumberOfVisibleRows(
 maximumVisibleSearchResults.getIntValue());
 } else {
 wdComponentAPI.getMessageManager().reportException(
 "Failed to get value of 'NumberOfSearchResults'",
 true);
 }

1.2.1.1.4 Compatibility
Compatibility to SAP NetWeaver ‘04 based Web Dynpro iViews and pages. Compatibility
restrictions are:

● SAP NetWeaver ‘04 Web Dynpro iViews can be added to a page executed by the Web
Dynpro based page builder as isolated iViews only.

● Personalization and all services provided by the portal service factory are not available
for SAP NetWeaver ‘04 Web Dynpro iViews.

● SAP NetWeaver 2004s Web Dynpro iViews can be added to pages executed by the
PRT based page builder only as isolated iViews.

● Personalization and all services provided by the portal service factory are not available
for SAP NetWeaver 2004s Web Dynpro iViews running on a page executed by the
PRT based page builder.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 68

1.2.1.2 Portal Events

Purpose
In the SAP Enterprise Portal, different application types in specific iViews can be arranged on
one page. To communicate between the different iView types the portal provides the
Enterprise Portal Client Framework (EPCF), also known as client-side eventing. This
document describes how Web Dynpro applications can use EPCF.

Restrictions
Several Web Dynpro applications running on one portal page can communicate using client
events. It is recommended, to use client-side eventing only for “occasional” communications
between Web Dynpro applications. For Web Dynpro applications that have to interact more
frequently, a “full-screen” Web Dynpro application containing all the components has to be
implemented.

With SAP NetWeaver ’04 Stack 09, client eventing is only supported for the Web Dynpro
HTML client.

1.2.1.2.1 Subscribe to a Client Event
The communication between iViews, including Web Dynpro applications, is based on EPCF
[Page 33]. EPCF uses Javascript to allow iView communication and provides an API that can
be used by the portal application developer. Web Dynpro applications have to use a set of
Java wrapper methods to implement client-side eventing.

It is possible to subscribe or unsubscribe to certain client events. To do so, you must define
which Web Dynpro action is to be used as the event handler for the portal event. You can
also fire any portal event.

Because of Javascript restrictions, all participants (the portal server and all used
servers) have to be in the same domain when EPCF is used.

The following example demonstrates how to subscribe to a certain portal event.

WDPortalEventing.subscribe ("urn:com.sap.tc.webdynpro.test.portal",
 "TestEvent",
 wdThis.wdGetTestEventAction());

You have to define the name space of the event and the name of the event. The combination
of these two names must be unique.

The third parameter is the Web Dynpro action that is mapped to the portal event. The event
handler is called when the Web Dynpro application receives the specified portal event on the
client. The Web Dynpro HTML Client handles the mapping between a portal event and a Web
Dynpro action and is absolutely transparent for the Web Dynpro application developer.

You can reuse a Web Dynpro action for several portal events. If you want to receive the
transported data of the portal event, you can define the following parameters for your Web
Dynpro action:

● dataObject

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 69

This parameter contains the transported parameter of the portal event.

● Namespace

This parameter contains the name space of the received portal event.

● Name

This parameter contains the name of the received portal event.

Adding the nameSpace and name parameters to the Web Dynpro action is useful when the
action is reused for several portal events to distinguish the caller.

It is important to remember that in the current version, an event subscription is
valid for a Web Dynpro view. Therefore you should add the necessary Java
coding, for example, in the wdDoInit() method of the generated view class. If
you navigate between different views, you have to subscribe every view for the
event.

1.2.1.2.2 Unsubscribe a Client Event
Unsubscribing a client event is very similar to subscribing:
WDPortalEventing.unsubscribe("urn:com.sap.tc.webdynpro.test.portal",
 "TestEvent",
 wdThis.wdGetTestEventAction());
Make sure that you unsubscribe every single Web Dynpro view, as the subscription and
unsubscription is valid only for the current view.

1.2.1.2.3 Raise a Client Event
The following example demonstrates how to raise a portal event:

WDPortalEventing.fire ("urn:com.sap.tc.webdynpro.test.portal",
 "TestEvent",
 "AParameter");

You can fire a portal event at any time in your Web Dynpro application. The event is
transported with the next response to the client. You can also raise more than one portal
event in one request-response cycle. Normally, you will fire a portal event in a Web Dynpro
action event handler (for example, pressing a button).

1.2.1.3 Portal Navigation

Purpose
The SAP Enterprise Portal structures the content based on roles. The portal navigation uses
the Top Level Navigation (TLN) component and/or the Detailed Navigation Component

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 70

(DTN). Every application running as portal content (ipage or iView) can trigger the portal
navigation to iViews or pages.

The integration of the portal navigation features into Web Dynpro is very similar to the client-
side eventing [Page 33]. Portal application use a Javascript API for the portal navigation. The
Web Dynpro runtime offers a The WDPortalNavigation service provides methods to use
the portal navigation and gives access to the parameters. The WDPortalNavigation
service is a generic part of the Web Dynpro runtime.

1.2.1.3.1 Absolute Page Navigation
The WDPortalNavigation service provides navigateAbsolute() methods for absolute
page navigation. The methods have the following parameters:

● navigationTarget

Specifies the absolute target URL (i.e. the URL to the iView or page acting as
navigation destination). This absolute target URL points to the location of the iView or
page in the Portal Content Directory (PCD) structure. You have to use the prefix
ROLES://.

Absolute target URL example:

ROLES://portal_content/administrator/super_admin/super_admin_rol
e/com.sap.portal.system_administration/com.sap.portal.support/co
m.sap.portal.web_dynpro_test_tools/com.sap.portal.portal_navigat
ion.

● mode

Spcifies if the defined navigation target is displayed in the same browser window or in a
new one. The following modes are available:

○ WDPortalNavigationMode.SHOW_INPLACE

The navigation destination is displayed in place, meaning. in the same browser
window. The Top Level Navigation (TLN) and the Detailed Navigation (DTN) are
updated accordingly.

You can use the BACK/FORWARD functionality of the page header to navigate
back.

○ WDPortalNavigationMode.SHOW_EXTERNAL

The navigation destination is displayed in a new browser window that has no
portal frame. Only the specified iView or page is displayed.

○ WDPortalNavigationMode.SHOW_EXTERNAL_PORTAL

The navigation destination is displayed in a new browser window with the
standard portal frame (containing TLN and DTN). The TLN and DTN are
updated accordingly.The new browser window clears the navigation history so
you cannot use the BACK/FORWARD functionality of the page header to
navigate.

● historyMode

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 71

The history mode defines how the navigation step is visible in the navigation history as
part of the page header.

The following options are available:

○ No history

The navigation step is not visible in the navigation history. You cannot use the
BACK/FORWARD functionality to navigate back.

○ No duplications

The navigation step is visible in the navigation history. If there are several
navigation steps to the same navigation destination, they are only visible once in
the navigation history.

○ Allow duplications

The navigation step is visible in the navigation history. If there are several
navigation steps to the same navigation destination, but with different
parameters, they are visible as different entries in the navigation history.

This option is useful when you navigate to an iView displaying details of a
customer. The customer ID can be a parameter. This results in different entries
in the navigation history.

Using the History Title parameter as described below, you can define the
title of the entry in the navigation history, like “Details for Customer 4711” and
“Details for Customer 007” to explain that the same navigation destination is
used but with different parameters).

● targetTitle

The targetTitle defines the title of the entry in the navigation history.

● contextURL

Defines the “navigation context” in which the navigation destination should be
displayed. The context URL is useful if your specified navigation destination is not
visible in TLN or DTN. If you trigger navigation steps to an invisible navigation
destination the TLN and DTN is not adjusted. To update the TDN and DTN in this case,
you can use the context URL.

The context URL has the same format as the absolute target URL.

● windowFeatures

If you start the navigation destination in a new browser window, you can define the
used window features, like the window size, the window position, or the visible button
bars.

● windowName

If you start the navigation destination in a new browser window, you can define the
name of this new browser window.

● launcherParameters

You can define any parameters for a navigation step. When navigating to SAP-based
portal content, you can define parameters that should only be passed to the portal

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 72

component, the AppIntegrator, to launch the specific SAP content, like a Web Dynpro
application, a BSP application or an IAC-based on the Internet Transaction Server
(ITS).

Example how to specify launcher parameters:

NameSpace=local&ApplicationName=MyTestApp.

Depending on the defined parameter values you have to encode the parameter values
before assembling the launcherParameters string.

● businessParameters

If you want to define parameters that are passed to the SAP content itself, you have to
define them as business parameters.

Example:

CustomerID=4711&DisplayMode=Edit

Depending on the defined parameter values you have to encode the parameter values
before assembling the businessParameters string.

● useSAPLauncher

Boolean value. If your navigation destination is content based on SAP technology (i.e.
BSP, ITS, BI, or Web Dynpro Java or ABAP) you have to set this flag to “true”.

● postParameters

Boolean value. If you have several parameters it can be necessary to post the
parameters because of URL length restrictions. Setting this flag to “true” will post the
parameters.

1.2.1.3.2 Relative Page Navigation
Using an absolute target URL can cause problems if you move the navigation destination.

When you navigate from one page to another page stored in the same content folder, the
relative navigation will work even when the entire folder has been moved.

For the relative page navigation the WDPortalNavigation service offers the
navigateRelative() methods. It has following parameters:

● baseURL

This is the starting point of the relative navigation destination. The base target URL has
the same format as the absolute target URL of an absolute navigation.

Example of a base URL:

ROLES://portal_content/administrator/super_admin/super_admin_rol
e/com.sap.portal.system_administration/com.sap.portal.support/co
m.sap.portal.web_dynpro_test_tools/com.sap.portal.portal_navigat
ion.

● levelsUp

You have to define how many levels in the navigation hierarchy you have to go up for
the relative navigation.

● path

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 73

The relative navigation path describes the path to the navigation destination relative to
the defined base target URL and the defined number of levels up.

All other (optional) parameters are the same as for the absolute page navigation [Page 33].

1.2.1.3.3 Object Based Navigation (OBN)

Purpose
With the standard portal navigation [Page 33] you define a constant URL. With the OBN you
can define an “operation” of a business object.

Example:

You define that you want to trigger the “Display” operation of a “Customer” business
object. The specific iView or page that is used to realize or implement this operation is
configured within the portal platform and could be role- specific or even user-specific.

For more information about OBN, please refer to the portal OBN documentation.

Like the portal navigation, the Web Dynpro integration of the OBN feature is very similar to
the portal eventing integration. The Web Dynpro runtime offers a specific
WDPortalNavigation service to define the necessary parameters.

1.2.1.3.3.1 Triggering Object Based Navigation
The WDPortalNavigation service allows access any page or object-based navigation
functionality and parameters from a Web Dynpro application. The WDPortalNavigation
service is a generic part of the Web Dynpro Runtime.

Triggering Object-Based Navigation
The WDPortalNavigation service provides the navigateToObject() methods with
following parameters:

● system

You have to specify the system (alias) to which the business object is assigned. This is
a mandatory parameter.

● businessobjType

You have to define the business object using this mandatory parameter.

Optional parameters are:

● objValue

Normally there are many different instances for one business object.

Example:

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 74

A business object called Customer. To specify which customer should be used for the
object navigation step, you have to specify the object value which is the customer
ID.

● operation

Specifies which operation should be used for the object navigation step.

● objValueName

The specified object value is passed as a single URL parameter to the object
navigation step. The default name of the parameter is ObjectValue. Other parameter
names can be specified.

● businessParameters

Additional parameters can be specified.

Example:

Mode=Edit&ShowHeader=false.

Parameters for the object-based navigation destination.

● forwardOBNMetaData

With this parameter you can get more information about the current object navigation
step.

Example:

An application implements different operations of a business object.

To do that the application has to know which operation was triggered by the object
navigation step.

Following parameters are possible:

○ obn.system

The system that the business object is assigned.

○ obn.bo_type

The business object itself.

○ obn.operation

The triggered operation. If the default operation is triggered, the value is
default.

1.2.1.3.3.2 Using the IUserObjectBasedNavigation Service
With the WDPortalNavigation [Page 33] service you can trigger an object-based navigation for
a operation of a business object. To create a more user friendly user interface you can use
the IUserObjectBasedNavigation service.

Defining the Necessary Reference
The IUserObjectBasedNavigation service is provided by the portal platform. You have
to define a specific sharing reference in the portal application descriptor file of the Web

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 75

Dynpro application using this service. The following screenshot demonstrates the definition of
this sharing reference.

For more information about how to access a portal service see Accessing an Enterprise
Portal Service [Page 33].

Operations
This final target URL depends on the configuration for the current role or user. As a result it is
possible that for the currently logged in user and his role, there is no target. Such an
operation is invalid. A valid operation is an operation with a defined destination,
meaning, there is an iView or page in one of the user roles implementing the requested
operation).

Checking a Target
The following code example demonstrates how to check if an operation is valid:

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 76

// Get a reference to the OBN service
IUserObjectBasedNavigation obnService =(IUserObjectBasedNavigation)
 WDPortalUtils.getServiceReference(IUserObjectBasedNavigation.KEY);

// Get the current user
IUser user = null;
try {
 user = WDClientUser.getCurrentUser().getSAPUser();
} catch (WDUMException e) {
 wdComponentAPI.getMessageManager().reportException(
 "Failed to get current user: " + e.getLocalizedMessage(), true);
}

// Define the system and the business object
String system = "MySystem";
String bo = "customer";

// Call the service
boolean hasValidDefaultOperation = obn.isTargetExist(system, bo, user);

You can use this function to make sure you render the right UI element depending on the
configuration for the current user, or to enable or disable a LinkToAction UI element that is
used to trigger the object-based navigation for the default operation.

Checking a Target for an Operation
The following code example shows how to check if a certain operation has a valid target:

// Get a reference to the OBN service
IUserObjectBasedNavigation obnService =(IUserObjectBasedNavigation)
 WDPortalUtils.getServiceReference(IUserObjectBasedNavigation.KEY);

// Get the current user
IUser user = null;
try {
 user = WDClientUser.getCurrentUser().getSAPUser();
} catch (WDUMException e) {
 wdComponentAPI.getMessageManager().reportException(
 "Failed to get current user: " + e.getLocalizedMessage(), true);
}

// Define the system, the business object and the operation
String system = "MySystem";
String bo = "customer";
String operation "Display";

// Call the service
boolean operationHasValidTarget =
 isTargetExistsForOperation(system, bo, operation, user);

Getting a List of Valid Operations
The IUserObjectBasedNavigation service can be used to get the list of valid operations
for a business object.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 77

Example:

// Get a reference to the OBN service
IUserObjectBasedNavigation obnService = (IUserObjectBasedNavigation)
 WDPortalUtils.getServiceReference(IUserObjectBasedNavigation.KEY);

// Get the current user
IUser user = null;
try {
 user = WDClientUser.getCurrentUser().getSAPUser();
} catch (WDUMException e) {
 wdComponentAPI.getMessageManager().reportException(
 "Failed to get current user: " + e.getLocalizedMessage(), true);
}

// Define the system and the business object
String system = "MySystem";
String bo = "customer";

// Get the list of valid operations
List operations = obn.getTargets(system, bo, user);

// Fill dynamically a context node with the operation information
// The list can be displayed in a DropDownByIndex control.
IMyTestView.IOperationsElement newOperation = null;

for (Iterator iter = operations.iterator(); iter.hasNext();) {
 IOBNTarget target = (IOBNTarget) iter.next();
 newOperation = wdContext.nodeOperations().createOperationsElement();
 newOperation.setCaption(target.getOperationFriendlyName());
 newOperation.setName(target.getOperationName());
 wdContext.nodeOperations().addElement(newOperation);
}

Using a Web Dynpro iView as a Target
To make sure that the forwarding of parameters works for the Web Dynpro iView you have to
change the Javascript code that is used by the object-based navigation to define the object
value manipulation.

For every operation where your Web Dynpro iView is the target (or implementation), you have
to define the following Javascript code:

return \'DynamicParameter=\' + objValue;

Example:

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 78

1.2.1.4 Accessing an Enterprise Portal Service

Purpose
Portal services can be used by portal applications, for example, Enterprise Portal Client
Framework (EPCF) or the connector framework.

Referencing a Portal Service
Every portal service used in a Web Dynpro application has to be defined as sharing
reference. To do so, open the “Properties” dialog of your Web Dynpro development
component or Web Dynpro Eclipse project when you work with DTR.

The sharing reference must be defined as follows:

PORTAL:<Vendor name>/<Full qualified name of the portal service>

Example:

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 79

After defining the sharing reference the jar file containing the service has to be added to the
classpath of the project in the IDE.

Do not store the jar file of the service in the lib folder of your development
component or Eclipse project. This will cause classloader problems at runtime.

Gaining Access to the Portal Service
The following code example demonstrates how to get access the
IUserObjectBasedNavigation portal service:

IUserObjectBasedNavigation obnService = (IUserObjectBasedNavigation)
 WDPortalUtils.getServiceReference(IUserObjectBasedNavigation.KEY);

If there is no more than one Web Dynpro controller using the same portal service, you must
store this portal service reference in a certain context node, for example, in the component
controller context, or any other custom controller context. All controllers using this service
must have access using context mapping to the specified context node.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 80

Restrictions
A portal service can be used only when the portal platform is installed and the Web Dynpro
application and the portal platform run on the same machine.

Even if you use a complete SAP NetWeaver installation (including the portal platform), you
always have to use the local portal service. It is not recommended to use your Web Dynpro-
based portal content within a global or federated portal scenario.

1.2.1.5 Using the Work Protect Mode

Purpose
To avoid losing unsaved data when navigating from one iView to another, the SAP Enterprise
Portal provides the work-protect mode. Having unsaved data in an application is also called
“dirty state”.

Using the Work-Protect Mode
A Web Dynpro application can use the work-protect mode in three levels:

● None

The work-protect mode is not used by the Web Dynpro application.

● Application Only (Default)

Only the Web Dynpro application itself decides if the application has unsaved data.
Using the specific work-protect mode Java wrapper class, the Web Dynpro application
developer can define the “dirty state” of the application. The “dirty state” is therefore
only defined on the server-side. In this level data still can be lost when it was not
transported to the server.

● Standard

The Web Dynpro application and the Web Dynpro HTML Client check the application
state. Therefore both the application developer and the Web Dynpro HTML Client
check the “dirty state” of a Web Dynpro application. The Web Dynpro HTML Client
makes sure that no user input data that is typed in but not transported to the server is
lost, by setting the “dirty state” of the application in the portal as soon as the user
makes an input.

Example: Defining the work-protect mode level.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 81

 // Define the needed level. The level can be switched during
// runtime, for example be switched for different views.
WDPortalWorkProtectMode.setApplicationDirtyControl(
 WDApplicationIsDirtyMode.NONE);

WDPortalWorkProtectMode.setApplicationDirtyControl(
 WDApplicationIsDirtyMode.APPLICATION_ONLY);

WDPortalWorkProtectMode.setApplicationDirtyControl(
 WDApplicationIsDirtyMode.STANDARD);

Example: Define the “dirty state” of an application:

// Set the "dirty state" to YES, i.e. the application is dirty and
// a navigation should be launched in a new window to make sure that
// no data is lost
WDPortalWorkProtectMode.setApplicationDirty(true);

// Set the "dirty state" to FALSE, i.e. the application state is "clean"
// and therefore the navigation is launched in place and the
// running application is left.
WDPortalWorkProtectMode.setApplicationDirty(true);

Restrictions
For SAP NetWeaver '04 Stack 09 the following restriction applies:

● The work-protect mode works only for the Web Dynpro HTML Client. All other (rich)
clients do not support the work-protect mode.

1.2.1.6 Defining the Theme for Web Dynpro Applications

Purpose
The Web Dynpro application uses automatically the currently selected portal and any user or
role-based personalization of the theme.

However, if the Web Dynpro application and the portal are running on different systems with
different releases, problems with incompatible style sheets can occur when the portal system
has an older release than the system running the Web Dynpro application. This causes errors
in the behavior of some UI elements of the Web Dynpro application because the Web Dynpro
UI elements also depend on the used themes/style sheets.

 Therefore, it is possible to configure the Web Dynpro runtime to use the defined Web Dynpro
theme instead of the portal theme. The Web Dynpro application is than rendered in a different
theme as the portal, but there is no dependency of the style sheets anymore.

With the Visual Admin tool you can adjust the setting to prevent the Web Dynpro runtime from
using the portal theme. Choose Configuration Adapter service and navigate to:

webdynpro → sap.com → tc~wd~dispwda → Propertysheet default.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 82

You have to open this default property sheet and change one property value called:

sap.useWebDynproStyleSheet.

The possible values are:

● true

The Web Dynpro application does not use the portal theme but the theme defined by
the Web Dynpro runtime.

● false

The Web Dynpro application uses the theme defined by the portal. This is the default
for SAP NetWeaver ’04 Stack 09.

The following screenshot shows the editor for changing this property value.

Running as a Standalone Application
If the Web Dynpro application runs as a standalone application (not in the SAP Enterprise
Portal), or if the Web Dynpro runtime is configured to use the Web Dynpro theme, you have
two options to define the theme used by a Web Dynpro application.

Defining the Default Theme
The default theme of the Web Dynpro runtime is changed in the Configuration Adapter
service of the Visual Admin tool. Navigate to:

webdynpro → sap.com → tc~wd~dispwda → Propertysheet default.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 83

Select the property sap.theme.default of the Propertysheet. As value, you have to
specify a valid, full qualified URL referring the used theme in the form:

http://<Your host>:<Your port>/<Your path to the theme>/<Theme
name>

Example:

http://localhost:50000/irj/portalapps/com.sap.portal.themes.lafs
ervice/themes/portal/sap_chrome.

Defining an Application-Specific Theme
If you would like to define a theme only for one specific application, you can use the URL
parameter sap-cssurl to define the theme. This overrides the default settings. The URL
specified has to be valid, full qualified and encoded.

1.2.2 Web Dynpro ABAP
Web Dynpro ABAP applications can be integrated into the SAP Enterprise portal – that is,
they can be bound into a portal navigation as an iView. For a description of the individual
steps for integrating a Web Dynpro application, see the chapter Portal Binding: Prerequisites
[Page 33].

The description given in this programming manual for binding a Web Dynpro application into a
portal is written for the developers of applications and is suitable for binding individual
applications for test purposes. For more detailed information, refer to the appropriate sections
in the des Portal Development Guide.

● Using Portal Events [Page 33]

● Navigation [Page 33] between Web Dynpro applications within the portal or to any
other portal content.

The following navigation types are supported:

Object-Based Navigation [Page 33]

Absolute Navigation [Page 33]

Relative Navigation [Page 33]

● Using the Work Protect [Page 33] mode

Examples
The following examples of Web Dynpro applications for portal integration are available in the
package SWDP_TEST in the system:

● WDR_TEST_PORTAL_EVENT_FIRE

Trigger event

● WDR_TEST_PORTAL_EVENT_FIRE2

Trigger free event

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 84

● WDR_TEST_PORTAL_EVENT_REC

Receive portal event

● WDR_TEST_PORTAL_EVENT_REC2

Receive free portal event

● WDR_TEST_PORTAL_NAV_OBN

Object-based navigation

● WDR_TEST_PORTAL_NAV_PAGE

Page navigation

● WDR_TEST_PORTAL_WORKPROTECT

Security monitoring

1.2.2.1 Binding to Portal: Prerequisites
To be able to integrate a Web Dynpro application, the following prerequisites must be fulfilled.

● You yourself have a user in the portal to which a suitable role is assigned. The role
Content Admin [External], for example, contains all the required authorizations and
tools. This should always be the case; if not, contact your portal administrator.

● The ABAP system in which the application is located must be known to the portal. This,
too, should be the case already. Since a special authorization is required for entering
the system data [External], contact your portal administrator to have the ABAP system
entered, if necessary. (Documentation about registering the system is available under
Editing SAP System Properties [External]). During the following steps, you will need the
system alias [External] of the ABAP system that was assigned by the portal
administrator in the portal concerned.

For more information on the different roles [External] and the task areas involved, refer
to the chapter Administration Guide for the Portal [External].

● To test the application afterwards, you must – of course – also have a user in the ABAP
system. Using user mappings [Page 33], you can link your portal user with the ABAP
system user in order to avoid a separate logon when calling the application.

As soon as these technical prerequisites are fulfilled, log on to the portal and choose the
function Content Administration in the initial navigation screen [External]. For a description of
the following steps, refer to the document Binding the Application into a Portal [Page 33].

1.2.2.2 Integrating an Application in the Portal
In the navigation panel on the Portal homepage, goto Content Administration [External] and
open the folder portal_content.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 85

 You can create your application in any folder or insert a separate folder for
your application.

8. Right-click the portal_content folder and choose New → iView.

9. The iView wizard opens. Select the source application type and choose Next.

 To integrate a Web Dynpro ABAP application, choose iView template.

10. From the list choose SAP Web Dynpro iView followed by Next.

11. Enter a name for your application and choose Next.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 86

12. Specify the type, since you want to integrate an ABAP application.

Enter the System Alias [External] and specify the namespace and name of the
application. The namespace is sap. You can find the application name in the ABAP
system.

13. Choose Next and then Finish.

Now the application is ready to start.

Additional Settings
You can also make further settings for your application.

Size
Open the iView and choose Appearance → Size from the dropdown list box.

The standard size of iViews is 80 pixels. This is not large enough for complex applications.
Therefore, change the size to Automatic or Full Height, or increase the number of pixels.

Displaying the iView
The iView has now been created, but you can only display it after setting up the access. Since
all applications in the Portal are provided via Portal Pages [External], you will generally have
to assign the new iView to a page first. This page is in turn assigned to a role and is called via
the role.

However, provided the application is to be called only for test purposes by developer
himself, the iView can also be assigned to a corresponding test role.

 Carry out the following steps to assign the iView to a role.

a. Open the role by right-clicking and select the folder in the role you want to
assign the iView to.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 87

b. Find the iView in the portal content on the right-hand side.

c. Right-click to add the iView to the role as a delta link.

d. Now your iView will appear in the menu structure.

1.2.2.3 Portal Events
In the SAP Enterprise Portal, you can process different application types in special iViews on
the same portal page. Here, iViews can be included using different technologies (such as
Web Dynpro ABAP, Java, or BSP). The communication between these iViews takes place
through an event function – portal eventing (or client-side eventing).

A Web Dynpro ABAP application can be registered [Page 33] for portal events. In this way,
the Web Dynpro application can react to an event that was triggered in another iView in the
portal. Therefore, it does not matter what technique you used to set up the application that is
the basis for the other iView. The assignment as to which event handler is to be called when
this event occurs is stored In the Web Dynpro application that has registered itself on the
portal event.

Similarly to registration, a Web Dynpro application can trigger [Page 33] any portal event. In
this case, the event is passed to the portal by the respective iView. The portal passes the
event to all iViews that have registered for this event. The application that finally handles this
event can, in turn, have been set up with a different technique than the Web Dynpro
application triggering it.

 Portal eventing functions only between iViews that are on the same
browser window. Events between iViews in different browser windows cannot be
transported.

All participating iViews must also belong to the same domain. Otherwise portal
eventing cannot work due to JavaScript restrictions.

1.2.2.3.1 Triggering a Portal Event
A portal event is an event that is triggered within an iView – in this case, within a Web Dynpro
application – and is then passed by the portal to one or several other iViews. The portal
passes the event to all iViews that have registered for this event. In this way, events can be
transported between several iViews based on different development techniques.

 Portal eventing functions only between iViews that are on the same
browser window. Events between iViews in different browser windows cannot be
transported.

All participating events must also belong to the same domain. Otherwise portal
eventing cannot work due to JavaScript restrictions.

In Web Dynpro ABAP, the Portal-Manager (interface IF_WD_PORTAL_INTEGRATION
[External]) provides the FIRE method. Using the Web Dynpro Code Wizard [External], you
can insert this method call as a template into your source code and fill it with values in
accordance with the requirements of your application.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 88

method ONACTIONFIRE_PORTAL_EVENT .
.
.
.
data: L_API_COMPONENT type ref to IF_WD_COMPONENT,
 L_PORTAL_MANAGER type ref to IF_WD_PORTAL_INTEGRATION.

 L_API_COMPONENT = WD_COMP_CONTROLLER->WD_GET_API().
 L_PORTAL_MANAGER = L_API_COMPONENT->GET_PORTAL_MANAGER().

 L_PORTAL_MANAGER->FIRE(
 PORTAL_EVENT_NAMESPACE = 'my_namespace_for_Web_Dynpro_documentation'
 PORTAL_EVENT_NAME = 'showCustomer'
 PORTAL_EVENT_PARAMETER = CUSTOM_ID).

endmethod.

In addition to the mandatory parameters Namespace and Name, you can also pass on
another parameter:

Namespace in which the
event is stored

’PORTAL_EVENT_NAMESPACE’

Name of the event ’PORTAL_EVENT_NAME’

Parameter ’PORTAL_EVENT_PARAMETER’

You can trigger such a portal event from anywhere in your Web Dynpro application. The
event is sent with the next response to the client. You can even trigger several portal events
in one request-response cycle.

However, it is usual to trigger a portal event in an action handler of a Web Dynpro application.
This could be the case, for example, with an action handler of a UI element (for example, a
button). When a portal event is triggered, an internal application event is first passed from the
iView to the portal and can e handled within one or several other iViews.

Syntax for Namespace and Names of Events
The characters permitted for the namespace and event name are restricted to the
namespaces of the SAP Enterprise Portal – Client Framework.

You can only use the characters listed in the table below.

Valid Characters

Uppercase letters "A" - "Z"

Lowercase letters "a" - "z"

Numbers "0" - "9"

Special character "-" "_" "."

Also note that:

● The namespace must begin with the character string urn:

● Namespaces com.sapportals.portal.* and com.sapportals.* are
reserved for SAP, and therefore you should not use them for your applications.

● Note that the namespace and the name are case-sensitive.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 89

 urn:com.sap.webdynpro.testApplications.testEvent

Example
● You can find examples in the system under the Web Dynpro applications:

WDR_TEST_PORTAL_EVENT_FIRE

Trigger Event

● WDR_TEST_PORTAL_EVENT_FIRE2

This application serves as a test application. You can enter the name of an event from
your own application in order to test the event separately.

1.2.2.3.2 Registering and Handling an Event

Registration for a Portal Event
To register your Web Dynpro application for a portal event, you have the method
SUBSCRIE_EVENT available in the interface IF_WD_PORTAL_INTEGRATION [External].

 To delete your registration for the portal event, use the method
UNSUBSCRIBE_EVENT in the portal manager.

 Registration or deletion of registration must be performed individually for
each view in the respective method WDDOINIT.

Generate yourself a suitable template using the Web Dynpro Code Wizard [External]. You
can then fill this with values.

method WDDOINIT .

 data: L_API_COMPONENT type ref to IF_WD_COMPONENT,
 L_PORTAL_MANAGER type ref to IF_WD_PORTAL_INTEGRATION,
 VIEW type ref to IF_WD_VIEW_CONTROLLER.

 L_API_COMPONENT = WD_COMP_CONTROLLER->WD_GET_API().
 L_PORTAL_MANAGER = L_API_COMPONENT->GET_PORTAL_MANAGER().

 VIEW ?= WD_THIS->WD_GET_API().

 L_PORTAL_MANAGER->SUBSCRIBE_EVENT(
 PORTAL_EVENT_NAMESPACE =
 'my_namespace_for_Web_Dynpro_documentation'
 PORTAL_EVENT_NAME = 'showCustomer'
 VIEW = VIEW
 ACTION = 'RECIEVE_CUSTOMER_ID').

endmethod.

Enter the namespace and the name of the event. The combination of namespace and event
name must be unique. In addition, enter the name of the action that is to be triggered if
exactly this portal event is to be received. The corresponding action handler is then called
automatically.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 90

 The action, in this case RECEIVE_CUSTOMER_ID, is not created
automatically. Therefore, create the action explicitly on the tab page Actions in
the view.

Handling a Portal Event
The parameters of a portal event are passed to the action parameter WDEVENT using its
method GET_STRING. With the help of the optional parameter
PORTAL_EVENT_PARAMETER, you can have application-dependent information passed to
the handler method. In the following example, this is the ID of a particular customer whose
value is passed to the SHOWCUSTOMER method of the component controller called
afterwards.

method ONACTIONRECIEVE_CUSTOMER_ID .

 data: EVT_NAME type STRING,
 CUST_ID type SCUSTOM-ID.

 EVT_NAME = WDEVENT->GET_STRING(NAME = 'PORTAL_EVENT_NAME').

 if EVT_NAME = 'showCustomer'.
 CUST_ID = WDEVENT->GET_STRING(NAME = 'PORTAL_EVENT_PARAMETER').
 WD_COMP_CONTROLLER->SHOWCUSTOMER(CUSTOMER_ID = CUST_ID).
 endif.

endmethod.

Example
You can find examples in the Web Dynpro applications in the system:

● WDR_TEST_PORTAL_EVENT_REC

Receive portal event

● WDR_TEST_PORTAL_EVENT_REC2

This application also serves as a test application. You can enter the name of an event
from your own application in order to test the event separately.

1.2.2.4 Portal Navigation
The SAP Enterprise Portal supports navigation between various types of portal content. For
example, a Web Dynpro application can navigate to the portal content as well as to another
Web Dynpro application that is set up differently. Portal content can be, for example, a BSP or
an ITS application.

As well as being object-based [Page 33], page navigation can be absolute [Page 33] or
relative [Page 33].

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 91

1.2.2.4.1 Object-Based Navigation (OBN)
The structure of SAP Enterprise Portal content is based on roles. You can browse through the
user-specific navigation structures using the top-level navigation and the detailed navigation.
Portal navigation allows you to navigate between different iViews or pages in any application
running as a portal content (that is, any page or iView).

In many cases it is sufficient to use either relative or absolute navigation to navigate to a
specific iView or page. However, sometimes more flexibility is required. For this purpose, you
have Object-Based Navigation [Page 33], which allows you to define navigation steps at a
higher semantic level. Instead of defining a concrete target URL, you call a particular
operation of a particular business-object [Page 33].

You configure in the portal which concrete iView (or which page) is to be used for executing
this operation. This configuration can be role-specific or user-specific. The Web Dynpro
application itself passes on solely the name of the business object and the operations linked
to it.

In Web Dynpro for ABAP, the integration of object-based navigation is very similar to the
integration of portal eventing [Page 33]. To trigger the navigation itself, the Web Dynpro
Framework provides a service that can be called from the application. This service, like Portal
Eventing, is part of the portal manager.

Triggering Object-Based Navigation
You can activate object-based navigation of the portal in Web Dynpro ABAP by calling the
method NAVIGATE_TO_OBJECT of the portal manager (interface
IF_WD_PORTAL_INTEGRATION [External]). You can generate an appropriate template
using the Web Dynpro Code Wizard [External], in which you then enter values.
 data LR_COMPONENTCONTROLLER type ref to IG_COMPONENTCONTROLLER .

 data L_API_COMPONENTCONTROLLER type ref to IF_WD_COMPONENT.

 data LR_PORT_MANAGER type ref to IF_WD_PORTAL_INTEGRATION.

 LR_COMPONENTCONTROLLER = WD_THIS->GET_COMPONENTCONTROLLER_CTR().

 L_API_COMPONENTCONTROLLER = LR_COMPONENTCONTROLLER->WD_GET_API().

 LR_PORT_MANAGER = L_API_COMPONENTCONTROLLER->GET_PORTAL_MANAGER().

 call method LR_PORT_MANAGER->NAVIGATE_TO_OBJECT

 exporting

 SYSTEM = NAVIGATION_DATA-SYSTEM

 OBJECT_TYPE = NAVIGATION_DATA-OBJECT

 OPERATION = NAVIGATION_DATA-OPERATION

 OBJECT_VALUE_NAME = NAVIGATION_DATA-OBJECT_VALUE_NAME

 OBJECT_VALUE = NAVIGATION_DATA-OBJECT_VALUE

 BUSINESS_PARAMETERS = BUS_PARAMETER_LIST

 FORWARD_OBN_METADATA = NAVIGATION_DATA-FORWARD_OBN_METADATA.

Only two parameters are required for the navigation:

● SYSTEM

Specify the system (or the system alias) the business object is assigned to.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 92

● OBJECT_TYPE

Specify the business object you are using.

All other parameters are optional.

● OBJECT_VALUE

Usually there are many different instances of a business object – for example, for the
business object Customer. You use this parameter to specify which specific customer
(for instance, use the customer number) you want to use for the object-based
navigation step.

● OPERATION

You use this parameter to specify which operation is to be used for the object-based
navigation step.

● OBEJCT_VALUE_NAME

The specified object value is transferred as a URL parameter to the OBN step. The
standard name of this parameter is ObjectValue. You can change this name if you
want.

● BUSINESS_PARAMETERS

As well as specifying the object value you can define other parameters that are to be
forwarded by the OBN step. An example of a parameter string you could define is:
Mode=Edit&ShowHeader=false.

These parameters can be used by the target of the OBN if the operation of the
business object has been prepared accordingly (see below under the section
Maintaining the Target Application in the Portal.

● FORWARD_OBN_METADATA

Sometimes it is useful for the OBN target to receive more details about the current
navigation step. For instance, if you implement an application that serves for
implementing different operations performed on a business object, the application must
know which operation was triggered by the OBN step. Therefore, you can pass on the
following parameters:

○ obn.system

The system the business object is assigned to.

○ obn.bo_type

The business object itself

○ obn.operation

The respective operation If the default operation is used, the value is _default_.

Maintaining the Target Application in the Portal
The target application is maintained in the portal for the respective operation of the business
object. This is usually done in by the portal administrator.
To be able to transport the business parameters correctly from a Web Dynpro ABAP
application to the target application, the following JavaScript must be stored at the target
application under Object-Based Navigation:

return 'DynamicParameter=' + objValue;

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 93

Example
You can find an example in the system in the Web Dynpro application,
WDR_TEST_PORTAL_NAV_OBN.

Role-Based Authorization Check
Execution of the navigation is thus dependent on the customizing for the role settings in the
portal. For example, the user of a role could have the authorization for displaying and editing
the content of a page, while the users of another role might only be allowed to display the
content. If a user triggers object-based navigation, but does not belong to a role that has
authorization for the respective operation, an appropriate error message will appear. So as to
make the user interface as user-friendly as possible, it is a good idea – from the very start –
not to provide this operation for the user in question. For this purpose, however, the
information for the authorization of the respective operation must be got by the portal. This
can be done with the help of a Web service that is called from the Web Dynpro ABAP
application using the class CL_WDR_PORTAL_OBNWEB_SERVICE [External].

1.2.2.4.2 Absolute Navigation
You can activate absolute path navigation for the portal in Web Dynpro ABAP using the portal
manager (interface IF_WD_PORTAL_INTEGRATION [External], method
NAVIGATE_ABSOLUTE). You can generate a template using the wizard, in which you then
enter values.

With the absolute navigation tool, you must know the name of the page to be displayed in
order to pass it to the method.
 data LR_COMPONENTCONTROLLER type ref to IG_COMPONENTCONTROLLER .

 data L_API_COMPONENTCONTROLLER type ref to IF_WD_COMPONENT.

 data LR_PORT_MANAGER type ref to IF_WD_PORTAL_INTEGRATION.

 LR_COMPONENTCONTROLLER = WD_THIS->GET_COMPONENTCONTROLLER_CTR().

 L_API_COMPONENTCONTROLLER = LR_COMPONENTCONTROLLER->WD_GET_API().

 LR_PORT_MANAGER = L_API_COMPONENTCONTROLLER->GET_PORTAL_MANAGER().

 call method LR_PORT_MANAGER->NAVIGATE_ABSOLUTE

 exporting

 NAVIGATION_TARGET = NAVIGATION_DATA-TARGET

 NAVIGATION_MODE = NAVIGATION_DATA-NAVIGATION_MODE

 WINDOW_FEATURES = NAVIGATION_DATA-WINDOW_FEATURES

 WINDOW_NAME = NAVIGATION_DATA-WINDOW_NAME

 HISTORY_MODE = NAVIGATION_DATA-HISTORY_MODE

 TARGET_TITLE = NAVIGATION_DATA-TARGET_TITLE

 CONTEXT_URL = NAVIGATION_DATA-CONTEXT_URL

 POST_PARAMETERS = ABAP_FALSE

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 94

 USE_SAP_LAUNCHER = ABAP_TRUE

 BUSINESS_PARAMETERS = BUS_PARAMETER_LIST

 LAUNCHER_PARAMETERS = LAUNCHER_PARAMETER_LIST.

The navigation target is the only parameter required here. It stands for an absolute address in
the portal. The other parameters are used for controlling the navigation and are optional. You
can set business parameters and parameters for the respective application launcher in the
portal. To transport business parameters correctly to the target application, you have to set
the parameter USE_SAP_LAUNCHER. If it is an SAP application (for example, BSP Web
Dynpro, and so on), you have to set the switch to TRUE.

Overview of Parameters

Name Opti
onal

Possible values Description

NAVIGATI
ON_TARG
ET

 Address,
for example ROLES://portal_content/
web_dynpro_abap/
web_dynpro_abap_tester/
portal_integration/
portalNavigation/
portal_navigation_target

Absolute address, path f
in the portal content dire

This path is displayed in
catalog – for instance, w
page or an iView.

″INPLACE″ Displays the navigation
target on the same page

″EXTERNAL″ Displays the navigation
target on a new page, but
only as an iView, without the
portal

NAVIGATI
ON_MODE

√

″EXTERNAL_PORTAL″ Displays the navigation
target on a new portal page.

Navigation mode

″TOOLBAR″ Displays the standard
toolbar

″LOCATION″ Displays the Web address

″DIRECTORIES″ Displays the directory
buttons of the browser

″STATUS″ Displays the status bar

″MENUBAR″ Displays the menu bar of
the browser

″SCROLLBARS″ Displays the scroll bar

″RESIZABLE″ Windows can be resized

″WIDTH″ Width of the window

WINDOW_
FEATURE
S

√

″HEIGTH″ Height of the window

Additional JavaScript pa
external window – for ex
character set or size spe
as width=300 or he

These parameters are se
commas. Spaces are no

WINDOW_
NAME

√ String Title of the target page in
browser. The specified W
loaded into a window of
instance, MyWindowNam

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 95

used to access the addre

″ALLOW_DUPLICATIONS″ A navigation entry can be
listed more than once in the
history.

″NO_DUPLICATIONS″ A navigation entry can be
listed only once in the
history.

HISTORY_
MODE

√

″NO_HISTORY″ No navigation entry in the
history

Specifies whether the vis
address should be listed
navigation history.

TARGET_
TITLE

√ String Title of the portal page

CONTEXT
_URL

√ String Determines the navigatio

″TRUE″ Transfer parameters as a POST
request

POST_PA
RAMETER
S

√

“FALSE” (default value) Transfer parameters as a GET
request

Transfer options for para

“TRUE” (default value) Target is called using the
SAP launcher – for
example, BSP

USE_SAP
_LAUNCH
ER

√

″FALSE″ Target is not called using
the SAP launcher

SAP launcher is used

BUSINESS
_PARAME
TERS

√ See structure WDR_NAME_VALUE_LIST with name and value
pairs

Transfer parameters for
target application (Web D
Web application), for exa
customer number. These
are transferred by URL.

See also URL Paramete

Keep in mind the transfe
for example, a paramete
larger than 1 KB.

LAUNCHE
R_PARAM
ETERS

√ See structure WDR_NAME_VALUE_LIST with name and value
pairs

Parameter list for the ap
launcher, parameter list
WebDynproNamesp
space

If you define BUSINESS_PARAMETERS as application parameters in your Web
Dynpro application and the parameter names start with ″APP″, they will
automatically be forwarded to the startup plugs of the Web Dynpro application –
provided they are marked as startup parameters. In this case, keep in mind that
the iView/page used as the navigation target must be assigned to the user role.
If it is not, navigation cannot be triggered.

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 96

Example
You can find an example in the system in the Web Dynpro application,
WDR_TEST_PORTAL_NAV_PAGE.

1.2.2.4.3 Relative Navigation
The relative path navigation variant can be used, for example, for delivering content across
several directories.

To activate relative path navigation for the portal in Web Dynpro ABAP, use the portal
manager (IF_WD_PORTAL_INTEGRATION [External], method NAVIGATE_RELATIVE).

You can generate a template using the wizard [External], in which you then enter values.
 call method LR_PORT_MANAGER->NAVIGATE_RELATIVE

 exporting

 BASE_URL = NAVIGATION_DATA-BASE_URL

 LEVELS_UP = LEVELS_UP

 PATH = PATHLIST

 NAVIGATION_MODE = NAVIGATION_DATA-NAVIGATION_MODE

 WINDOW_FEATURES = NAVIGATION_DATA-WINDOW_FEATURES

 WINDOW_NAME = NAVIGATION_DATA-WINDOW_NAME

 HISTORY_MODE = NAVIGATION_DATA-HISTORY_MODE

 TARGET_TITLE = NAVIGATION_DATA-TARGET_TITLE

 CONTEXT_URL = NAVIGATION_DATA-CONTEXT_URL

 USE_SAP_LAUNCHER = ABAP_TRUE

 BUSINESS_PARAMETERS = BUS_PARAMETER_LIST

 LAUNCHER_PARAMETERS = LAUNCHER_PARAMETER_LIST.

Relative navigation can be used from the defined starting point.

Overview of Parameters

Name Optional Possible values Description

BASE_URL √ Path name Starting point for
relative navigation

LEVELS_UP Numeric value Number of navigation
steps upwards in the
navigation structure

PATH Path name Relative path list for
the target application

You use the remaining parameters in the same way as for Absolute Navigation [Page 33].

Getting Involved March 2006

Web Dynpro Applications for the Portal

Running an Enterprise Portal 97

BASE_URL :
pcd:role1/folder1/folder2/fodler3/workset1/page1

LEVELS_UP: 3

PATHLIST: folder4/workset2/page2

The target is:
pcd:role1/folder1/folder2/folder4/workset2/page2

The BASE_URL does not have to be specified. If it is not, the current URL is
used. PATH is a list of the nearest nodes. In this case, these would be:

folder4

workset2

page2

Example
You can find an example in the system in the Web Dynpro application
WDR_TEST_PORTAL_NAV_PAGE.

1.2.2.5 Work Protect Mode
The work protect mode provides the infrastructure for handling unsaved data in SAP
Enterprise Portal. An application is called “dirty” if the entered data has not yet been saved.
Normally data is lost when the user navigates to another application without having first saved
the data. To prevent this from happening, the client framework of the portal monitors the
current status of all the applications in the portal.

 Example of dialog box showing the work protect mode:

The application must define a special status (dirty flag), which tells the portal when there is
unsaved data.
 You can set and cancel this status (TRUE, FALSE) using method
SET_APPLICATION_DIRTY_FLAG in interface IF_WD_PORTAL_INTEGRATION. If the dirty
flag is set to TRUE, each navigation step is automatically executed in a new window. The
unsaved data is retained in the original window. This means the user can switch to the
original application and save the data afterwards.
The following source text shows how to set the dirty status:
data L_COMPONENTCONTROLLER type ref to IG_COMPONENTCONTROLLER .
data L_API_COMPONENTCONTROLLER type ref to IF_WD_COMPONENT.

Getting Involved March 2006

Example

Running an Enterprise Portal 98

data L_PORTAL_MANAGER type ref to IF_WD_PORTAL_INTEGRATION.
 L_COMPONENTCONTROLLER = WD_THIS->GET_COMPONENTCONTROLLER_CTR().
 L_API_COMPONENTCONTROLLER = L_COMPONENTCONTROLLER->WD_GET_API().
 L_PORTAL_MANAGER = L_API_COMPONENTCONTROLLER->GET_PORTAL_MANAGER().

call method L_PORTAL_MANAGER->SET_APPLICATION_DIRTY_FLAG
 exporting
 DIRTY_FLAG = TRUE | FALSE
 .

Web Dynpro supports the work protect mode in three different ways (method
SET_WORK_PROTECT_MODE in the interface IF_WD_PORTAL_INTEGRATION):

● NONE

This value means that the work protect mode is not used by the Web Dynpro
application. If you navigate to another application in the portal, unsaved data is lost,
even if you set the dirty flag.

● APPLICATION_ONLY

This value means that the Web Dynpro application itself decides if there is still unsaved
data – that is, whether the application is dirty. This is why the “dirty” status is only
monitored by the server. With this value you cannot ensure that data that has not yet
been transferred to the server will not be lost.

● BOTH

This value means the client also checks the “dirty” status. This ensures that no user
input that has not yet been transferred to the server will be lost. This is done by setting
the dirty status of the application in SAP Enterprise Portal as soon as the user has
entered data.

The modes described above can be changed as often as required during runtime of a Web
Dynpro application. For example, you can change the mode when a user navigates from one
view to another. For one view, it may make sense to save data that is entered in an input
field. In this case you define the value BOTH or APPLICATION_ONLY. For another view this
protection mode may not be necessary. In this case you define the value NONE.

The source text below shows how the work protect mode can be set:
data L_COMPONENTCONTROLLER type ref to IG_COMPONENTCONTROLLER .
data L_API_COMPONENTCONTROLLER type ref to IF_WD_COMPONENT.
data L_PORTAL_MANAGER type ref to IF_WD_PORTAL_INTEGRATION.
 L_COMPONENTCONTROLLER = WD_THIS->GET_COMPONENTCONTROLLER_CTR().
 L_API_COMPONENTCONTROLLER = L_COMPONENTCONTROLLER->WD_GET_API().
 L_PORTAL_MANAGER = L_API_COMPONENTCONTROLLER->GET_PORTAL_MANAGER().

call method L_PORTAL_MANAGER->SET_WORK_PROTECT_MODE
 exporting
 MODE = NONE | APPLICATION_ONLY | BOTH
 .

1.3 Example
You can find an example in the system in the Web Dynpro application
WDR_TEST_PORTAL_WORKPROTECT.

Getting Involved March 2006

SAP NetWeaver Developer Studio Plug-In

Running an Enterprise Portal 99

1.4 SAP NetWeaver Developer Studio Plug-In

Purpose
The SAP NetWeaver Developer Studio’s Enterprise Portals plug-ins enables you to:

● Add a portal object to a PAR file. Supported objects are portal components, portal
services, portal Web services.

● Create a portal Web service from a WSDL file or portal service.

● Export, import and create PAR files.

● Edit the code, compile and add resources to portal applications.

● Upload, execute or debug portal applications in one environment.

Implementation Considerations
Portal Application Development Model

PAR

PRT

PAR

SAP
NetWeaver
Developer

Studio
Plug-In

Create

Import

Export Upload

Execute and Test

Portal Application
Development

Cycle

A portal application has to be packaged in a PAR file and must be uploaded in the portal
before it is executed.

See also:

● Configuring the Plug-In [Page 33]

● Managing Enterprise Portals [Page 33]

● Managing PAR and JAR Files in the Project [Page 33]

● Enterprise Portal Unit Test Studio Perspective [Page 33]

● Enterprise Portal Web Services Checker Description [Page 33]

Getting Involved March 2006

SAP NetWeaver Developer Studio Plug-In

Running an Enterprise Portal 100

● Development Configuration [Page 33]

● Registering an Additional Plug-in [Page 33]

1.4.1 Configuring the Plug-In

Use
The SAP Enterprise Portal requires information to be able to upload a portal application to the
portal.

Procedure

Adding or Removing the Plug-in Toolbar to the Developer Studio
...

1. From the menu path, choose Window → Customize Perspective…

2. Select Other → SAP Portal Actions.

3. To add the toolbar, select the checkbox.

4. To remove the toolbar, deselect the checkbox.

Configuring Enterprise Portals
...

1. From the menu path choose Window → Preferences → SAP Enterprise Portal:

2. Choose Add and specify the properties of the portal.

3. If you want your password to be remembered upon deployment; choose Yes, I want to
remember passwords for deployment.

4. If you want to set this portal installation as the default for deployment, select the
checkbox in the Default field of the configuration list.

5. Apply the settings to the SAP NetWeaver Developer Studio.

Configuring the Project Settings
From the menu path choose Window → Preferences → SAP Enterprise Portal → Application
Development Studio.

If You Want To Then

Automatically reference basic libraries,
required for portal development

Choose Yes, I want the default libraries for
each new plugin generated project

Specify that the non-Java source files should
be included in the generated JAR files

Choose Yes, I want the non Java resources
included in the portal components jars

Specify that the generated JAR files should
have shorter names, instead of
<projectname>api.jar

Choose Yes, I want short jar names in the
par archive

Getting Involved March 2006

SAP NetWeaver Developer Studio Plug-In

Running an Enterprise Portal 101

1.4.2 Managing Enterprise Portals
Propose Procedure

Create a new portal application project
...

1. From the menu path choose File →
New → Project… → Portal
Applications → Create a Portal
Application Project

2. Specify the project name and folder
that will contain the project.

3. Choose Finish.

Create a new portal service
...

1. From the menu path, choose File →
New → Other…

2. In the dialog that appears select Portal
Application → Create a new Portal
Application Object.

3. Choose Next.

4. Select the project to create the service
in. Choose Next.

5. Select Portal Service and choose Next.

6. Enter data as required.

7. Choose Finish.

Create new portal component
...

1. From the menu path, choose File →
New → Other…

2. In the dialog that appears select Portal
Application → Create a new Portal
Application Object.

3. Select the project to create the service
in. Choose Next.

4. Enter the data as required. Choose
Finish.

Create a new portal service from a WSDL file
...

1. From the menu path, choose File →
New → Other…

2. In the dialog that appears select Portal
Application → Create a new Portal
Application Object.

3. Select Portal Web Service. Select the
type of Web services you want to
create. Choose Next.

4. Select the portal service to convert to
portal Web service or point to the
location of the WSDL file. Choose
Next.

5. Select the methods you want to
expose. Choose Next.

6. Enter data as required. Choose Finish.

Getting Involved March 2006

SAP NetWeaver Developer Studio Plug-In

Running an Enterprise Portal 102

1.4.3 Managing PAR and JAR Files in the Project
Purpose Steps

Deploying or exporting a PAR file
...

1. Choose File → Export → PAR File.
Choose Next.

2. Select the project where the PAR file is
located. Choose Next.

3. Enter data as required. If you want to
deploy the PAR, choose Deploy PAR.

4. Choose Finish.

Importing a PAR file
...

1. Choose File → Import… → PAR File.

2. Specify the location of the PAR file.

3. Enter data as required.

4. Choose Finish.

The JAR files, located in a PAR file are not
imported into the project. If you want to use
some JAR files, you have to import these files
to the project explicitly.

Adding a JAR file
...

1. Open the project context menu and
choose Properties → Java Build Path.

2. Choose the Libraries tag.

3. Choose Add External JARs… and
browse to the location of the file.

Removing a JAR file
...

1. Open the project context menu and
choose Properties → Java Build Path.

2. Choose the Libraries tag.

3. To remove a JAR file, select it and
choose the Remove.

1.4.4 Enterprise Portal Unit Test Studio Perspective

Definition
The Enterprise Portal Unit Test Perspective is an extension of the PRT test framework that
enables you to test portal applications in their real runtime environment and provides XML-
based results. This allows you to test portal applications directly from the development
environment.

Getting Involved March 2006

SAP NetWeaver Developer Studio Plug-In

Running an Enterprise Portal 103

Use
Using Enterprise Portal Unit Test Perspective you can:

● Perform regression tests.

You can compare the test result with a reference test result. Note that a reference test
result is a regular test result with no specific format.

● The preferences of the perspective enable you to specify and save the configuration of
the servers containing the tests and the name of the folder for the result, test suite and
reference.

● Compare the test result with the reference.

The output of the PRT test framework is XML-based.

● Extract XML output on your computer as a test result.

The portal can contain many testable portal applications.

● Include or exclude tests and save the selection as a test suite.

Not all portal applications can be tested. An application must be suitable for
testing. That means that in the portalapp.xml the Testable property must be set
to true. For more information, see Application Configuration [Page 9].

See also:

Writing Test Code [Page 33]

Unit Test Studio Helper Classes [Page 33]

Test Example [Page 33]

1.4.4.1 Writing Test Code
A portal component providing testing code must implement the ITestable interface and
implement the getTestName() method.

public class MyAbstractPortalComponent
 extends AbstractPortalComponent
 implements ITestable {

 public String getTestName() {
 return "My test case";
 }
 ...
}

You can code several test case methods in a single portal component. All test methods must
stick to the following pattern (where XXX can be any string supported by Java):

Getting Involved March 2006

SAP NetWeaver Developer Studio Plug-In

Running an Enterprise Portal 104

public void testXXX(
 IPortalComponentRequest request,
 IPortalComponentTestResponse response) {
 ...
 }

Example

public void testMode(
 IPortalComponentRequest request,
 IPortalComponentTestResponse response) {
 // ... CODING GOES HERE ...
 INode node = request.getNode();
 NodeMode nodeMode = node.getNodeMode();
 response.assert(nodeMode != INode.EDIT, "EDIT Mode not set!",
"");
}

The method expects two parameters:

● A regular implementation of IPortalComponentRequest

● A response enriched with test-specific methods.

IPortalComponentTestResponse interface:
public interface IPortalComnponentTestResponse {
 public void assert(boolean condition, String msgLog, String
msgId);
 public void verify(boolean status, String msgLog, String
msgId);
 public void verify(
 boolean status,
 String msgLog,
 Exception e,
 String msgId);
 public void log(String msgLog, String msgId);
}

The assert() method checks the condition. If the condition is false the test case will show
up as an error in the test result. The assert() method interrupts the test case at the first
error.

The verify() method does the same but does not interrupt the test case. This allows you to
put several checks in a single test case.

public void testMode(
 IPortalComponentRequest request,
 IPortalComponentTestResponse response) {
 //...CODING GOES HERE...
 INode node = request.getNode();
 Response.verify(node != null, "Node is null", "");

 NodeMode nodeMode = node.getNodeMode();
 response.assert(nodeMode != INode.EDIT, "EDIT Mode not set!",
"");

Getting Involved March 2006

SAP NetWeaver Developer Studio Plug-In

Running an Enterprise Portal 105

}

You can use the log() method to write additional information to the
PortalComponentTestResponse. This information will be included in the test result.

Source Compilation Information
The PRT Test Framework is an extension of the PRT API. The whole Test Framework API is
delivered in the prttest.jar library.

Impact on Performance
It is important to understand that you can enrich the portal application with test cases very
easily and without any impact on performance. The test cases are executed only when the
portal component is invoked using the test mode. This information is provided using specific
URL parameters.

1.4.4.2 Unit Test Studio Helper Classes

Definition
The Unit Test Studio provides additional helper classes to help with coding more complex
Test Cases. These helper classes are delivered in the unittest.facilities.jar part of the
unittest.facilities.par portal application. The main class is
com.sapportals.portal.prt.unittest.AbstractTestComponent. This class contains methods to
facilitate the creation of new tests.

A new test must extend AbstractTestComponent class instead of extending
AbstractPortalComponent and implementing ITestable. The AbstractTestComponent includes
two inner classes:

● TestResult

The class has attributes corresponding to a result: boolean and log.

● TestResultSet

The class TestResultSet is a list of TestResult.

AbstractTestComponent allows another component to be called thanks to the invoke()
method. The last parameter, a string, is the URI of the component.

The displayTestResultSet() method allows the list of a result to be displayed in the
response. Each result is displayed as by the verify() method of the
IPortalComponentTestResponse.

1.4.4.3 Test Example

Example Test One
public class TestModes extends AbstractTestComponent {

 public static final String EDIT = "edit";

 public void testModeNode(
 IPortalComponentRequest request,
 IPortalComponentTestResponse response) {

Getting Involved March 2006

SAP NetWeaver Developer Studio Plug-In

Running an Enterprise Portal 106

 String IMPL_CONTEXT_NAME =
 request.getComponentContext().getComponentName() +
"Impl";

 AbstractTestComponent.TestResultSet resultSet = new
TestResultSet();

 IPortalComponentURI uri =
request.createPortalComponentURI();

 //Test mode EDIT
 uri.setContextName(IMPL_CONTEXT_NAME);
 uri.setNodeMode(NodeMode.EDIT_MODE);

 invoke(resultSet, request, response, uri.toString());
 list = (ArrayList) resultSet.getData();
 result =
 new TestResult(EDIT.equals((String) list.get(0)),
 "Check do Edit");
 resultSet.addTestResult(result);

 if (EDIT.equals((String) list.get(0)) == true) {
 //check Mode persistency
 String genURI = (String) list.get(1);
 invoke(resultSet, request, response, genURI);
 list = (ArrayList) resultSet.getData();

 result =
 new TestResult(
 EDIT.equals((String) list.get(0)),
 "Check persistency of mode EDIT");

 resultSet.addTestResult(result);

 }
 displayTestResultSet(resultSet, response);
 }
}

Example Test Two
The invoke method allows the TestModesImpl component to be called in edit mode: the
doEdit() method is called:
public class TestModesImpl extends AbstractPortalComponent {

 protected void doEdit(
 IPortalComponentRequest request,
 IPortalComponentResponse response) {
 System.out.println(">>>>>>>>>>>>>>>DO EDIT IS CALLED");

 AbstractTestComponent.TestResultSet result =
 (AbstractTestComponent.TestResultSet) request
 .getServletRequest()
 .getAttribute(
 AbstractTestComponent.UNIT_TEST_RESULTSET);
 if (result != null) {
 ArrayList list = new ArrayList();
 list.add(TestModes.EDIT);

Getting Involved March 2006

SAP NetWeaver Developer Studio Plug-In

Running an Enterprise Portal 107

 IPortalComponentURI uri =
request.createPortalComponentURI();
 list.add(uri.toString());
 result.setData(list);
 }
 }
}

1.4.5 Enterprise Portal Web Services Checker Description

Definition
The Enterprise Portal Web Services Checker view is a part of the Enterprise Portals
Perspective.

Use
You can use the functionality to query and test existing Web services. You do this by
providing the plug-in with an existing WSDL file. You can:

● Create a new tab containing a new SOAP view.

● Close the current SOAP view.

● Retrieve the content of the WSDL file specified in the WSDL URL field.

● Send the SOAP request currently visible in the SOAP Request pane to the Web service
endpoint.

● Start your Internet browser and point it to the SOAP Administration page of your portal
installation.

● Start your Internet browser and point it to the SOAP log viewer page of your portal
installation.

● Save the content of all fields in an XML file.

This perspective allows you to:

Function Procedure

Retrieve a WSDL file
...

1. Enter the URL of the file in the WSDL
URL field.

2. From the menu choose Get WSDL
content icon.

Create a SOAP request for an operation
...

1. Choose the Request sub-tab.

2. Select the operation and open the
context menu.

3. Choose Cerate SAOP Request.

Use the SOAP Request sub tab Here you can browse and change the content
of a SOAP request

Use the XML sub tab Allows you to view the XML Source of the
WSDL.

Send an SOAP request Choose the Send Message icon.

Getting Involved March 2006

SAP NetWeaver Developer Studio Plug-In

Running an Enterprise Portal 108

Use the SOAP Response sub tab Here you can browse the content in a tree,
display the XML source of the response or
the HTTP headers of the response.

1.4.6 Development Configuration

Use
A development configuration consists of an XML file, which describes the different servers to
be used for NetWeaver Development Infrastructure development:

● Design Time Repository (DTR) server

● Landscape Directory server

● Component Build Server (CBS)

Use this procedure to create a new project of type Portal Application Development
Component. You can build either standalone or application module development components.

Enterprise Portal development is split into the following parts:

● Portal Application Module

Contains the model classes and structures corresponding to the Enterprise Portal
Application project.

When you create a Portal Application Module development component, the SAP
NetWeaver Developer Studio automatically creates a public part for assembly
containing the PAR archive, and a public part for compilation containing the API part.
You should not modify public parts that were generated automatically. The build result
of this development component is compiled classes and a PAR file.

● Portal Application Standalone

A Portal Application Standalone development component contains the model classes
and structures corresponding to the Enterprise Portal Application project. The
difference from the Portal Application Module is that these projects are automatically
built in a deployable archive (SDA file).

When you create a Portal Application Standalone development component, the SAP
NetWeaver Developer Studio automatically creates a public part for assembly
containing the PAR archive, and a public part for compilation containing the API part.
The build result is compiled classes and SDA (containing PAR) that are ready to be
deployed on the server

Do not modify public parts that were generated automatically.

See also:

● Managing Development Components [Page 33]

● Creating References Between PAR Development Components [Page 33]

● Package PAR Development Components in an EAR file [Page 33]

Getting Involved March 2006

SAP NetWeaver Developer Studio Plug-In

Running an Enterprise Portal 109

1.4.6.1 Managing Development Components

Procedure
If You Want To Then

Create a new development component
...

1. From the menu path, choose File →
New → Project.

2. Select Development Component →
Development Component Project and
choose Next.

3. Select the Software Component from
the list where you want to add the
development component. Choose
Next.

4. Specify the type of the development
component.

○ To build a standalone
application, under Type choose
Enterprise Portal → Portal
Application Standalone (Packed
in SDA). Choose Next.

○ To build an application module
development component, under
Type choose Enterprise Portal
→ Portal Application Module.
Choose Next.

5. Choose Create an Empty Project and
specify the archive name. Set the
deployment type to EAR SDA. Choose
Finish.

Create references between PAR
development components

See Creating References Between PAR
Development Components [Page 33]

Getting Involved March 2006

SAP NetWeaver Developer Studio Plug-In

Running an Enterprise Portal 110

Import a Portal Application DC project from
DTR

...

1. Log on to the DTR system

Under the Design Time Repository
perspective, choose the Log on... icon.

2. Under the Development Configurations
perspective, open the Inactive DCs
view.

3. Explore the content of Development
Configuration and identify the portal
development component you created
in DTR.

4. Open the context menu for this
development component and choose
Create project.

5. Select the development components
you want to sync and choose OK.

Check in an activity
...

1. Open the DTR perspective.

2. Go to the Open Activities view.

3. Open the activity context menu and
choose Check in.

Package PAR development components in
an EAR file

See Package PAR Development
Components in an EAR file [Page 33]

1.4.6.2 Creating References Between PAR Development
Components

Procedure
...

1. Create a new Portal Application Module DC Project named tc/epbc/test/usingdc with
par name com.sap.test.usingdc.par

2. In Portal DC Explorer, expand the metadata node of this component to show the Used
DCs.

3. Open the context menu for the Used DCs and select Add Used DC…

4. Expand the Development Configuration to display the public part of the Portal
Application DC tc/epbc/test/useddc. Select the API public part of this development
component.

5. Select the following boxes: BuildTime, DeployTime, RunTime.

6. Choose Finish.

7. Rebuild the development component project using the menu command Project →
Rebuild DC Project.

8. Create a new Portal Component that calls the TimeService as follows:

public void doContent(
 IPortalComponentRequest request,

Getting Involved March 2006

SAP NetWeaver Developer Studio Plug-In

Running an Enterprise Portal 111

 IPortalComponentResponse response) {
 response.write(
 "Call to time com.sap.test.useddc from
com.sap.test.usingdc:");
 response.write("
");
 ITimeSvc timeSvc =
 (ITimeSvc)
PortalRuntime.getRuntimeResources().getService(
 "com.sap.test.useddc.timeService");
 response.write(timeSvc.getDate());
}

9. Open the portalapp.xml and add SharingReference property and set its value to
com.sap.test.useddc.

10. Create and deploy the PAR file on the portal.

11. Test the components you have created by opening the portalapp.xml file of the project.

12. Switch to the Overview tab and click run on the TimeComponent component.

1.4.6.3 ackage PAR Development Components in an EAR file
13. Create a new development component of type Enterprise Portal → Portal Application

Module in Local Development → My Components. Name this development component
tc/epbc/test/parinear1. Name the PAR file com.sap.test.parInEar.par.

14. Create a new portal component of type AbstractPortalComponent in the portal
development component. Call this component testComponent. Add a Hello World to
doContent method as follows:

public void doContent(
 IPortalComponentRequest request,
 IPortalComponentResponse response) {
 response.write("TestAC2: Hello World!")
}

15. Create a new development component of type J2EE → Enterprise Application in Local
Development. Name this development component tc/j2ee/test/ear1.

16. In the J2EE DC Explorer view, expand the development component metadata/DC
Definition nodes of this J2EE development component to display Used DC's.

17. Open the context menu on Add Used DC.

18. Expand Local Development → My Components and locate tc/epbc/test/parinear1.
Expand the development component definition, open public part node and select the
PAR Public Part of the development component to which you want to create a
reference.

19. Make sure only the BuildTime option is selected and choose Finish.

20. From the J2EE DC Explorer view, open the application-j2ee-engine.xml of
LocalDevelopment~tc~j2ee~test~ear1 J2EE DC project.

21. Go to the expert setting tab to display the module node. In the Module to deploy field,
type the PAR name of the portal development component: com.sap.test.parInEar.par.
Expand this new node to show specify container and type: PortalRuntimeContainer.
Save the file.

Getting Involved March 2006

SAP NetWeaver Developer Studio Plug-In

Running an Enterprise Portal 112

22. Switch to Source tab to check the content of the XML file.

23. Make a DC Build of this J2EE Enterprise Application development component.

24. In the J2EE DC Explorer view, open the context menu for the
LocalDevelopment~tc~j2ee~test~ear1 project and choose Deploy.

1.4.7 Registering an Additional Plug-in

Use
You can use an API that enables you to register a plug-in. Such a plug-in can be called during
the generation of a PAR file. This enables you to extend the original portal application
development model.

You can interfere with both processes concerning the packing and unpacking of the PAR file.

● During the packing operation, the additional tool can be called before the final packing
of the PAR file.

● During the unpacking operation, the additional tool is called after the initial unpacking of
the PAR file.

Prerequisites
The new plug-in must:

● Be loaded at SAP NetWeaver Developer Studio startup.

● Be registered to the PAR plug-in.

● Implement two interfaces, one for the packing and another for the unpacking.

Procedure

Implementation
Implement the org.eclipse.ui.Istartup interface with its method earlyStartup() in the base
class of the add-on plug-in (the first class that is called when the add-on plug-in is started,
and where org.eclipse.ui.plugin.AbstractUIPlugin is extended).

In the plugin.xml add:

<extension
 point="org.eclipse.ui.startup">
</extension>

Register
Call the static method of com.sap.portal.developmentTools.ideSpecific.eclipse.PortalPlugin
class registerPlugin(String pluginId, IParIdePlugin aPlugin). The plug-in
ID must be unique.

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 113

Interfaces
To register an add-on plug-in, you must implement the
com.sap.portal.developmentTools.general.api.IparIdePlugin and set the implementation class
as a parameter when it registers.

The add-on plug-in has to specify the final state of the operation clearly using the method
setFinalState(int status) from the class
com.sap.portal.developmentTools.general.api.IfinishResult. If the final state is OK or Warning
then the PAR process continues; otherwise, it is stopped. Inside the IfinishResult, you can
add messages with their level.

Result
These will be displayed in the task view of SAP NetWeaver Developer Studio.

2 Go and Create
This section describes how to quickly start writing portal applications, and includes the
following:

● Creating Your First Portal Application [Page 33]

2.1 Creating Your First Portal Application

Purpose
The Portal Runtime Technology (PRT)manages portal applications and portal services. See
document Portal Runtime Basics [Page 33] for programming details of the PRT.

This document describes the principles of a JSP DynPage and provides a basic example with
JSP and describes which methods have to be implemented. The next step is the event
handling of a JSP DynPage and the data exchange between the JSP DynPage and the JSP.

To work with this document you need a basic understanding of Java Server Pages (JSP). Sun
provides JSP documentation. The Portal Runtime (PRT) has made modifications to the JSP
standard. For details see Java Server Pages (JSP) Support in the Portal Runtime (PRT).

The example has following steps:

Creating the JSPDynPage [Page 33]

JSPDynPage event handling [Page 33]

Data exchange between JSPDynPage and JSP [Page 33]

Data Exchange Using a Bean (used in the example) [Page 33].

Alternative: Data Exchange Using the Session Object [Page 33]

Alternative: Data Exchange Using the Context Object [Page 33]

Alternative: Data Exchange Using the Request Object [Page 33]

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 114

Concept of the JSP DynPage
JSP/Servlets offer basic event handling, you have to take care of the event handling yourself
(analysing the received form, getting the sender of the event etc.). In addition, the
programmer has to take care of the session identifier, which is a unique identifier that makes
sure that the datasets are user specific. The JSP DynPage provides enhanced event handling
and easy session management. In this example we use the HTML-Business for Java
(HTMLB) controls to create the Graphical User Interface (GUI). HTMLB is a Portal service.

Dataflow of a DynPage Component

2.1.1 Portal Runtime Basics

Purpose
The Portal Runtime Technology (PRT) defines and manages two kinds of objects that define
a portal application:

● portal components

● portal services

From a user point of view, a portal component can be displayed into a portal page. From an
application development perspective, the portal component is a pluggable component that is
designed to be executed into a portal environment.

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 115

A portal component has an application part (for example, a Java class IPortalComponent
or AbstractPortalComponent and/or Java Server Pages (JSP)) and can use resources
(such as images and language bundles).

To deploy the portal component into the portal you have to build a portal archive. All files that
belong to the portal component are packaged in this portal archive in a specific structure. You
can even package more than one portal application in a portal archive. One specific file the
Deployment Descriptor plays a major role during deployment and runtime.

A portal service has to implement the IService interface. Refer to portal service
implementation for further details.

To build portal applications the PDK provides an IDE support for Eclipse. It also provides an
ANT script to build the par files.

This description of the PRT is a short introduction. For the complete PRT guide refer to the
Portal Runtime Technology tab in the top level navigation or use the PDF version of the PRT
guide.

IPortalComponent
This example shows how you can implement IPortalComponent, the central abstraction of
the Portal Component API. It is not recommended to implement this interface directly. But for
a deeper understanding of the runtime, it makes sense to take a look on it.
During the portal component life cycle the runtime calls the following methods of
IPortalComponent:

● init()

Is called when the portal component is initialized. The runtime always initializes one
instance of the portal component. This instance is shared among diffrent useres and
sessions

● service()

Is called when a client request for this portal component is received. All rendering is
done in this method.

● destroy():

Is called when the portal component is discarded from memory. This can happen either
because the runtime is terminating or because the runtime needs to free up some
memory or during uploading of a new version of the portal component.

The most important method is service(..). Here the portal component output is written to
the client and events are handled.

Output is created with the write() method of the response object, which is available as a
method parameter.

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 116

public void service(IPortalComponentRequest request,
 IPortalComponentResponse response) throws PortalComponentException {
 System.out.println("service");
 // dispatch the events
 IPortalRequestEvent event = request.getRequestEvent();
 //event handling
 if (event!=null){
 String eventName = event.getName();
 if (eventName.equalsIgnoreCase("compute"))
 doCompute(request,event);
 if (eventName.equalsIgnoreCase("back"))
 doBack(request,event);
 }
 // call the content creation method
 doContent(request,response);
}

You can put your output into the response with method write().

response.write("Hello World");

IPortalComponentRequest
The IPortalComponentRequest contains request specific data and provides access to the
environment in which the PortalComponent is running. The following Objects are accessible
through the IPortalComponentRequest:

● ServletConfig, HttpServletRequest, HttpServletResponse: Those objects are the
original servlet objects.

● IPortalComponentSession, IUserContext, Locale: Those objects provide user specific
information

● IPortalComponentContext: This is the context in which the portal component is
executed

● IResource: Is a representation of an external resource (like an image, css, ...)

● ILogger: To be used to write information to the portal log

● IPortalComponentProfile: The profile of the portal component

In addition, the IPortalComponentRequest acts as a factory for URLs like the component
URI or request events.

The way you can access the IPortalComponentResponse depends how you are
implementing your portal component:

● IPortalComponent: as an argument of method service()

● AbstractPortalComponent: as an argument of method doContent() and all other
standard event handler methods (like doEdit())

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 117

IPortalComponentResponse
The IPortalComponentResponse is used for creating the output to the client. The
IPortalComponentResponse object provides the following methods:

● addCookies(): You can add a cookie to your response

● write(): You can directly write strings to the response. Usually, you will write HTML
code with this method.

● include(): You can include the output of another portal component or a portal
component resource like a JSP, an applet, a CSS, ...

The way you can access the IPortalComponentResponse depends on how you are
implementing your portal component:

● IPortalComponent: as an argument of method service().

● AbstractPortalComponent: as an argument of method doContent() and all other
standard event handler methods (like doEdit())

AbstractPortalComponent

Create Output
When you implement the AbstractPortalComponent class you have to extend the
doContent(IPortalComponentRequest request, IPortalComponentResponse
response) method. In the doContent() method you can output a string with the write
method of the response object:

response.write("Hello World");

Event Handling
First step is to create the event that is raised when the user clicks, for example, a button. The
portal runtime provides the interface IPortalComponentURI to generate this events:

// create a URI for the event
uri = request.createPortalComponentURI();
uri.setPortalRequestEvent(request.createRequestEvent("compute"));

To create an URL that can be used, for example, in a HTML, you have to convert the uri into
an url string:

uri.toString();

If the user clicks on the button, the portal runtime will dispatch this event to a method named
doCompute (do<Eventname>). You have to implement this method in your
AbstractPortalComponent. The IPortalRequestEvent object cotnains the attributes
of the event.

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 118

public void doCompute(IPortalComponentRequest request, IPortalRequestEvent event) {
 try {
 name = event.getData().getAttribute("expression");
 state = WELCOME_STATE;
 } catch (NullPointerException npe) {
 }
}

2.1.2 Creating the JSPDynPage
First step to create a portal component is to define a class that works as loader class - it
inherits from the PageProcessorComponent. The created loader class (in the following
example named ExampleOneDyn) executes the method getPage() and returns a unique
value of the JSP DynPage we can use (in the following example named DynPageOne).
package com.mycompany.basicexample;

import com.sap.htmlb.page.DynPage;
import com.sap.portal.htmlb.page.PageProcessorComponent;

public class ExampleOneDyn extends PageProcessorComponent {

 public DynPage getPage() { // Has to be overridden
// Calls the DynPage and returns its value as DynPageOne
 return new DynPageOne(); }
}

The SAP EP Developer Plug-ins provide a JSP Dynpage wizard, that creates all
necessary classes, beans and JSP for a JSP Dynpage.

The class DynPageOne is extended from the DynPage class. Following methods have to be
overwritten:

● doInitialization

Called when the application is started. The call is made when the page is directly called
per URI without parameters and no event occurred.

Usually this method is used to initialize data and to set up models. Be aware of the fact
that the doInitialization event is also caused when another portal component on the
same page sends an event.

With the "Personalize" Dialog you can compose a page by grouping several
portal components together. We have created a page called myPage with two
portal components - A and B. When calling the page myPage the doInitialization
is called from portal component A and B followed by the call of the method
doProcessBeforeOutput. When an event occurs in the portal component B (for
example, by clicking on a button), the doInitialization method in portal
component A is called again, while in portal component B the method
doProcessAfterInput followed by the event handling method assigned for the
button and finally the doProcessBeforeOutput method.

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 119

To create solid portal components you must be aware of the fact and check in the
doInitialization method if the data has already been initialized or the models have been
created. Otherwise you portal component is always reset to the initial state if an event
in another portal component occurs.

The Enterprise Portal treats every portal component isolated. In this case an event in
one portal component does not cause the doInitialization event in the other portal
component on the same page. The PDK can emulate this behavior by setting the
ISOLATED flag in the page description XML file to true. The page description XML file
in the content folder of the page and defines the position of the portal component,
height and tray type.

Example for an entry in the XML file:

<component name="AAA.default" title="AAA.default"
height="400" trayType="SAPTrayD3" Position="1"/>

Example for an entry in the XML file with isolation flag set so that PDK behaves
like the Enterprise Portal:

<component name="AAA.default" title="AAA.default"
isolated="true" height="400" trayType="SAPTrayD3"
Position="1"/>

If you use the Page Editor in the DevTools section of the PDK you can set the isolated
flag interactively.

● doProcessAfterInput

Called when the web client sends the form to the web server. Except on doInitialization
(see above) the call is performed every time an event occurs.

● doProcessBeforeOutput

Called before the form is sent to the web client. The call is performed every time even
on doInitialization.

In our example we only use the doProcessBeforeOutput method, the other methods stay
"empty".

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 120

package com.mycompany.basicexample;
import com.sap.htmlb.*;
import com.sap.htmlb.enum.*;
import com.sap.htmlb.page.PageException;
import com.sap.portal.htmlb.page.JSPDynPage;

public class DynPageOne extends JSPDynPage {

 /* Constructor */
 public DynPageOne() {
 this.setTitle("DynPageOne");
 }

 /* Used for user initialization. Called when the application is
 * started */
 public void doInitialization() {
 }

 /*
 * Used for handling the input.Generally called each time when an
 * event occurs on the client side.
 */
 public void doProcessAfterInput() throws PageException {
 }

 /* Used for handling the output. This method is always called.
 In our example the JSP makes a textView that displays
 "May the force be with you unknown user". */

 public void doProcessBeforeOutput() throws PageException {
 // set the JSP which builds the GUI
 this.setJspName("OutputText.jsp");
 }
}

JSP - OutputText.jsp - that is called by doProcessBeforeOutput
<%-- OutputText.jsp --%>
<%@ taglib uri= "tagLib" prefix="hbj" %>
<hbj:content
 id="myContext">
 <hbj:page
 title="An Easy Start">
 <hbj:form>
 <hbj:textView
 id="welcome_message"
 text="May the force be with you unknown user"
 design="HEADER1"
 />
 </hbj:form>
 </hbj:page>
</hbj:content>

Deployment descriptor: Necessary entries to execute this portal component:

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 121

<application>
 <application-config>
 <property
 name="SharingReference"
 value="htmlb"/>
 </application-config>
 <components>
 <component
 name="default">
 <component-config>
 <property
 name="ClassName"
 value="com.mycompany.basicexample.DynPageOne"/>
 <property
 name="SecurityZone"
 value="com.sap.pct.pdk/low_safety"/>
 </component-config>
 <component-profile>
 <property
 name="tagLib"
 value="/SERVICE/htmlb/taglib/htmlb.tld"/>
 </component-profile>
 </component>
 </components>
 <services/>
</application>

The entry for ClassName is case sensitive. The entry SharingReference makes sure, that the
necessary HTMLB libraries are found.

The strength of the JSP DynPage is the event handling. The JSP DynPage follows the
concept of Java controls (for example, Swing) - Java controls, like the HTMLB controls, can
have one or more events. You define the event by assigning a method name to the event.
The method is called whenever the event is raised (for example, when a button is clicked).
The event handling method is coded in the JSP DynPage. The JSP DynPage does the event
handling and calls the proper event handling method.

Next step in our example is to place a button to our user interface and define an event for it.

2.1.3 JSPDynPage Event Handling
Some HTML-Business for Java controls have an event attribute (for example, see button).
The button for example has an 'onClick' attribute that specifies the name of the method which
should handle the event. The event will occur when the appropriate user action takes place -
in this case clicks on the button. The name of the method specified with the 'onClick' attribute
has to be declared in the JSP DynPage.

HTML-Business for Java: Statement to specify the method name:

Button1.setOnClick("myClick");

JSP DynPage: Declaration of the method that processes the event:

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 122

public void myClick (Event event) { ..coding.. }

or

public void onMyClick (Event event) { ..coding.. }

Both declarations are valid. The decision to use the on... method declaration could be helpful
to make it obvious that this method handles an event.

With the on.. declaration method the first letter of the declared event name must
be a capital letter.

If both methods are implemented (myClick and onMyClick), only the method myClick, will be
called. The method onMyClick will be ignored.

Some HTML-Business for Java controls have a 'setOnClient' attribute. With this
attribute you specify a JavaScript fragment that handles the event on the Web
client side. The event is NOT transmitted to the Web server.

If an event occurs it is handled as follows (doInitialization is performed when the application
starts).

● doProcessAfterInput

Called when the web client sends the form to the web server.

● onMyClick

The event handling method we declared.

● doProcessBeforeOutput

Called before the form is sent to the web client.

Event Processing

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 123

2.1.4 Data Exchange between JSPDynPage and JSP
The storing methods we discuss in this section are volatile in the sense that the data is lost
when the session is over (or even before that). Generally you have to decide if the data you
provide in the JSP DynPage should be shared among other users and how long the data
must "live". For storing data permanently you can refer to the Profile documentation.

Storing data can be performed using:

● beans

A bean is defined with set and get methods. The bean can be accessed from the JSP
DynPage and the JSP as well as from other users (depending on the scope, see
"Usage of Beans").

● session

Data stored in the http session will be kept by the server as long as the user session is
alive.

● context

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 124

The lifetime of data stored in the context cannot be guaranteed. The context can be
released any time when the web server needs resources.

● request

Data stored in the request are kept for the request.

2.1.4.1 Data Exchange Using a Bean
A bean is used to get and set "dynamic" data. The JSP DynPage usually provides the bean
with data and the JSP reads the data. The functionality of the basic example is extended by
an input field that allows user input. The user input is stored in a bean and than displayed as
text by a JSP program.

Following steps are necessary

● create a bean

● initialize the bean

● introduce the bean to the JSP program OutputText.jsp

Declaring a bean in a JSP
The tag usebean [Page 33] declares a bean in a JSP.

● class

Class name of the bean.

● id

Identification name of the bean. The id is used to access the bean in scriptlets.

● scope

Defines the availability of the bean. Details see "How to use Beans [Page 33]".

Attributes M Values Usage – JSP Taglib

class * String (cs) class="com.sap.htmlb.beandemo.myBean"

id * String (cs) id="idOfMyBean"

scope * APPLICATION
SESSION
REQUEST
PAGE

scope="APPLICATION"

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 125

Bean for the JSPDynPage Example
package bean;
/*
 * A simple bean whose only purpose is to store a String.
 * It as a get and set method to store and recall the string.

 */
public class DynPageNameBean {
 public String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

The GUI is extended by an inputField and a button to allow the user to enter a string (for
example, user name) and submit the form by clicking the button or pressing Return/Enter on
the keyboard.

Following changes to OutputText.jsp are necessary:

● Adding a form to allow the definition of a default button.

● Introduce the bean to the JSP program (<jsp:usebean .../>).

● Changing the textView so that it displays the string retrieved from the bean.

● Adding a label telling the user to enter the user name. The label should start in a new
line and one line separated from the textView. That is why you find a

 before
the label

● Adding the inputField "user_name_input" - the JSP DynPage retrieves the data in the
input field using getComponentByName.

● Adding a send button which we also define as the default button. This enables the user
to send his input back to the server by either clicking on the button or by simply
pressing Enter/Return on the keyboard when he finished the input.

<%-- OutputText.jsp --%>
<%@ taglib uri= "tagLib" prefix="hbj" %>
<hbj:content
 id="myContext">
 <hbj:page
 title="An Easy Start">
 <hbj:form
 id="myFormId">
 <%-- Declaration of the bean. --%>
 <jsp:useBean
 id="UserNameBean"
 scope="application"
 class="bean.DynPageNameBean"
 />
 <hbj:textView
 id="welcome_message"
 design="HEADER1">
 <%
 welcome_message.setText
 ("May the force be with you "+UserNameBean.getName());

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 126

 %>

 </hbj:textView>

 <hbj:label
 id="label_input"
 text="Your name please"
 design="LABEL"
 required="TRUE"
 labelFor="user_name_input"
 />
 <%-- inputfield to allow userinput - the inputfield has the id --%>
 <%-- "user_name_input" which is used in the JSP DynPage to --%>
 <%-- access the input field and retrieve the input of the user --%>
 <hbj:inputField
 id="user_name_input"
 type="STRING"
 design="STANDARD"
 width="250"
 maxlength="30"
 />
 <hbj:button
 id="Send_Button"
 text="Send"
 tooltip="Sends my name"
 onClick="onSendButtonClicked"
 width="100"
 design="EMPHASIZED">
 <%
 myFormId.setDefaultButton(Send_Button);
 %>

 </hbj:button>
 </hbj:form>
 </hbj:page>
</hbj:content>

Result
Hint: The default string "unknown user" will be set in our JSP DynPage in the following
section.

Changes in the JSPDynPage
The JSP DynPage has to be adjusted as well. Following steps are necessary:

● Introducing the bean to the JSP DynPage (Import statement).

● In the doInitialization() method we set a default user name to "unknown user".

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 127

● Creating the event method onSendButtonClicked() for the button click in which the
status (variable state) is set to WELCOME_STATE so that the doProcessBeforeOutput
selects another JSP file.

● In doProcessAfterInput() method (which is called whenever an event occurs) we
request the inputField "user_name_input" from the JSP by using
getComponentByName to have access to the user input in the JSP DynPage. If the
inputField "user_name_input" is not empty the string is stored in the bean.

package com.mycompany.basicexample;
/** introduce the bean */
import bean.DynPageNameBean;
import com.sap.htmlb.*;
import com.sap.htmlb.enum.*;
import com.sap.htmlb.event.Event;
import com.sap.htmlb.page.DynPage;
import com.sap.htmlb.page.PageException;
import com.sap.portal.htmlb.page.JSPDynPage;
import com.sap.portal.htmlb.page.PageProcessorComponent;
import com.sap.portal.prt.component.IPortalComponentContext;
import com.sap.portal.prt.component.IPortalComponentProfile;
import com.sap.portal.prt.component.IPortalComponentRequest;

public class DynPageOne extends JSPDynPage {
 private final static int INITIAL_STATE = 0;
 private final static int WELCOME_STATE = 1;
 private int state = INITIAL_STATE;
 private String name;

 /**
 * Constructor
 */
 public DynPageOne() {
 this.setTitle("Become a Jedi");
 }

 /**
 * Used for user initialization. called when the application is
 * started
 */
 public void doInitialization() {
 // create the bean and set a default text value "unknown user
 IPortalComponentRequest request =
 (IPortalComponentRequest) this.getRequest();
 IPortalComponentContext myContext = request.getComponentContext();
 IPortalComponentProfile myProfile = myContext.getProfile();
 // new bean object
 UserNameContainer = new DynPageNameBean();
 // set default name
 UserNameContainer.setName("unknown user");
 // store bean in profile for the JSP
 myProfile.putValue("UserNameBean", UserNameContainer);
 // Set the state so that we can decide what action to do next
 state = INITIAL_STATE;
 }
 /**
 * Used for handling the input. Generally called on each event
 * we use this method to get the user name and store it in the bean
 */

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 128

 public void doProcessAfterInput() throws PageException {
 // get the input field from the JSP
 InputField myInputField =
 (InputField) getComponentByName("user_name_input");
 if (myInputField != null) {
 this.name = myInputField.getValueAsDataType().toString();
 }
 IPortalComponentRequest request =
 (IPortalComponentRequest) this.getRequest();
 IPortalComponentContext myContext = request.getComponentContext();
 IPortalComponentProfile myProfile = myContext.getProfile();
 DynPageNameBean myNameContainer =
 (DynPageNameBean) myProfile.getValue("MyNameBean");
 myNameContainer.setName(name);
 }
 /**
 * Used for handling the output. This method is always called.
 * In our example before the JSP made a textView with
 * "May the force be with you unknown user".
 * We now extend this method that according to the state it either -
 * that is when state = INITIAL_STATE - asks for the user name
 * and calls the user "unknown user" or after init - that is when
 * state = WELCOME_STATE - displays a success message with
 * the username.
 */
 public void doProcessBeforeOutput() throws PageException {
 switch (state) {
 case WELCOME_STATE :
 this.setJspName("OutputSuccessText.jsp");
 }
 break;
 default :
 this.setJspName("OutputText.jsp");
 break;
 }
 /**
 * this method handles the event of the button. The event is fired
 * either when the user clicks on the button or presses the
 * Return/Enter key when he is in the inputField (since we defined
 * the button as default button). In this method we set the state to
 * WELCOME_STATE so that on the following doProcessBeforeOutput
 * (which is called immediately after this method)
 * a success message is displayed
 */
 public void onSendButtonClicked(Event event) throws PageException {
 state = WELCOME_STATE;
 }
}

The only thing missing now is OutputSuccessText.jsp which should send the personalized
message to the user. The usage of the bean has been already shown in OutputText.jsp
so OutputSuccessText.jsp is very small and creates a textview with the username in it.

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 129

<%-- OutputSuccessText.jsp --%>
<%@ taglib uri= "tagLib" prefix="hbj" %>
<hbj:content
 id="myContext">
 <hbj:page
 title="Successful processing">
 <jsp:useBean
 id="UserNameBean"
 scope="application"
 class="bean.DynPageNameBean"
 />
 <hbj:textView
 id="success_message"
 design="HEADER1">
 <%
 success_message.setText
 ("The force is with you" + UserNameBean.getName());
 %>

 </hbj:textView>
 </hbj:page>
</hbj:content>

Result of the JSP
(assuming that the user responded with "SAP")

The force is with you SAP

2.1.4.2 Data Exchange Using the Session Object
Data stored in the http session will be kept by the server as long as the user session is alive.

JSPDynPage
Getting the request object:

IPortalComponentRequest request =
 (IPortalComponentRequest) this.getRequest();

To store a value in the session we have to use the command line:

request.getComponentSession().putValue("myText",
 "Text in the session
context");

To get the stored value we have to use the command line:

request.getComponentSession().getValue("myText");

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 130

JSP
To store a value in the session we have to use the command line:

<%
 componentRequest.getComponentSession().putValue("myText",
 "That text is from the
JSP");
%>

To get the stored value we have to use the command line:

<%

componentRequest.getComponentSession().getValue("myText").toString
(); %>

2.1.4.3 Data Exchange Using the Context Object
The lifetime of data stored in the context cannot be guaranteed. The context can be released
any time when the web server needs resources. We strongly recommend to refresh the
stored data (for example, in the JSP DynPage method doProcessAfterInput, which is called
every time an event occurs on the web client) to avoid an exception. The exception will occur
when you try to access a value that is already gone (or has never been set).

JSP DynPage
Getting the request object:

IPortalComponentRequest request =
 (IPortalComponentRequest) this.getRequest();

To store a value in the session we have to use the command line:

request.getComponentContext().putValue("myText",
 "A short note in the
context");

To get the stored value we have to use the command line:

request.getComponentContext().getValue("myText");

JSP
To store a value in the session we have to use the command line:

<%
 componentRequest.getComponentContext().putValue("myText",
 "From the JSP");

Go and Create March 2006

Creating Your First Portal Application

Running an Enterprise Portal 131

%>

To get the stored value we have to use the command line:

<%

componentRequest.getComponentContext().getValue("myText").toString
();

%>

2.1.4.4 Data Exchange Using the Request Object
The lifetime of data stored in the request is limited to the request only. You have to refresh the
stored data (for example, in the JSP DynPage method doProcessAfterInput, which is called
every time an event occurs on the web client) to avoid an exception. The exception will occur
when you try to access a value that is already gone (or has never been set).

JSP DynPage
Getting the request object:

IPortalComponentRequest request =
 (IPortalComponentRequest) this.getRequest();

To store a value in the session we have to use the command line:

request.getNode().putValue("myText", "A short note in the
request");

To get the stored value we have to use the command line:

request.getNode().getValue("myText");

JSP
To store a value in the session we have to use the command line:

<%
 componentRequest.getNode().putValue("myText", "That is from the
JSP");
%>

To get the stored value we have to use the command line:

<%
 componentRequest.getNode().getValue("myText").toString();
%>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 132

3 Core Development Tasks
This section describes how to accomplish some of the most common and useful tasks for
programming in the portal. The tasks are divided into the following sections:

● Creating and Managing Content [Page 33]: Tasks for creating content. The tasks
involve the creation of HTML that is viewed within an iView, or the creation of iViews,
pages and other portal objects within the PCD.

● Modifying the Desktop and Navigation [Page 33]: This section describes the following
types of tasks:

○ Desktop: Tasks for modifying the look and feel of the portal, including
customizing the layout and colors of the portal. You can also create different
desktops for different sets of users.

○ Navigation: Tasks for enabling users to navigate between content in the portal.
You can provide navigation defined in pre-defined roles, navigation based on
external data and other types of navigation.

● Connecting to Backend Systems [Page 33]: Tasks for connecting to back-end systems
and applications.

● Specialities in the Portal [Page 33]: Describes special portal features that involve
several developer tasks.

3.1 Creating and Managing Content
This section describes how to create and manage content, and includes the following
sections:

● Managing iViews and Other PCD Objects [Page 33]

● Working with XML [Page 33]

● Creating Administration Interfaces [Page 33]

● Client-Side Eventing [Page 33]

● Page Builder [Page 33]

● HTML-Business for Java [Page 33]

● User Management Engine [Page 33]

● User Agent Service [Page 33]

3.1.1 Managing iViews and Other PCD Objects
This section describes how to create, look up and modify standard PCD objects, also known
as semantic objects. Semantic objects enable you to manage common portal objects, such as
iViews and pages, via the portal API.

The following sections are included:

● Architecture [Page 33]: Background information on semantic objects.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 133

● How to Manage Semantic Objects [Page 33]: Basic APIs for working with all semantic
objects.

● How to Manage iViews [Page 33]: Additional APIs for working with iViews.

● How to Manage Pages [Page 33]: Additional APIs for working with pages.

● How to Manage Layouts [Page 33]: Additional APIs for working with layouts.

● How to Manage Systems [Page 33]: Additional APIs for working with systems.

● Essential Information [Page 33]: The portalapp.xml configuration and the JAR files for
working with semantic objects.

3.1.1.1 Architecture
A semantic object is a collection of attributes that represent a portal object, such as an iView
or page. Such semantic objects are persisted in the PCD. By creating and modifying these
objects in the PCD, you can change the iViews and pages and other portal objects that are
displayed in the portal or that are available to administrators.

Each semantic object implements IAttributeSet (from the
com.sap.portal.pcm.admin package), which defines methods for modifying its
attributes.

Objects
For each type of semantic object, there are generally two types of Java interfaces:

● The semantic object interface, such as IiView for an iView.

● A helper service interface that provides helper methods for working with that type of
semantic object, such as IiViews for iViews.

Some helper services simply provide special implementations of the methods defined
in the com.sap.portal.pcm.IObjectsManager interface, which these helper
services implement. Others provide additional methods. For example, IiViews defines
no new methods, while ISystems provides additional methods, for example, for
retrieving all systems defined in the PCD.

To obtain an instance of the helper service, create an instance of the service with the
PortalRuntime class, as you would for any service.

IiViews iViewSrv = (IiViews)PortalRuntime.getRuntimeResources()
 .getService(IiViews.KEY);

The following are the interfaces for key semantic objects:

Semantic Object Interfaces

iView IiView, IiViews

Page IPage, IPages

Layout ILayout, ILayouts

System ISystem, ISystems

These objects are part of the com.sap.portal.pcm package.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 134

3.1.1.1.1 Atomic Name
Each object in the PCD is specified by its PCD address, which is the full path to the object
through the PCD’s tree structure. For example, the following is a PCD address:

 pcd:portal_content/myFolder/stocks

The above address points to a PCD object called stocks, which is in a folder called myFolder,
which is in the top-level folder portal_content.

In this example, the name stocks is the object’s atomic name, which must be unique within
the folder that contains the object (myFolder).

3.1.1.2 How to Manage Semantic Objects
This section describes the following tasks for managing all semantic objects:

● Creating Objects [Page 33]

● Looking Up Objects [Page 33]

● Getting/Setting Attributes [Page 33]

● Deleting Objects [Page 33]

Some updates to a semantic object require that you call save() on the affected
semantic object (such as when updating attributes), while other changes do not
require a call to save() (such as when adding iViews to a page). Check the
Javadocs to determine if a call to save() is required.

3.1.1.2.1 Creating Objects
This section describes how to create a semantic object in the PCD by first creating a
descriptor for the new object and binding it to a folder context.

A new object can be based on an existing PCD object (either as a copy or a delta link) or on
an application already deployed to the portal.

Procedure
...

1. Create an instance of the helper object for the type of semantic object that you want to
create, such as, IiViews for an iView, ISystems for a system, and so forth.

IiViews iViewSrv = (IiViews)
 PortalRuntime.getRuntimeResources().getService(IiViews.KEY);

2. Create a descriptor for the new object that you want to create.
INewObjectDescriptor IVtoCreate = (INewObjectDescriptor)
 iViewSrv.instantiateDescriptor(CreateMethod.NEW,
 "par:/applications/myProject/components/myComponent",
 request.getUser());

instantiateDescriptor() takes the following parameters:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 135

○ New or Delta Link: Indicates whether the new object is a copy of or a delta link
to an existing object. Use constants from the CreateMethod class.

○ PCD Object or Application: Indicates the existing PCD object or portal
application on which to base the new object. The format can be one of the
following:

■ PCD address, such as pcd:portal_content/myFolder/myObject.

■ Application address, in the following format:

par:/applications/myApp/components/myComp

where myApp is the name of an application and myComp is the name of
a component in myApp.

If you specify a PCD address, the first parameter can be either NEW or
DELTA_LINK. If you specify an application, the first parameter must be NEW.

○ Current User, specified by calling getUser() on the portal request object.

3. Set the parameters for a JNDI lookup in the PCD.
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 IPcdContext.PCD_INITIAL_CONTEXT_FACTORY);
env.put(Context.SECURITY_PRINCIPAL, request.getUser());
env.put(Constants.REQUESTED_ASPECT, PcmConstants.ASPECT_SEMANTICS);

4. Perform a lookup of the folder in which you want to create the new object.
InitialContext iCtx = null;
try
{
 iCtx = new InitialContext(env);

 String folderName = "pcd:portal_content/myFolder";
 Context ctx = (Context)iCtx.lookup(folderName);

...

5. Create the object by binding the descriptor for the new object to the folder context.
...

 ctx.bind("myNewHelloIV", IVtoCreate);

}
catch(Exception e)
{
}
...

3.1.1.2.2 Looking Up Objects
This section describes how to look up a PCD object by performing a JNDI lookup and
supplying the PCD address of the object.

Procedure
...

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 136

1. Create an instance of the helper object for the type of semantic object that you want to
create, such as, IiViews for an iView, ISystems for a system, and so forth.

IiViews iViewSrv = (IiViews)
 PortalRuntime.getRuntimeResources().getService(IiViews.KEY);

2. Set the parameters for a JNDI lookup in the PCD.
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 IPcdContext.PCD_INITIAL_CONTEXT_FACTORY);
env.put(Context.SECURITY_PRINCIPAL, request.getUser());
env.put(Constants.REQUESTED_ASPECT, PcmConstants.ASPECT_SEMANTICS);

3. Perform the lookup by supplying the PCD address of the object, and then cast the
returned object to the appropriate semantic object interface.

InitialContext iCtx = null;
try
{
 String iViewID = "pcd:portal_content/myFolder/stocks";

 iCtx = new InitialContext(env);
 IiView result =(IiView)iCtx.lookup(objectAddress);
}
catch(Exception e)
{
}

3.1.1.2.3 Getting/Setting Attributes
This section describes how to get and set object attributes.

For more information on retrieving an object, see Looking Up Objects [Page 33].

Procedure
● Getting Attributes and Meta-Attributes

Response.write (obj.getAttribute ("attribute"));

Response.write (obj.getMetaAttribute ("attribute", "meta-attribute")
);

Text attributes generally require an additional parameter that indicates the locale, which can
be obtained from the portal request object.

The following attributes require the use of the locale:

○ com.sap.portal.pcm.Title

○ com.sap.portal.pcm.Description

The following meta-attributes require the use of the locale:

○ plainDescription

○ longDescription

○ category

○ validValueTitle0, validValueTitle1, and so forth.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 137

Response.write (obj.getAttribute ("attribute", request.getLocale())
);

● Setting Attributes
obj.putAttribute("attribute","value");
obj.save();

Attribute Constants
To specify an attribute, use the designated constant for that attribute. The constants for each
semantic type are located in a corresponding interface in the
com.sap.portal.pcm.attributes package.

For example, the constants for iView attributes are located in the IAttriView interface. The
following code checks whether the current iView allows browser caching:
response.write(
 result.getAttribute(IAttriView.ATTRIBUTE_ALLOW_BROWSER));

3.1.1.2.4 Deleting Objects
This section describes how to delete a semantic object from the PCD.

Procedure
...

1. Set the parameters for a JNDI lookup in the PCD.
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 IPcdContext.PCD_INITIAL_CONTEXT_FACTORY);
env.put(Context.SECURITY_PRINCIPAL, request.getUser());
env.put(Constants.REQUESTED_ASPECT, PcmConstants.ASPECT_SEMANTICS);

2. Perform a lookup of the folder that contains the object that you want to delete.
InitialContext iCtx = null;
try
{
 iCtx = new InitialContext(env);

 String folderName = "pcd:portal_content/myFolder";
 Context ctx = (Context)iCtx.lookup(folderName);

...

3. Delete the object by unbinding the object from the folder that contains it. Use the atomic
name of the object.

...

 String atomicName = "myObject";
 ctx.unbind(atomicName);

}
catch(Exception e)
{

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 138

}

3.1.1.3 How to Manage iViews
This section describes the following tasks for managing iViews:

● Adding Related Items [Page 33]

For information on creating, modifying and deleting iViews and other semantic objects, see
Managing Semantic Objects [Page 33].

3.1.1.3.1 Adding Related Items
You can associate iViews with other iViews or pages, so that when an iView is displayed,
links to its related iViews and pages are displayed in the side navigation panel.

The following types of related items are available:

● Related Links: Links to the related iViews and pages are displayed in the Related
Links iView of the navigation panel.

● Dynamic Navigation: The content of the related iViews and pages are displayed in the
Dynamic Navigation iView of the navigation panel.

● Target Components: Links to the related iViews and pages are displayed in the
Drag&Relate Targets iView of the navigation panel.

For more information on Drag&Relate targets, see the SAP NetWeaver documentation
on the Help Portal (http://help.sap.com) SAP NetWeaver People Integration
Portal Administration Guide Content Administration Navigation Drag&Relate
Targets.

Procedure
...

1. Set the parameters for a JNDI lookup in the PCD.
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 IPcdContext.PCD_INITIAL_CONTEXT_FACTORY);
env.put(Context.SECURITY_PRINCIPAL, request.getUser());
env.put(Constants.REQUESTED_ASPECT, PcmConstants.ASPECT_SEMANTICS);

2. Perform a lookup of the iView to which you want to add related items, and cast the
object as an IiView object.

InitialContext iCtx = null;
try
{
 iCtx = new InitialContext(env);
 IiView myIView =(IiView)iCtx.lookup(iViewId);
}
catch(Exception e)
{
}

3. Create a descriptor (INewObjectDescriptor object) for the iView or page that you
want to add as a related link.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 139

INewObjectDescriptor iViewDescriptor =
 (INewObjectDescriptor)iViewSrv.instantiateDescriptor
 (CreateMethod.DELTA_LINK,
 "pcd:portal_content/testxml", request.getUser());

4. Add the related item descriptor to the iView.
myIView.addRelatedItem(iViewDescriptor,"testxml",
 RelatedItemType.DYNAMIC_NAVIGATION);

3.1.1.4 How to Manage Pages
This section describes the following tasks for managing systems:

● Adding Layouts to a Page [Page 33]

● Setting the Default Layout for a Page [Page 33]

● Adding iViews to a Page [Page 33]

● Removing iViews from a Page [Page 33]

For information on creating, modifying and deleting iViews and other semantic objects, see
Managing Semantic Objects [Page 33].

3.1.1.4.1 Adding Layouts to a Page
Each page is assigned a default layout, which is used for rendering the page. You can assign
other layouts to a page in order to enable a user to personalize the page. Each user can
select one of the other layouts assigned to the page.

Procedure
...

1. Set the parameters for a JNDI lookup in the PCD.
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 IPcdContext.PCD_INITIAL_CONTEXT_FACTORY);
env.put(Context.SECURITY_PRINCIPAL, request.getUser());
env.put(Constants.REQUESTED_ASPECT, PcmConstants.ASPECT_SEMANTICS);

2. Perform a lookup of the page to which you want to add an iView.
InitialContext iCtx = null;
try
{
 iCtx = new InitialContext(env);
 IPage myPage =(IPage)iCtx.lookup(
 "pcd:portal_content/Desktop/finance");
}
catch(Exception e)
{
}

3. Create a descriptor (INewObjectDescriptor object) for the layout that you want to
add to your page.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 140

INewObjectDescriptor layoutToAdd =
 (INewObjectDescriptor)iViewSrv.instantiateDescriptor
 (CreateMethod.DELTA_LINK,
 "pcd:portal_content/templates/layouts/narrowWide",
 request.getUser());

4. Add the layout descriptor to the page.
myPage.addLayout(layoutToAdd, "newLayout");

If a layout with the same atomic name exists in the page, an error is thrown.

3.1.1.4.2 Setting the Default Layout for a Page
This section describes how to set a page’s default layout. A page’s default layout is the layout
used for rendering if the page’s layout has not been personalized.

Procedure
...

1. Set the parameters for the JNDI lookup.
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 IPcdContext.PCD_INITIAL_CONTEXT_FACTORY);
env.put(Context.SECURITY_PRINCIPAL, request.getUser());
env.put(Constants.REQUESTED_ASPECT, PcmConstants.ASPECT_SEMANTICS);

2. Perform a lookup of the page for which you want to set the default layout.
InitialContext iCtx = null;
try
{
 iCtx = new InitialContext(env);
 IPage myPage =(IPage)iCtx.lookup(
 "pcd:portal_content/Desktop/finance");
}
catch(Exception e)
{
}

3. Set the default layout by specifying the layout’s atomic name.
myPage.setActiveLayout("narrowWideNarrow");

4. Save the changes.
myPage.save();

3.1.1.4.3 Adding iViews to a Page
This section describes how to add an iView (or page) to a page.

Procedure
...

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 141

1. Set the parameters for a JNDI lookup in the PCD.
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 IPcdContext.PCD_INITIAL_CONTEXT_FACTORY);
env.put(Context.SECURITY_PRINCIPAL, request.getUser());
env.put(Constants.REQUESTED_ASPECT, PcmConstants.ASPECT_SEMANTICS);

2. Perform a lookup of the page to which you want to add an iView.
InitialContext iCtx = null;
try
{
 iCtx = new InitialContext(env);
 IPage myPage =(IPage)iCtx.lookup(
 "pcd:portal_content/Desktop/finance");
}
catch(Exception e)
{
}

3. Create a descriptor (INewObjectDescriptor object) for the iView or page that you
want to add to your page.

INewObjectDescriptor iViewDescriptor =
 (INewObjectDescriptor)iViewSrv.instantiateDescriptor
 (CreateMethod.DELTA_LINK,
 "pcd:portal_content/testxml", request.getUser());

4. Add the iView descriptor to the page.
myPage.addiView(iViewDescriptor,"testxml");

The iView is automatically displayed at the bottom of the left-most column of the layout
that is currently being used for the page.

If you want to place the iView into a particular column of a particular layout, you can
specify a layout container into which to add the iView. The following adds the iView into
the com.sap.portal.reserved.layout.Cont2 container (second column) of the
current layout:

myPage.addiView(IVtoAdd,"testxml",
 "com.sap.portal.reserved.layout.Cont2");

com.sap.portal.reserved.layout.Cont2 is the container ID of the second
column as defined in the standard narrowWideNarrow layout.

If an iView with the same atomic name exists in the page, an error is thrown.

3.1.1.4.4 Removing iViews from a Page
This section describes how to remove an iView from a page.

Procedure
...

1. Set the parameters for a JNDI lookup in the PCD.
Hashtable env = new Hashtable();

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 142

env.put(Context.INITIAL_CONTEXT_FACTORY,
 IPcdContext.PCD_INITIAL_CONTEXT_FACTORY);
env.put(Context.SECURITY_PRINCIPAL, request.getUser());
env.put(Constants.REQUESTED_ASPECT, PcmConstants.ASPECT_SEMANTICS);

2. Perform a lookup of the page from which you want to remove an iView.
InitialContext iCtx = null;
try
{
 iCtx = new InitialContext(env);
 IPage myPage =(IPage)iCtx.lookup(
 "pcd:portal_content/Desktop/finance");

...

3. Remove the iView from the page. Use the atomic name of the iView.
...

 myPage.removeiView("myIView");

}
catch(Exception e)
{
}

3.1.1.5 How to Manage Layouts
The ILayout API enables you to get information about a layout and its containers:

● getContainerID(): Returns the ID for a specific container in the layout. Specify the
container by its name as defined in the portalapp.xml.

● getContaineriViews(): Returns an array of strings that represent the atomic
names of the iViews and pages within a specific container. Specify the container by its
ID.

● getContainerIDs(): Returns an array of strings that represents the IDs of the
containers in the layout.

The ILayout API also enables you to specify where within a container to place an iView that
has already been added to the page, as described in Adding iViews to a Page (via Layout)
[Page 33].

For information on creating, modifying and deleting iViews and other semantic objects, see
Managing Semantic Objects [Page 33].

3.1.1.5.1 Adding iViews to a Page (via Layout)
This section describes how to position an iView within a container of a layout on a page.

Procedure
...

1. Set the parameters for a JNDI lookup in the PCD.
Hashtable env = new Hashtable();

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 143

env.put(Context.INITIAL_CONTEXT_FACTORY,
 IPcdContext.PCD_INITIAL_CONTEXT_FACTORY);
env.put(Context.SECURITY_PRINCIPAL, request.getUser());
env.put(Constants.REQUESTED_ASPECT, PcmConstants.ASPECT_SEMANTICS);

2. Perform a lookup of the page on which you want to position an iView.
InitialContext iCtx = null;
try
{
 iCtx = new InitialContext(env);
 IPage myPage =(IPage)iCtx.lookup(
 "pcd:portal_content/Desktop/finance");
}
catch(Exception e)
{
}

3. Get a reference to the layout in which you want to move the iView, for example, by
getting the default layout.

ILayout myLayout = myPage.getActiveLayoutObject();

You can also get a list of a page’s layouts by calling getLayouts() on the page.

4. Position the iView by calling setiViewContainer() and specifying the iView that
you want to move, a container, and the position within the container to which you want
to move the iView. The first position is 0, the second is 1, and so forth.

myLayout.setiViewInContainer("testxml",
 "com.sap.portal.reserved.layout.Cont1",1);

The above moves the testxml iView in the page to the second position in the
com.sap.portal.reserved.layout.Cont1 container of the default layout.

5. Save the changes to the layout.
myLayout.save();

3.1.1.6 How to Manage Systems
In the PCD, the portal stores systems, which are sets of properties that represent an external
back-end application. Systems, such as for JDBC-compliant databases or SAP R/3 systems,
enable connections to specific applications of these types and the retrieval of data.

For more information on systems, see the SAP NetWeaver documentation on the Help Portal
(http://help.sap.com) SAP NetWeaver People Integration Portal Administration
Guide System Administration System Configuration System Landscape.

This section describes the following tasks for managing systems:

● Getting/Setting System Aliases [Page 33]

● Getting User Mapping [Page 33]

● Getting Aliases for All Systems [Page 33]

For information on creating, modifying and deleting iViews and other semantic objects, see
Managing Semantic Objects [Page 33].

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 144

3.1.1.6.1 Getting/Setting System Aliases
This section describes how to get and set system aliases.

● Get a System’s Aliases
String[] aliases = result.getAliases();

● Add/Remove an Alias for a System:
result.addAlias("alias2");

result.removeAlias("alias1");

● Set a System’s Default Alias:
result.changeDefaultAlias ("alias2");

3.1.1.6.2 Getting User Mapping
This section describes how to retrieve the user mapping (that is, the user name and
password) associated with a system for the current user. The portal tries to connect to the
back-end system using this user name and password when the current user requests an
iView that connects with the system.

Procedure
...

1. Get the ISystemUserMappingData object associated with the system for the current
user.

ISystemUserMappingData userMappingData = result.getUserMappingData(
 request.getUser());

2. Get the user name or password from the ISystemUserMappingData object.
userMappingData.getUser();
userMappingData.getPassword();

3.1.1.6.3 Getting Aliases for All Systems
The ISystems interface provides the following methods for retrieving aliases for all systems
in the PCD (in the code samples, systems is an object whose class implements the
ISystems interface):

● All Aliases:
String[] aliases = systems.getAliases();

● All Default Aliases:
String[] defaultAliases = systems.getDefaultAliases();

The following retrieves the ISystems service:
ISystems systemSrv = (ISystems)PortalRuntime.getRuntimeResources()
 .getService(ISystems.KEY);

3.1.1.7 Essential Information
This section provides the following information to help you manage systems:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 145

● portalapp.xml [Page 33]: Information about the portalapp.xml file for an application
that works with systems.

● JARs and Packages [Page 33]: The packages and JAR files required for managing
systems.

3.1.1.7.1 portalapp.xml
In order to use the semantic object APIs, you must create the following service references in
the portalapp.xml file:
<application-config>
 <property name="ServicesReference" value="com.sap.portal.ivs.api_iview,
com.sap.portal.ivs.api_landscape "/>
</application-config>

3.1.1.7.2 JARs and Packages
This section lists the packages used in this project and the JAR files required for compilation.

JARs (for compilation)
● com.sap.portal.ivs.api_iview_api.jar

● com.sap.portal.ivs.api_landscape_api.jar

Packages
● com.sap.portal.pcm.iView

● com.sap.portal.pcm.page

● com.sap.portal.pcm.layout

● com.sap.portal.pcm.system

● com.sap.portal.pcm.attributes

Other Classes
The following is a list of additional classes used in this section and the corresponding
packages:

Class Package

Constants com.sap.portal.directory

Context javax.naming.Context

InitialContext com.sapportals.portal.prt.jndisupport

IPcdContext com.sapportals.portal.pcd.gl

PcmConstants com.sap.portal.pcm.admin

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 146

3.1.2 Working with XML
The portal provides several ways of working with XML content and performing
transformations:

● XML iViews: The portal comes with an XML iView template, that enables
administrators to specify an XML source and one of the built-in transformers. The iView
displays the transformed content.

This method is for administrators who are working with an HTTP-based XML source,
whose XML content can use one of the built-in transformers.

For more information, see Creating XML iViews [External].

● Creating Transformers: You can build additional transformers for the XML iView. The
custom transformers are displayed to administrators in the XML iView wizard.

For more information creating transformers, see Providing Transformers [Page 33].

● Using the Transformation Service: You can create a portal component that performs
its own transformations, with the help of the transformation service.

For more information on using the transformation service, see Transformation Service
[Page 33].

● Using the Content Provider Framework: The portal provides a framework for
displaying third-party XML content.

For more information, see Displaying External XML-Based Content [Page 33].

3.1.2.1 Transformation Service

Purpose
The transformation service used to transform data in XML format with existing
transformers/style sheets.

The transformation service is based on the SAP XML toolkit that implements JAXP (see http
http://java.sun.com/xml/jaxp/index.jsp for more details). It supports all JAXP
XML source and result formats and provides the HTTPStreamSource source. Based on the
content fetching service, the HTTPStreamSource source allows caching, proxy settings and
access to properties defined in the Portal Content Directory (PCD). The transformation
service comes with built-in transformers.

Transformation service interface: ITransformerService

Transformation service key: ITransformerService.KEY

The transformation service requires basic skills in the Extensible Stylesheet Language (XSL).

3.1.2.1.1 XML Transformation
XML transformation is done with XSL and SAX transformers. With the transformation service
you define the transformers once and then use them in combination with already defined
transformers without needing to re-define them again before transforming. Transformation
can be done on registered transformers only. Registered transformers can also be used by
other content developers using the XML iView user interface from the portal.

Combining several transformers to generate one output is called Pipe Transformation.
The Pipe transformation allows you to develop light weight transformers and connect
them to one powerful transformer.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 147

A transformer has the following attributes collected by interface
ITransformerInformation:

Attribute Type Description

Name String (cs) The name of the transformer. The name has to be unique for
an application component.

Component
name

String (cs) The name of the portal component or portal service that
registered the transformer.

Version Float The version of the transformer. Using the correct version
number will avoid errors when a transformer is upgraded.

Transformer
type

TransformerType Registration type of the transformer. There are the following
types:

● Built-in

Transformer was provided by the transformation
service.

● Persistent

Transformer was supplied by transformation provider
(see chapter Providing Transformers [Page 33]).

● Temporary

Transformer is temporally supplied from regular portal
application.

From scheme String (cs) XML input format. The scheme from which the transformer
gets the XML data..

To scheme String (cs) XML output format. Defines the output format of the
transformer.

Description String General description of the transformer.

Activation
Following steps are necessary to activate a XML transformation:
...

1. Create a Transformer List

To get related transformers information according to the attributes, use the requested
attributes as parameter of the method getTransformersInformation(). You
should call this method for each transformer you want to add. The method returns all
transformers that match the specified attribute.

2. Defining parameters

Create an array with the same size of the transformer list. Every item in the array must
be a map of parameters related to the transformer with the same index.

3. Generate the XML source

Generate the XML source to be transformed. See XML Source for more details.

4. Generate XML result

Generate the object that will receive the result of the transformation. See XML Result
for more details.

5. Activate transformation

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 148

Call method transform() of the service.

XML Source
The implementation of XML source must inherit from javax.xml.transform.Source. The
XML input can be file, stream, DOM or another customized class. The source classed
provided by the JDK are:

● javax.xml.transform.stream.StreamSource

● javax.xml.transform.sax.SAXSource

● javax.xml.transform.dom.DOMSource

See the JDK Documentation for more details.

The HTTPStreamSource class, an addition of the transformation service, is used for working
with URL based XML sources that uses the portal cache, proxy settings and PCD attributes to
load XML files from the web. It is strongly recommended to work with this class when loading
XML files from the web. For more details see the class definition in the transformation service
Javadoc and examples.

XML Result
The implementation of XML result must inherit from javax.xml.transform.result. The
class supplied keeps the result of the transformation in the format specified by the last
transformer in the transformation pipe. Result classes provided by the JDK are:

● javax.xml.transform.stream.StreamResult

● javax.xml.transform.sax.SAXResult

● javax.xml.transform.dom.DOMResult

See the JDK Documentation for more details.

Result Types
There are the following XML results:

● IPortalComponentResponse

in-order for the results to be written directly to the response of the portal component
you should create a new StreamResult object with the response writer.

Example:
 …
 // Setting result stream
 StreamResult strmResult = new StreamResult(response.getWriter());
 // Transforming
 tService.transform(src,trns, paramsArr, context, null, strmRes);
 …

● HTMLB

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 149

When working with the XHTMLB transformer the result of the transformation is a set of
HTMLB objects. Default behaviour is to create this set of objects in the page context,
however it is possible to specify that the result should be rendered to the response by
parameters (see Built-in Transformers [Page 33] for more details).

● String

In order for the result to be written to a string you should create a StreamResult
object with a ByteArrayOutputStream as its constructor input field. After the
transformation is finished get the string from the created ByteArrayOutputStream
object.

Example:
 OutputStream outStrm = new ByteArrayOutputStream();
 StreamResult strm = new StreamResult(outStrm);
 tService.transform(source, trns, params, context, null, strm);
 .
 .
 tService.transform(source, trns, params, context, null, strm);
 .
 .
 String result = outStrm.toString();

3.1.2.1.2 Providing Transformers
A transformer provider has a portal archive (PAR) file that contains the transformers and is
responsible for registering and removing the transformers from the list of transformers in the
transformation service. All transformers will be registered with type persistent. The
provider can contain several XSL and SAX transformers.

Default implementation class of the transformer provider PAR:

com.sap.portal.httpconnectivity.transformationservice.TransformersPro
vider

All customized classes inherit from this class.

3.1.2.1.2.1 Simple Providers
For a simple provider you do not have to implement Java code. Simple providers can only
contain XSL transformers. Simple transformers cannot use language properties
(ResourceBundle classes) and cannot customize the default behavior.

PAR Structure
The PAR file must have the following folder structure:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 150

The folder named Transformers contains all the XSL files. Note that there are no Java files in
the project.

If you want to use different folders you have to adjust the portalapp.xml file
accordingly.

Portalapp.xml File
The portalapp.xml registers the provider with the PRT registry mechanism, declares the
provider service and general application configurations.

● Portal registry definition

Defines this PAR as a provider in the registry entry. The path attribute must be set as
follows:
<registry>
 <entry
 path="runtime/transformers/com.sap.portal.EmptyTransformersProvider"
 name="TransformersProvider"
 type="service"/>
</registry>

● Service configuration

Declare the provider as a service. The service must be defined as follows:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 151

<services>
 <service
 name="TransformersProvider">
 <service-config>
 <property
 name="className"
 value="com.sap.portal.httpconnectivity.transformationservice.
 TransformersProvider"/>
 <property
 name="classNameFactory"
 value=""/>
 <property
 name="classNameManager"
 value=""/>
 <property
 name="SecurityZone"
 value="com.sap.portal/no_safety"
 />
 </service-config>
 </service>
</services>

● Application configuration

Set the startup property to true so that the PRT will register the provider when
deploying and not the first time that the service is called.

Example:
<application-config>
 <property
 name="ServicesReference"
 value="com.sap.portal.htmlb,com.sap.portal.transformationservice"/>
 <property
 name="releasable"
 value="false" />
 <property
 name="startup"
 value="true" />
</application-config>

● Transformers.xml File

This file contains the provided transformers. The file must be located at <par
folder>/dist/xml/transformers.xml. It is divided into a XSL and SAX part. Every
transformer has a name, a description, from/to scheme, source name and version (See
XML Transformation [Page 33] for more).

For an XSL transformer the source name property is the XSL file and in case of an SAX
transformer it is the class name.

Example:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 152

<?xml version="1.0" encoding="utf-8"?>
<transformation-resources>
 <transformers
 type="XSL">
 <!-- Holder of XSL transformers -->
 <transformer>
 <!-- Represet single transforemr -->
 <property
 name="Name"
 value="MY_RSS_TO_XHTMLB" />
 <!-- Key of the transformer-->
 <property
 name="Description"
 value="Transform RSS files to XHTMLB" />
 <property
 name="FromURI"
 value="RSS" />
 <!-- Source scheme URI -->
 <property
 name="ToURI"
 value="XHTMLB" />
 <!-- result scheme URI -->
 <property
 name="SourceName"
 value="RSS_TO_XHTMLB.xsl" />
 <!-- XSL file name -->
 <property
 name="Version"
 value="1.0" />
 </transformer>
 </transformers>
 <transformers
 type="SAX">
 <!-- Holder of the SAX transformers -->
 <transformer>
 <property
 name="Name"
 value="MY_UNIQUE_ID_ADDER" />
 <property
 name="Description"
 value="Add an unique id for every node in the XML" />
 <property
 name="FromURI"
 value="XML"/>
 <property
 name="ToURI"
 value="RSS"/>
 <property
 name="SourceName"
 value="com.sapportals.portal.httpconnectivity.
 saxtransformerprovider.MyUIDAdderHandler" />
 <!-- Full class name -->
 <property
 name="Version"
 value="1.0" />
 </transformer>
 </transformers>
</transformation-resources>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 153

3.1.2.1.2.2 SAX Providers
Steps to register a SAX transformer in the transformation service.

Implementation
Content developers must create their own class derived from TransformersProvider
class and overwrite the method getSAXHandler(ITransformerInformation info)
that returns a new instance of SAX handler inherited from EPSAXDefaultHandler. A simple
implementation of the method is to take the class name from the
ITransformerInformation and instantiate it.

Portalapp.xml File
The only change from the settings for a simple provider [Page 33] is the class name of the
service.

3.1.2.1.2.3 Resource Bundle Holders
The transformation service inserts a resource bundle object with the right language to every
transformer as a parameter before transforming. The parameter name of the transformer is
ResourceBundle. When no resource bundle is defined the default transformation service
resource bundle will be used.

Implementation
Content developers must create their own class inherited from the TransformersProvider
class and overwrite the method getResourceBundle(Locale locale). This method will
be called at run-time before the transformation process is started. The result class must be
PropertyResourceBundle. The overwritten method must be in the core section of the
PAR. The creation of the localization files/resource bundles is the same as for other PARs
using localization

Portalapp.xml file
The only changes from the settings for a simple provider [Page 33] is the class name of the
service and the property ResourceBundleName in the service-config section.

3.1.2.1.2.4 Customizing Options
All the customization options require implemention of a class that extends the
TransformersProvider class and change the class name property in the
portalapp.xml file.

Changing Folder Structure
To place the Transformers.xml in a different location overwrite the method
getTransformersResourcePath(). This method returns a full path name to a file holding
the list of transformers.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 154

To change the location of the XSL files overwrite the method
getXSLTransformerPath(String tXSLPath). This method receives the SourceName
property from the Transformers.xml file and returns the full path name to the XSL file.

Adding Transformers by Coding
Transformer providers can add transformers without defining them in the
Transformers.xml file by overwriting the init(IServiceContext serviceContext)
method and implement in one of the following ways:
...

1. Call the default implementation, super(serviceContext). Create the new
transformer information using the createTransformerInsformation() method of
the transformation service. Set the transformer by calling the appropriate
setTransformer() method in the service.

2. Load transformers information by calling loadTransformers() method and hold the
received list. Create your transformer using createTransformerInformation() of
the service and add the ITransformerInformation result to the list of
transformers. Call method setTransformers() with the list of transformers
information.

This customization is useful when there is additional information needed to add a transformer
or when your provider is also servicing other purposes.

Add Packages to the SAX Class Names
Overwrite method String getSAXClassName(String tClassName) that receives the
value of the SourcePath property in the transformer definition in the transformers.xml
file. This method must return a full qualified class name including the package name.

Standalone Provider
This is a provider that does not inherit from class
com.sap.portal.httpconnectivity.transformationservice.TransformersPro
vider. When you develope a standalone provider you must supply the following
functionalities:
...

1. Provider must be a portal service.

2. The provider must be registered when deployed in the PortalRegistry.

3. Registration of the transformers when initialized. Transformers must be added using the
ITransformersService methods.

4. Un-Register a transformers when a provider is removed or updated.

5. Un-Register from the PortalRegistry.

3.1.2.1.2.5 Creating a Provider Step-by-Step
Following steps are necessary to create a PAR file for a transformer provider:

● Create a simple empty provider PAR as defined above or use an example from the
PDK.

● Edit portalapp.xml according to the steps previously described (Simple provider
[Page 33], SAX Provider [Page 33]).

● Create/Edit the transformers.xml file.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 155

● Create the XSL and SAX transformers and add them to the PAR file.

● If needed, implement SAX loader.

● Implement the ResourceBundle provider and create the localization files (if needed).

● Implement a customized implementation (if needed).

● Deploy the PAR file.

● Now your transformers must be available in the XML iView wizard and editor.

3.1.2.1.2.6 Declaring Transformer Parameters
When adding transformers, the provider can define parameters that will control the behavior
of the transformer. These parameters are visible in the XML iView editor. The rules that
should be applied when providing parameters in transformer are as follows:

Parameters types
Providers can decide that certain parameters should not be exposed to the editor by not
putting the parameters in the list of parameters.

SAX Transformers Parameters
Every SAX handler must implement the ITransformerProperties interface that declare
the method getInputProperties(). This method returns a map with the editable parameters of
the SAX handler. The map keys are the names of the parameters. The values of the map can
be of two types:

● String objects representing the default value.

● List of objects representing the valid options of the parameter. The first value in the list
is the default value.

XSL Transformers Parameters
The parameters are declared in the standard XSL way, using xsl:param elements.
Controlling the type of the parameter is done by using two additional attributes:

● Type sap:param

This entry controls if this parameter is editable. Possible values are:

○ hidden

Non-editable parameter

○ visible (default)

Editable parameter.

Example:

<xsl:param name="ResourceBundle" sap:param-
type="hidden"/>

● Option sap:param-options

Thos entry declares a list of possible values for the parameter.

Syntax: sap:param-options=”<default value>;<second value>;…”.

Example:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 156

<xsl:param

 name="ShowDatesMode"

 sap:param-
options="MAIN_ONLY;ALL;ITEMS_ONLY">ITEMS_ONLY

</xsl:param>

When using XSL parameters you must declare the namespace accordingly.

Example:

 xmlns:sap="http://www.sap.com/2004/Transformers/1.0".

3.1.2.1.3 Built-in Transformers
The transformation service provides built-in transformers that give default solution to the
following formats:

● XHTMLB – see specification below

● RSS – see http://web.resource.org/rss/1.0/spec for more details

● Busdoc XML.

All built-in transformers component name is
ITransformerService.BUILT_IN_TRANSFORMERS_KEY and the transformer type
is BUILT-IN.

3.1.2.1.3.1 XHTMLB Transformer
The XHTMLB transformer is a SAX transformer that transforms between XHTMLB (see the
XHTMLB Specification [Page 33] for details about the format) and HTMLB DOM. The result of
the transformation is a set of HTMLB objects ready to be rendered or to be included to other
HTMLB objects. If you provide an HTMLB container it will contain the created HTMLB objects.
If no container is provided, the transformer will create an HTMLB form document. The
component Id is generated when the ID attribute for the XHTMLB element is not specified.

This transformer must be the last one in the transformer list.

The attributes of the XHTMLB transformer are as follows:

Attribute Value

Name XHTMLBSAXHandler

Version 1.0

From scheme XHTMLB

To scheme HTML

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 157

Parameters
The parameters have the format:

ITransformerService.BUILT_IN_TRANSFORMERS_KEY.<parameter>

Following parameters are available:

Parameter Type (Default value) Description

DebugMode Boolean (false) In DebugMode (value set to true), debug
logs and traces are appended at the end
of the top container. The logs include
error notifications, trace of every
component that was created and general
status information.

An enabled DebugMode slows down the
transformation process.

HTMLBTopContainer Inherited from
com.sapportals.htmlb.
Container

Top container that contains all the HTMLB
objects that are created in the
transformation process of the XHTMLB
document.

When no value is specified, the
transformer will try to get the HTMLB
document from the page context. If no
document can be found, it will create a
form document as the top container. You
can get the created document from the
page context object (method
IPageContext.getDocument()).

HTMLBDeclaredComponents java.util.Map (null) This parameter specified a Map object
that receives the components with a given
ID. The Map object can be used to get the
objects and manipulate them.

When no Map is specified, the declared
components are treated as any other
component.

HTMLBRenderAtEnd Boolean (true) This flag defines if the created document
to the response is rendered when the
transformation is finished.

Error Handling
When the DebugMode is enabled, all error and trace messages are placed as plain HTML
text at the end of the top container. No exception is thrown when a method or parameter is
used that do not exist.

Not Supported HTMLB Components:
Following HTMLB components are not supported:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 158

● MenuBar

● MenuItem

● Chart

● FormLayout

● DragSource

● DropTarget

● EventValidationComponent

● EventValidationContainer

● JavaScriptFragment

● PopupTrigger

● RoadMap

● RoadMapItem

3.1.2.1.3.1.1 XHTMLB Specification
XHTMLB is XML based format for creating HTMLB documents using the
XHTMLBTransformer [Page 33]. To creating XHTMLB documents you need knowledge of
HTMLB [Page 33].

HTMLB Components Declaration
Every node in XHTMLB is equivalent to an HTMLB component. Every attribute of an XHTMLB
element is equivalent to a call of a set method, where the name of the attribute is the name of
the method and the attribute value is the method parameter.

The text in the XML node is added to the component by using the method setText() or
setValue(). If the current component is an HTMLB container, the method addText will be
called. The last text node is used as the value.

Example of an XHTMLB node:

The following statement will create an HTMLB button component with the text My
button and with the value MyEventValue that will be sent when clicking on the
button (OnClick event).

<Button id="testButton" OnClick="MyEventValue">My
button</Button>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 159

Example for multiple text nodes:
<TextView Wrapping="true">
 This text will be overwritten
 <parameter
 name="Design"
 value="LABEL"
 class="enum.TextViewDesign" />
 This text will appear in the TextView component
</TextView>

Parameters Declaration
Declaring parameters has the following reasons:

● Calling a method on the current component that has a static input field value.

● Adding key/value pair to the current component (when needed).

To call a method that requests a static value from a class (like enumerated values), add the
element named parameter with the following attributes:

● Name

The name of the method without the “set” or “add” prefix.

● class

The name of the class.

● package

The name of the package (default package name is com.sapportals.htmlb)

● value

The name of the static member that will be inserted to the method.

Example for calling a method with a static field of a class as a value:
The following example generates an HTMLB TextView component. The method
setDesign() will be called with
com.sapportals.htmlb.enumTextViewDesign.LABEL class as parameter. The
method setLayout() will be called with
com.sapportals.htmlb.enumTextViewLayout.BLOCK class as parameter.
<TextView
 Wrapping="true">
 <parameter
 name="Design"
 value="LABEL"
 class="enum.TextViewDesign" />
 <parameter
 name="Layout"
 value="BLOCK"
 class="enum.TextViewLayout" />
 Some text with label design and block layout
</TextView>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 160

Example for calling a method with a key/value parameter:
The key/value pair parameter is used for HTMLB components that have a slection list, like
ListBox, DropDownListBox, ToolbarDropDownListBox and BreadCrumb.
<DropdownListBox id="Dropdown1"
 width="120" text="Dropdown">
 <parameter
 key="Item1"
 value="Value one"/>
 <parameter
 key="Item2"
 value="Value two"/>
</DropdownListBox>

HTML Tags
HTML tags will be added to the current HTMLB container. HTMLB components cannot be
placed in HTML tags; once an HTML tag is defined all its children will be HTML elements as
well.

Example:
In this example the HTML span tag and its children will be added to the HTMLB Group
container.
<Group>
 <ButtonRow>
 <Button
 id="tst7"
 width="100">Test1</Button>
 <Button
 id="tst8"
 width="100">Test2</Button>
 </ButtonRow>

 HTML Link

</Group>

Creating XHTMLB Tables
XHTMLB table are created by using a TableView element with a JCOTableViewModel or
DefaultTableViewModel. The models can have TableColumn elements and TableRow
elements. TableRow elements are no HTMLB components and can have TableCell elements
which are also no HTMLB components.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 161

Example:
TableView ...>
 <JCOTableViewModel ...>
 <TableColumn index="0" name="FirstRow" ...>
 </TableColumn>
 <TableColumn index="1" name="SecondRow" ...>
 </TableColumn>
 <TableRow ...>
 <TableCell>Row one col one</TableCell>
 <TableCell>Row one col two</TableCell>
 </TableRow>
 <TableRow>
 <TableCell>Row two col ones</TableCell>
 <TableCell>Row two col two</TableCell>
 </TableRow>
 <TableRow>
 </TableRow>
 ...
 </JCOTableViewModel>
</TableView>

TableView Element
The TableView element can have all the set methods (XHTMLB attributes and parameter
elements) like any other HTMLB element except the following:

● setModel

It is used to insert the TableViewModel by parameter. When the model attribute is set
for a TableView element, the value must point to a parameter inserted to the XHTMLB
transformer with an object inherited from TableViewModel.

● CellRenderer

XHTMLB supports self defined cell renderers. The cell render object must inherit from
com.sap.portal.transformationservice.xhtmlb.IXHTMLBCellRenderer.
If no cell renderer is defined, the data will be treated as raw data. The definition can be
done by adding a parameter element to the TableView element with the class definition
in the class and package attribute or with the name of the external property in the value
attribute. Only one cell renderer can be defined for a table, the last one specified will be
used. To use a self defined renderer the cell must have the attribute
useRenderer="true".

Example:
<TableView id="TestTable" width="400">
 <parameter name="CellRenderer"
 package="com.sap.portal.httpconnectivity.transformationservice"
 class="xhtmlb.DefaultXHTMLBCellRenderer" />
 …
 <TableRow selectRow="true">
 <TableCell>http://www.cnn.com</TableCell>
 <TableCell useRenderer="true">
 <![CDATA[<div style="font-size:x-small">
 google
 </div>]]>
 </TableCell>
 </TableRow>
</TableView>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 162

● Row specific methods must be defined in the TableRow element.

● Cell specified methods must be defined in the TableCell element. The cell methods get
the row index, cell index and a value to set.

JCOTableViewModer/DefaultTableViewModel Elements
A model can have no attributes and parameters.

TableColumn Element
Supports all the set methods of the HTMLB TableColumn component. Every table column
must have an index (starting from 0) and a name. A TableColumn element has no child
elements.

TableRow Element
The TableRow element has no corresponding HTMLB component. It is used to wrap the
content of a table row. It can receive all the methods related to rows. Row methods are:

● selectRow

● setOnRowSelection

● setRowSelectable

● setRowVAlignment.

TableCell Element
The TableCell element has no corresponding HTMLB component. It holds the actual data of
the cell and has all “set” methods attributes of the TableView component that refers to cells.
These methods take row index, column index and value to set. Cell methods are:

● setCellDisabled

● setCellHAlignment

● setCellInvalid

● setCellType

● setCellVAlignment

● setColspanForCell

● setRowspanForCell

● setStyleForCell.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 163

Table Toolbar
The Table Toolbar element must be declared before the starting the declaration of the
TableView. The connection is done by assigning the Id to the toolbar element and adding the
attribute toolbar="<toolbar element ID>" to the TableView element.

TableView Limitations:
Following limitations apply to the TableView:

● Cells cannot have child elements. As a result, no HTMLB component can be a child of
a table cell.

● All the table columns must be defined before the table rows.

● Sorting of columns is not supported by default.

Examples
Example using a GridLayout component [Page 33].

Example using a TableView component [Page 33].

XHTMLB Differences to HTMLB Components
Following components have a different behaviour:

● GridLayoutCell

All elements must have row and column attribute with an integer value starting at 1.
See the GridLayout example [Page 33] for more details.

● Group

To define a group child element as header component, add the attribute
isHeaderComponent = "true" to the child element.

● ItemList

Each component in the list can set its bullet image URL by adding the attribute
bulletURI="<bullet URL>" and set the bullet style by adding the attribute
style="<style parameters".

● TableView

TableView and its related components are defined completely different than in HTMLB.
Refer to the TableView example [Page 33] for more details.

● TabStripItem

To set a TabStripItem child element as header component, add the attribute
isHeader="true" to the child element. Other child elements will be inserted to the
body of the TabStripItem by the order they are specified.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 164

Not Supported HTMLB Components
Following HTMLB components are not supported:

● MenuBar

● MenuItem

● Chart

● FormLayout

● DragSource

● DropTarget

● EventValidationComponent

● EventValidationContainer

● JavaScriptFragment

● PopupTrigger

● RoadMap

● RoadMapItem

3.1.2.1.3.1.1.1 XHTMLB GridLayout Example
Example places different HTMLB components in a GridLayout:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 165

<?xml version="1.0"?>
<GridLayout>
 <GridLayoutCell id="cell1" row="1" column="1" width="100" height="100">
 <ButtonRow>
 <Button id="tst1" width="100">Test1</Button>
 <Button id="tst2" width="100">Test2</Button>
 </ButtonRow>
 </GridLayoutCell>
 <GridLayoutCell id="cell2" row="1" column="2" width="100" height="100">
 <Tray>
 <ButtonRow>
 <Button id="tst3" width="100">Test4</Button>
 <Button id="tst4" width="100">Test5</Button>
 </ButtonRow>
 <DropdownListBox id="Dropdown1" width="120" text="Dropdown">
 <parameter key="Item1" value="Value one"/>
 <parameter key="Item2" value="Value two"/>
 </DropdownListBox>
 </Tray>
 </GridLayoutCell>
 <GridLayoutCell id="cell3" row="2" column="1" width="100" height="100">
 <ItemList>
 <Group tooltip="group one tooltip">
 <Button isHeaderComponent="true" id="tst6" width="100">Test5</Button>
 HTML Link
 </Group>
 <Group>
 <ButtonRow>
 <Button id="tst7" width="100">Test1</Button>
 <Button id="tst8" width="100">Test2</Button>
 </ButtonRow>
 HTML Link
 </Group>
 </ItemList>
 </GridLayoutCell>
 <GridLayoutCell id="cell3" row="3" column="1" width="100" height="100">
 <Tree id="Tree1">
 <TreeNode id="Node1" Text="Node 1 text">
 <TreeNode id="Node3" Text="Node 2 text">
 <TreeNode id="Node2" Text="Node 3 text">
 <Button id="tst9" width="100">Test2</Button>
 </TreeNode>
 </TreeNode>
 <TreeNode id="Node4" Text="Node 4 text"/>
 </TreeNode>
 </Tree>
 </GridLayoutCell>
 <GridLayoutCell id="cell4" row="3" column="2" Width="100%" height="100">
 <FlowLayout>
 <CheckboxGroup id="CheckboxGroup1" ColumnCount="6">
 <Checkbox id="Checkbox1" value="Checkbox one"/>
 <Checkbox id="Checkbox2" value="Checkbox two"/>
 <Checkbox id="Checkbox2" value="Checkbox three"/>
 </CheckboxGroup>
 <TextView Labeled="true" Text="Test Text"/>
 </FlowLayout>
 </GridLayoutCell>
 <GridLayoutCell id="cell5" row="4" column="1" width="100" height="100">
 <FlowLayout>
 <RadioButtonGroup id="RadioGroup1" key="TestRadio" ColumnCount="10">
 <RadioButton id="Radio1" key="TestRadio0" selected="true">
 <InputField sid="Input0" value="test input2"/>
 </RadioButton>
 <RadioButton id="Radio2" key="TestRadio1"
 text="Radio two" Labelled="true">
 </RadioButton>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 166

Result

3.1.2.1.3.1.1.2 XHTMLB TableView Example
Example using a TableView and a JCOTableView model:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 167

<?xml version="1.0"?>
<FlowLayout>
 <Toolbar id="TestTableToolbar">
 <ToolbarDropDownListBox id="tbrLstBox">
 <parameter key="TestVal1" value="Toolbar 1"/>
 <parameter key="TestVal2" value="Toolbar 2"/>
 </ToolbarDropDownListBox>
 <ToolbarSeparator/>
 <ToolbarInputField id="tbrInpFld" value="Toolbar input field"/>
 <ToolbarSeparator/>
 <ToolbarButton id="tbrBttn" text="Set" value="SomeValue"/>
 </Toolbar>
 <TableView id="TestTable" width="400"
 Summary="Table summary" footerVisible="true"
 VisibleFirstRow="5" VisibleRowCount="4"
 OnNavigate="NavigateTestTable" HeaderText="Test Table"
 OnHeaderClick="DoClicked" toolbar="TestTableToolbar">
 <parameter name="CellRenderer"
 package="com.sap.portal.httpconnectivity.transformationservice"
 class="xhtmlb.XHTMLBCellRenderer"/>
 <parameter name="NavigationMode" value="BYLINE"
 class="enum.TableNavigationMode"/>
 <parameter name="Design" value="ALTERNATING"
 class="enum.TableViewDesign"/>
 <parameter name="SelectionMode" value="SINGLESELECT"
 class="enum.TableSelectionMode"/>
 <JCOTableViewModel>
 <TableColumn index="0" name="FirstRow" title="First Row"
 LinkClickTarget="_blank" LinkColumnKey="FirstRow"
 TooltipForColumnHeader="First row tooltip">
 <parameter name="Type" value="LINK" class="enum.TableColumnType"/>
 </TableColumn>
 <TableColumn index="1" name="SecondRow" title="Second Row"
 CellsDragable="true">
 <parameter name="Type" value="BUTTON" class="enum.TableColumnType"/>
 </TableColumn>
 <TableColumn index="2" name="ThirdRow" title="Third Row">
 <parameter name="Type" value="INPUT" class="enum.TableColumnType"/>
 <parameter name="DropTargetDesign" value="BORDERED"
 class="enum.DropTargetDesign"/>
 </TableColumn>
 <TableColumn index="3" name="4Row" title="4 Row" OnDrop="DropOnRow4"
 Width="400" LinkClickTarget="_blank" LinkColumnKey="4Row">
 <parameter name="Type" value="TEXT" class="enum.TableColumnType"/>
 <parameter name="DropTargetDesign" value="UNDERLINED"
 class="enum.DropTargetDesign"/>
 </TableColumn>
 <TableRow>
 <TableCell>Row one col one</TableCell>
 <TableCell>Row one col two</TableCell>
 <TableCell>Row one col three</TableCell>
 <TableCell>Row one col three</TableCell>
 </TableRow>
 <TableRow>
 <TableCell>Row two col ones</TableCell>
 <TableCell>Row two col two</TableCell>
 <TableCell colspanForCell="2">Row two col three</TableCell>
 </TableRow>
 <TableRow selectRow="true">
 <TableCell>http://www.cnn.com</TableCell>
 <TableCell>Row 3 col two</TableCell>
 <TableCell>Row 3 col three</TableCell>
 <TableCell useRenderer="true">
 <![CDATA[<div style="font-size:x-small">
 google
 </div>]]>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 168

Result

3.1.2.1.3.2 RSS Transformer
Transforms RSS documents to XHTMLB.

Attribute Value

Name RSS_TO_XHTMLB

Version 1.0

From
scheme

RSS

URI: http://purl.org/rss/1.0/

With Dublin-Core URI: http://purl.org/dc/elements/1.1/

Definitions of items and in RDF format of RSS feeds URI:
http://www.w3.org/1999/02/22-rdf-syntax-ns#).

To scheme XHTMLB

Parameters
Following parameters are available:

Parameter Type (Default value) Description

LinksTarget String (_RSSItemWindow) Define the target frame of the links in the
RSS.

ShowDatesMode String (ITEMS_ONLY) Define the type of dates that will be
rendered.

Possible values are:

● MAIN_ONLY

Only the feed update date will be
shown.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 169

● ALL

All dates will be shown

● ITEMS_ONLY

Only the item dates will be shown.

ShowTime xs:boolean (true) Specified if the time of every item should
be displayed.

The date displayed is affected by the
ShowDatesMode parameter.

GroupByDate xs:boolean (true) Specified if groups according to the item
dates should be created.

When ShowDatesMode is set to
MAIN_ONLY this parameter has no affect.

DateFormat String
(EEEE, MMM dd, yyyy)

Defines the output format of the date. The
syntax is defined in
java.text.SimpleDateFormat class
documentation of the JDK.

The actual formatting is done using the
object supplied in by xslDateFormatter
parameter.

TimeFormat String
(HH:mm:ss a)

Defines the output format of the time. The
syntax is defined in the
java.text.SimpleDateFormat class
documentation of the JDK.

The actual formatting is done using the
object supplied in by xslDateFormatter
parameter.

xslDateFormatter com.sap.portal.httpconnectivity.
transformationservice.xslextensions.
XSLDateFormatter
(an instance of the class)

A parameter holding the class that formats
the input date string according to the output
date/time formats.

ScrollHeight Integer (300) The height of the scroll area of the items
list.

3.1.2.1.3.3 Busdoc Transformer
Transforms Busdoc XML files to XHTMLB. The transformer supports all the data set types
(HRField, HRScript, HRFreeText and HRRow). It also supports navigation within the table
view of the data. HRNP links and the Drag & Relate feature are not supported.

Attribute Value

Name BUSDOC_TO_HTMLB

Version 1.0

From scheme Busdoc

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 170

To scheme XHTMLB

Parameters
Following parameters are available:

Parameter Type (Default value) Description

RenderDataAsHtml Boolean (true) Specifies if the table data is rendered as HTML or
plain data.

VisibleRowsCount Integer (10) Specifies the number of visible rows in the table.

3.1.2.1.4 XSLDateFormatter
The XSLDateFormatter is an extension to the XSL standard. It converts date and time into a
defined output format.

XSLDateFormatter class name:

com.sap.portal.httpconnectivity.transformationservice.xslextensions.XSLDateFormatter
.

The class has following method:

public static String formatDate(String date, String format)

It formats the specified date according to the specified parameter. The date format follow the
specifications of class java.text.SimpleDateFormat that can be found in JDK
documentation. The specified date must have one of the following formats:

● “EEE, dd MMM yyyy kk:mm:ss z”

Example: Wed, 03 Dec 2003 07:10:05 GMT

● “yyyy-MM-dd'T'kk:mm-ss:SS”

Example: 2004-02-03T20:53-08:00

● “yyyy-MM-dd'T'kk:mm:ss”

Example: 2004-01-12T01:37:54-400

Example
This example is taken from the RSS_TO_HTMLB transformer and is used to normalize the
date formats.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 171

<?xml version="1.0"?>
<xsl:stylesheet
 version="1.0" ...
 xmlns:transDate="com.sap.portal.httpconnectivity.transformationservice.
 xslextensions.XSLDateFormatter"
 >
…
 <xsl:template match="*" mode="EPRSS:Date">
 <xsl:variable name="DateStr"><xsl:value-of select="."/></xsl:variable>
 <xsl:value-of name="formatted"
 select="transDate:formatDate($DateStr,$TimeFormat)"/>
 </xsl:template>
…

3.1.2.2 Displaying External XML-Based Content
This section describes how to integrate and display XML-based third-party content in the
portal.

This section is intended for third-party content providers who want to create
business packages of iViews that can display their content in the portal.

Purpose
Third-party content providers supply a variety of information, such as news headlines,
weather reports, market data and industry-specific reports. Generally, this content is available
on the web in XML format via simple HTTP requests or SOAP messages.

The portal’s content provider framework enables you to easily create business packages of
iViews, pages and worksets that will display this content in the portal. The framework works
with both HTTP requests and SOAP messages, and helps you either create the proper URL
or SOAP message for each XML source.

The portal already provides an XML iView template that enables you to specify an XML
source URL and a transformer. The XML iView can then render the content. The framework
extends this capability by providing:

● Portal components that transform and render XML content retrieved via SOAP

● Dynamic creation of URLs for content retrieved via HTTP

● Administration and personalization of parameters

● Linking between content provider iViews

● Dynamic authentication parameters, such as user name and password

● Basic Drag&Relate

This section describes the following:

● Architecture [Page 33]: Provides background information on the content provider
framework.

● How to Build a Content Provider [Page 33]: Describes how to use the content provider
framework API to build a content provider.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 172

● Essential Information [Page 33]: The portalapp.xml configuration and the JAR files for
working with the content provider framework.

Implementation Considerations
For content providers with simple XML sources retrieved via HTTP requests that do not need
to set parameters at runtime, it may be simpler to use XML iViews.

For more information, see the SAP NetWeaver documentation on the Help Portal
(http://help.sap.com) → SAP NetWeaver → People Integration → Portal → Administration
Guide → Content Administration → iViews → Creating iViews → Creating XML iViews
[External].

Constraints
With the content provider framework, headers cannot be set using HTTP connectivity.
Headers can be set with SOAP connectivity.

There is no default mechanism for caching SOAP responses.

3.1.2.2.1 Architecture
The content provider architecture is composed of the following layers:

Content Provider
Framework

XML iView

Transformation

Connectivity HTTP
Connectivity

SOAP
Connectivity

Transformation
Service Providers FW

XML iView

Content Provider
Code

Transformation
Provider

Configuration
Files

To be implemented
by content provider

Content Provider
iView

Abstract
Implementations

Content Provider
Utility Service

● Connectivity: Built-in portal and J2EE services that provide HTTP and SOAP

connectivity.

● Transformation: A built-in portal service that enables XML transformations. The portal
provides several generic transformers. This layer provides a framework to enable
developers to package and deploy their own transformers, either XSL stylesheets or
SAX handler classes.

● XML iView: A built-in portal component that transforms and renders XML content with
the help of the transformation service.

● Content Provider Framework: A built-in set of portal classes that enables content
providers to write code to render their content in the portal. The framework provides the
following components:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 173

○ Content Provider iView: A portal component, based on the XML iView
component, that can render XML content in the portal.

○ Abstract Implementations: A set of classes that provides default
implementations for most of the classes that a content provider must implement.

○ Content Provider Utility Service: A service that helps create or initialize helper
objects for a default implementation of a content provider. For example, this
service can create a default source properties handler, the object that manages
parameters for HTTP and SOAP requests for XML sources.

For information on this service, see Content Provider Utility Service [Page 33].

● Proprietary Content Provider Implementation: The code that a content provider
must write in order to create iViews that display its content.

3.1.2.2.1.1 Content Provider Objects
To display XML content in the portal using the content provider framework, you must create
the following content provider objects:

● Service: Represents a content provider, and is responsible for initializing the
connection, creating entities and authentication.

● Entity: Represents a single XML source from a content provider. A content provider
generally provides a number of XML sources, for example, one for news headlines and
another for weather.

● Authentication Manager (HTTP only): Handles HTTP authentication parameters.

● SOAP Message Processor (SOAP only): Processors SOAP request messages just
before they are sent and response messages just after they are received. The
processor can also modify a response message when an error occurs.

● Portal Component: Requests XML from an entity, and then transforms and renders
the content.

You must also provide, in your PAR file, XML transformers for each XML source. For more
information, see Transformation Service [Page 33].

3.1.2.2.1.2 What Happens During Runtime?
The following diagram describes the runtime process that occurs when a user selects a
content provider iView, triggering a call to the doContent() method of the iView’s portal
component:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 174

The following describes the major steps shown in the diagram above:
...

1. A content provider iView obtains an instance of the content provider service.

The provider service is specified by the com.sap.portal.cp.CP_SERVICE_KEY
property for the iView’s portal component in portalapp.xml.

a. The first time the service is loaded, the service’s init() method is called (like
all services). This method can be used to initialize authentication, check the
HTTP connection or load a license.

2. The content provider iView calls the content provider service’s
getProviderEntity() method in order to get the provider entity for this iView.

The content provider iView sends as a parameter the type of entity, which is equal to
the com.sap.portal.cp.CP_ENTITY_KEY property for the iView’s portal component
in portalapp.xml.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 175

3. The content provider service obtains an instance of the appropriate content provider
entity, calls the entity’s setSourcePropertiesHandler() and doInit() methods,
and returns the entity to the content provider iView.

setSourcePropertiesHandler() sets the entity’s properties handler
(ISourcePropertiesHandler), which determines how to retrieve parameter values
for use with the HTTP or SOAP request. Generally, you can create the default
implementation of the ISourcePropertiesHandler object with the help of the
content provider utility service.

doInit() performs any necessary initialization for the entity, including setting the
entity’s request object.

4. The content provider iView calls the entity’s getSource() method, which returns a
javax.xml.transform.Source object. This object contains the information needed
for making the request to the content provider and getting an XML source.

This is the key step for retrieving the XML source. The required tasks performed by this
method are different for HTTP and SOAP entities, and are explained in more detail in
getSource() Method (HTTP) [Page 33] and getSource() Method (SOAP) [Page 33].

5. The content provider iView calls the entity’s getTransformerKeys() and
getEntityTransformerParams() methods to get information about the
transformation provider and transformer for this entity.

The transformer for the entity is specified by the
com.sap.portal.cp.TRANSFORMER_NAME property for the iView’s portal
component in portalapp.xml.

6. The content provider iView transforms the XML and renders the content.

3.1.2.2.1.2.1 getSource() Method (HTTP)
The following diagram describes the runtime process that occurs in the getSource()
method of HTTP entities:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 176

In the above process, you are required only to implement getSourceURL(), which creates
the URL for retrieving the XML content.

3.1.2.2.1.2.2 getSource() Method (SOAP)
The following diagram describes the runtime process that occurs in the getSource()
method of SOAP entities:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 177

In the above process, you are required only to implement createRequestMessage(),
which creates the SOAP message for retrieving the XML content.

The processFaultMessage() is called only if a fault occurs.

3.1.2.2.1.3 Parameter Handling
One of the key features of the content provider framework is that it simplifies the setting of
parameters that are used to create the HTTP or SOAP request that retrieves the XML
content.

When a parameter can be retrieved from several sources, a mechanism must be created to
retrieve the value from the correct location. The ISourcePropertiesHandler interface
provides this mechanism. Each HTTP and SOAP entity is assigned an
ISourcePropertiesHandler object to handle the retrieval of its parameters.

You can create an ISourcePropertiesHandler object with the default implementation
with the help of the content provider utility service. This default implementation searches for
parameter values in the following order:
...

1. Drag&Relate value

2. Request query string

3. Page Context

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 178

4. Personalized value

5. Value defined in iView

6. Value defined in portal component (portalapp.xml)

For more information on where these parameters are set and how the parameters are
retrieved, see Parameters and Constants [Page 33].

3.1.2.2.1.4 Linking iViews
The content provider framework helps you create links between your content provider iViews.
To create a link from one iView to another, pass to the transformer of your first iView the URL
of the portal component of your second iView. The transformer can then add parameters to
the URL, for example, a story ID, and create the complete link.

You can create the URL to a portal component with the following code:
IPortalComponentURI componentURI =
request.createPortalComponentURI();

componentURI.setContextName(m_serviceContext.getApplicationName()
 + "." + "NameOfPortalComponent");

myUrl = componentURI.toString();

In the example above, the first line creates an IPortalComponentURI object from the
request object.

The second line gets the URL for the portal component called NameOfPortalComponent
located within the PAR that contains your content provider service. This PAR should also
contain all your content provider portal components.

The third line converts the URL to a string and stores it in the variable myURL, which you can
pass to the transformer for the current entity. To pass parameters to an entity’s transformer,
implement the getGeneralParameters() or getEntityTransformerParams()
method in the entity class.

3.1.2.2.1.5 Content Provider Utility Service
The content provider framework provides a utility for creating helper objects that are required
by the default implementation of a content provider. The following code retrieves the service:
IContentProvidersUtilsService utilsService =
 (IContentProvidersUtilsService)
 m_context.getService(IContentProvidersUtilsService.KEY);

You can also retrieve the utility service by calling the getUtilsService() method of the
AbstractContentProviderService class.

The utility service can create instances of the default implementation of the following
interfaces:

● ISourcePropertiesHandler: Retrieves property values, and sets the order of
lookup when the value can be obtained from several sources.

● IContextWrapper: Handles events in the HTMLB page context for the current
request. This object is used for creating a source properties handler.

● IDataHandler: Handles properties for an entity’s corresponding portal component.
This object is used for creating a source properties handler.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 179

● IProviderDetails: Holds information about the content provider service. The utility
creates an empty object.

3.1.2.2.2 How to Build a Content Provider
A content provider is a PAR with the following parts:

● Content Provider Service: A Java class that implements
IContentProviderService, whose main task is to create the entities for this
content provider.

For HTTP connectivity, you may also need to create a class that implements
IHTTPAuthenticationManager in order to provide authentication information (for
example, user name and password) for the connection.

For SOAP connectivity, you may also need to create a class that implements
ISOAPMessageProcessor in order to process SOAP messages before they are sent
and after they are received.

● Content Provider Entity: A Java class that implements IContentProviderEntity
and ITransformationProviderEntity, whose main task is to create the URL for
the HTTP request or the message for the SOAP request that retrieves the XML source.
A content provider generally has many entities, and one Java class may provide the
implementation for more than one entity.

You can create HTTP and SOAP entities for the same provider.

● Entity Transformer: An XSL file or SAX handler class that transforms the XML for
rendering in an iView. Each entity must be assigned a transformer.

● Entity Portal Component: A portal component that can issue a HTTP or SOAP
request, retrieve an XML source, transform the XML and render the information in the
portal. Each entity must be assigned to an entity portal component.

You do not have to write any Java code to create an entity portal component. Your
portal components are simply derived from the portal component defined in
com.sap.portal.contentproviders.runtime.ContentProvidersComponen
t, and you create them simply by adding a <component> element in
portalapp.xml.

The PAR file can contain any number of entities, transformers and portal components.
However, for each XML data source provided by the content provider, you must assign one
entity, one transformer and one component.

Workflow
The following are the steps required for creating a content provider:
...

1. Create a Content Provider Service [Page 33]

2. Create Content Provider Entities [Page 33]

3. Create Entity Portal Components [Page 33]

4. Create Entity Transformers [Page 33]

5. Create a Business Package (.sda file) [Page 33]

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 180

Prerequisites
● You have created a skeleton portal application project, with at least the following

folders and files:

In Developer Studio, you can create the project in the usual way: Select New →
Project, and then select Portal Application → Create a Portal Application Project. After
the wizard creates the basic skeleton, add the folders that will hold the XML
transformers (the xml folder and subfolders), as shown above.

For more information on the directory structure required for XML transformers, see
Transformation Service [Page 33].

● You understand how to create XML transformers. The XML transformers that are to be
used with this content provider implementation are defined in the same PAR that
defines the content provider implementation.

For more information, see Transformation Service [Page 33].

● You understand how to create SOAP requests. The content provider framework uses
standard Java classes for handling SOAP.

● The third-party content is in XML format and is exposed via the web, either via HTTP or
SOAP requests.

The content provider framework is shipped with the portal as of SAP Enterprise
Portal SP Stack 12.

3.1.2.2.2.1 Step 1: Creating a Content Provider Service
The content provider service represents the third-party content provider. This service is
responsible for initializing the connection to the provider, defining authentication parameters,
and creating provider entities.

All content provider services implement IContentProviderService. The content provider
framework includes an AbstractContentProviderService class, which implements all
required methods except for getProviderEntity(), which you must implement.

In the following procedure, the variable context is the generic IServiceContext object
for the current service.

Procedure
...

1. Create a new class that extends AbstractContentProviderService.

2. If necessary, override the provider service’s init() method in order to handle such
tasks as initializing authentication, checking the connection or loading a license.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 181

For example, the following creates a new HTTP authentication manager and stores it in
a local variable in the service class. The authentication manager is then available to be
assigned to the entity created in the getProviderEntity() method.

super.init(context);
mm_authManger = new myCPAuthenticationManager(context);

For more information on authentication managers, see Creating an Authentication
Manager [Page 33].

3. Implement the getProviderEntity() method, which serves as a factory for all
entity objects for this content provider.

In this method, do the following:

○ Create an IDataHandler object with the help of the content provider utility
service, which you can obtain from the getUtilsService() method of the
AbstractContentProviderService class.

IDataHandler dataHandler = getUtilsService().createDataHandler(
 request, context);

○ Obtain (or, if necessary, create) the appropriate entity based on the
ProviderEntityType parameter passed into the method.

In the following implementation, an instance of myCPSearchEntity is created
if the entity type is SEARCH. Otherwise, an instance of myCPEntity is created.
(myCPEntity can be the implementation for different entities because, with the
same getSourceURL() method, it can return different URL strings based on
the entity type).

myCPEntity res = null;
if(providerEntityType.equals(ProviderEntityType.SEARCH))
{
 res = new myCPSearchEntity(m_context,dataHandler);
}
else if(providerEntityType.equals(ProviderEntityType.STORY)
 || providerEntityType.equals(ProviderEntityType.COMPANY)
 || providerEntityType.equals(ProviderEntityType.HEADLINE)
 || providerEntityType.getValue().equals(IConstants.STOCK_ENTITY_KEY)
 || providerEntityType.getValue().equals(IConstants.CHARTS_ENTITY_KEY)
 ||
providerEntityType.getValue().equals(IConstants.FINANCE_ENTITY_KEY)
 ||
providerEntityType.getValue().equals(IConstants.WEATHER_ENTITY_KEY)
 ||
providerEntityType.getValue().equals(IConstants.FORECAST_ENTITY_KEY))
{
 res = new myCPEntity(providerEntityType,m_context,dataHandler);
}

if(res == null)
{
 throw new ContentProviderException("Cannot
 create provider entity: "+providerEntityType);
}

○ Create a default properties handler and make this object the properties handler
for the entity.

IContextWrapper myCPContextHandler =
 getUtilsService().createContextWrapper(context);

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 182

ISourcePropertiesHandler propsHndlr =
 getUtilsService().createSourcePropertiesHandler(
 request,dataHandler,myCPContextHandler);

res.setSourcePropertiesHandler(propsHndlr);

○ For HTTP connectivity, set the authentication manager for the entity to the
service’s authentication manager. You should initialize the authentication
manager in the provider service’s init() method.

res.setHTTPAuthenticatorManager(mm_authManger);

○ For SOAP connectivity, set the message processor for the entity. For more
information on creating a SOAP message processor, see Creating a SOAP
Message Processor [External].

res.setMessageProcessor(new MyMessageProcessor());

○ Call the entity’s doInit() method, and then return the entity.
res.doInit(request);
return res;

4. Create a service entry in portalapp.xml for the provider service, similar to the one
shown below:

<service name="ContentProvider">
 <service-config>
 <property name="className" value="com.sap.portal.myCP.myCPService"/>
 <property name="startup" value="false"/>
 <property name="SafetyLevel" value="high_safety"/>
 </service-config>
 <service-profile>
 <property name="com.sap.portal.cp.PROVIDER_SITE"
 value="http://www.myCP.com"/>
 <property name="com.sap.portal.cp.PROVIDER_ICON"
 value="http://www.myCP.com/logobar.gif"/>
 <property name="com.sap.portal.cp.PROVIDER_VERSION" value="1.0"/>
 <property name="com.sap.portal.cp.PROVIDER_NAME" value="myCP"/>
 <property name="com.sap.portal.cp.BASE_URL"
value="http://myCP.com/api"/>
 </service-profile>
</service>

The <service> element for the content provider service is similar to the <service>
element for any service. It defines the name of the service in the element’s name
attribute.

In the <service> element, add a <service-config> element, as you would for
any service. In this element, add the following property elements:

○ className: The name of your class that implements the provider service.

○ startup: Set to false, indicating not to start this service at portal startup.

○ SafetyLevel: Set to high_safety. This is the service’s security zone safety
level.

In the <service> element, also add a <service-profile> element, as you would
for any service. In this section, add the following property elements:

○ Information about the content provider service, as defined in the
IProviderDetails interface:

■ com.sap.portal.cp.PROVIDER_SITE: The main web site of the
content provider

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 183

■ com.sap.portal.cp.PROVIDER_ICON: The URL of the content
provider’s logo

■ com.sap.portal.cp.PROVIDER_VERSION: The version of the content
provider

■ com.sap.portal.cp.PROVIDER_NAME: The name of the content
provider

The default implementation of the content provider framework currently does not
make use of these properties, and you are not required to supply them in
portalapp.xml.

○ com.sap.portal.cp.BASE_URL: The base address for all XML sources for
this content provider. You do not need to use this address; however, the default
implementation loads this value into the entity’s m_baseUrl field during
initialization.

○ Any other properties that the content provider needs, for example, a default user
name and password in order to connect.

3.1.2.2.2.1.1 Creating an Authentication Manager
An authentication manager supplies the user name and password, as well as any other
parameters, for authentication during HTTP requests to the content provider.

An authentication manager is for HTTP connectivity only.

The content provider service creates an instance of the authentication manager, and supplies
it to each entity. During initialization of a HTTP connection, the entity creates an
IURLFetcherProperties object and passes it to its authentication manager, which loads
the IURLFetcherProperties object with the authentication parameters. The entity later
provides the parameters to the HTTP connectivity service.

Procedure
...

1. Create a class that implements IHTTPAuthenticationManager.

2. Implement the addAuthenticationProperties() method. In this method, supply
parameter key-value pairs to the IURLFetcherProperties object passed into the
method, as in the following example:

public class myAuthenticationManager implements IHTTPAuthenticationManager
{
 private String mm_password;
 private String mm_userName;

 public myAuthenticationManager(IServiceContext m_context)
 {
 super();
 mm_userName = m_context.getServiceProfile().getProperty(
 myContentProviderService.IConstants.USER_NAME);
 mm_password = m_context.getServiceProfile().getProperty(
 myProviderService.IConstants.PASSWORD);
 }

 public void addAuthenticationProperties(IURLFetcherProperties
properties)
 throws ContentProviderException
 {

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 184

 try
 {
 properties.getParameters().addParameter("id",mm_userName);
 properties.getParameters().addParameter("password",mm_password);
 }
 catch (InvalidParameterException e)
 {
 throw new ContentProviderException(
 "Unable to set authentication parameters",e);
 }
 }

}

In the example above, the authentication manager’s constructor retrieves the user
name and password from property values set for the content provider service in
portalapp.xml. Note that the IServiceContext passed into the constructor is that
for the provider service.

If necessary, add property elements in portalapp.xml to store the user name and
password.

3.1.2.2.2.2 Step 2: Creating Content Provider Entities
A content provider entity represents one XML source from a specific content provider. The
entity provides all the information required for making a connection with the content provider
and retrieving the specific XML source.

Several entities can be implemented by the same Java class.

There are two types of entities:

● HTTP Entity: An entity that obtains XML via an HTTP request. For information on
creating HTTP entities, see Creating HTTP Entities [Page 33].

● SOAP Entity: An entity that obtains XML via a SOAP request. For information on
creating SOAP entities, see Creating SOAP Entities [Page 33].

All entities implement the following interfaces:

● IProviderEntity: Defines the methods for getting the XML source.

● ITransformationProviderEntity: Defines the methods for getting information about
the entity’s transformer.

3.1.2.2.2.2.1 Creating HTTP Entities
The portal includes an AbstractHTTPProviderEntity class that implements all required
methods of IProviderEntity and ITransformationProviderEntity interfaces in
order to make a HTTP request.

You need, however, to implement the getSourceURL() method (from the
IHTTPProviderEntity interface, which AbstractHTTPProviderEntity also
implements). getSourceURL() returns the URL string for the HTTP request for the XML
source.

Procedure
...

1. Create a class that extends AbstractHTTPProviderEntity.

2. Implement the getSourceURL() method, which should return the URL for the HTTP
request to the XML source. The following is an example:

public String getSourceURL() throws ContentProviderException

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 185

{
 List params =
 m_sourcePropertiesHandler.getParametersValues(m_request);

 String staticUrlPart = (String) m_dataHandler.getProperty("Static");

 return m_baseUrl + staticUrlPart + "&" +
 this.convertParametersToUrl(params);
}

○ Base URL: The base URL is taken from the entity’s m_baseUrl field, which the
default implementation loads with the value set in the service’s
com.sap.portal.cp.BASE_URL property, which is defined in
portalapp.xml.

○ Static URL: The static part of the URL is taken from the value set in the entity’s
Static property, which is defined in portalapp.xml. This property is not part
of the default implementation.

○ Parameters: The URL parameters are stored in the entity’s source properties
handler (which was defined when the entity was retrieved by the provider
service in its getProviderEntity() method).

These URL parameters are listed in the com.sap.portal.cp.PARAMETERS_LIST
property in the <component> element for the entity in portalapp.xml. The default
values are defined in separate <property> elements for each parameter. For more
information on these properties, see Parameters and Constants [Page 33].

3. If necessary, override the doInit() method.

4. If necessary, override the getGeneralParameters() method. This method defines
parameters that are passed to all the transformers associated with this entity.

5. If necessary, override the getEntityTransformerParams() method. This method
can be used to pass different key-value pairs to different transformers associated with
this entity. You can determine the current transformer by examining the
ITransformerInformation object passed into the method.

3.1.2.2.2.2.2 Creating SOAP Entities
The portal includes an AbstractSOAPProviderEntity class that implements all required
methods of IProviderEntity and ITransformationProviderEntity interfaces in
order to make SOAP requests.

You need, however, to implement the createRequestMessage() method, which returns
the SOAP message as defined in the content provider’s WSDL.

Procedure
...

1. Create a class that extends AbstractSOAPProviderEntity.

2. Implement the createMessage() method, which should return a SOAP message for
retrieving the XML source. The following is an example:

protected SOAPMessage createRequestMessage()
 throws ContentProviderException, SOAPException
{
 // Create SOAP Envelope
 SOAPMessage msg = createBasicEnvelope();
 SOAPEnvelope env = msg.getSOAPPart().getEnvelope();

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 186

 SOAPBody body = env.getBody();

 // Create GetNewsstandHeadlines Element
 SOAPElement getNewsStandHlElement = body.addChildElement(
 env.createName("GetNewsstandHeadlines","",
 ICPService.CP_NS_DEV2_1_PARSERS));

 // Create sectionIDs Element
 SOAPElement sectionIdsElm =
 getNewsStandHlElement.addChildElement(
 env.createName("sectionIDs","",
 ICPService.CP_NS_DEV2_1_PARSERS));

 // Create sectionID Element
 SOAPElement sectionIDElm = sectionIdsElm.addChildElement(
 env.createName("sectionID","",
 ICPService.CP_NS_DEV2_1_PARSERS));

 // Create Section Code
 sectionIDElm.addTextNode(
 m_sourcePropertiesHandler.getParameterValue(
 m_request,"sectionCode"));

 return msg;
}

3. If necessary, override the doInit() method.

4. If necessary, override the getGeneralParameters() method. This method defines
parameters that are passed to all the transformers associated with this entity.

5. If necessary, override the getEntityTransformerParams() method. This method
can be used to pass different key-value pairs to different transformers associated with
this entity. You can determine the current transformer by examining the
ITransformerInformation object passed into the method.

3.1.2.2.2.3 Step 3: Creating Entity Portal Components
Each content provider entity needs a component that can render its content in an iView. The
content provider framework includes the ContentProvidersComponent class on which
you can base your content provider portal components.

Procedure
...

1. Add an entry in portalapp.xml that creates a portal component based on the
ContentProvidersComponent class.

The portal component is based on
com.sap.portal.contentproviders.runtime.ContentProvidersCom
ponent and you do not need to write any code for this component.

The following is an example of an entry in portalapp.xml for an entity portal
component:

<component name="CP_STORY">
 <component-config>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 187

 <property name="ClassName" value="com.sap.portal.contentproviders.
runtime.ContentProvidersComponent"/>
 <property name="SafetyLevel" value="low_safety"/>
 </component-config>
 <component-profile>
 <property name="com.sap.portal.cp.CP_SERVICE_KEY"

 value="com.sap.portal.myCP.ContentProvider"/>
 <property name="com.sap.portal.cp.ENTITY_KEY" value="CP_STORY"/>
 <property name="com.sap.portal.cp.TRANSFORMER_NAME"
value="myTrans"/>
 <property name="com.sap.portal.cp.PARAMETERS_LIST"
value="story_id"/>
 <property name="com.sap.portal.cp.parameter.story_id" value="">
 <property name="personalization" value="dialog"/>
 <property name="plainDescription" value="Story ID"/>
 </property>
 </component-profile>
</component>

The <component> element is similar to the <component> element for any portal
component. It defines the name of the service in the element’s name attribute.

In the <component> element, add a <component-config> element, as you would
for any component. In this element, add the following property elements:

○ className: The name of the class that implements the component.

○ SafetyLevel: The component’s security zone safety level, which should be
set to low_safety.

In the <component> element, add a <component-profile> element, and include
the following property elements:

○ com.sap.portal.cp.CP_SERVICE_KEY: The provider service that the
component instantiates to start the retrieval of XML content.

○ com.sap.portal.cp.ENTITY_KEY: A value representing the entity to be
used for retrieving the XML content for this component. This value is passed into
the provider service’s getProviderEntity() method, which can use the
value to determine which entity to return.

○ com.sap.portal.cp.TRANSFORMER_NAME: The name of the transformer the
component uses to transform and render the XML.

○ com.sap.portal.cp.PARAMETERS_LIST: A list of parameters for the HTTP
or SOAP request. The default value for each parameter is defined in another
property element whose name is a concatenation of
com.sap.portal.cp.parameter, a period (.) and the name of the
parameter.

For example, the default value for a parameter named ticker is defined in a
property element named com.sap.portal.cp.parameter.ticker.

○ com.sap.portal.cp.parameter.<parameterName>: The default value for
any parameter defined in the com.sap.portal.cp.PARAMETERS_LIST
property element.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 188

3.1.2.2.2.4 Step 4: Creating Transformers
For each XML source, you must create a transformer in order to render the XML data in the
content provider iView. Package the transformers in the same PAR in which you package the
content provider.

For information on creating transformers, see Transformation Service [Page 33].

Assign each transformer to its corresponding entity by adding a
com.sap.portal.cp.TRANSFORMER_NAME property for the portal component created for
the entity. The value of this property should be the name of the transformer for the entity,
which is listed in the Name property for the transformer in the Transformers.xml file.

For more information on assigning a transformer to an entity’s portal component, see Creating
Entity Portal Components [Page 33].

3.1.2.2.2.5 Step 5: Creating a Content Provider Business Package
After you create the content provider classes and configuration files, create a PAR file from
them and then a transport package (.epa file) of iViews, pages and worksets based on your
portal components. Finally, package these files into a business package (.sda file) for
delivery.

Procedure
...

1. Compile and package your content provider components into a PAR file.

2. Create iViews, pages and worksets based on your content provider portal components.

For more information on creating iViews, Pages and Worksets, go to the Help Portal at
http://help.sap.com and select Documentation → SAP NetWeaver. From the
documentation, see SAP Library → SAP NetWeaver → People Integration → Portal
→ Administration Guide → Content Administration → iViews.

3. Export your iViews, pages and worksets into a transport package (.epa file).

For more information on creating iViews, pages and worksets, go to the Help Portal at
http://help.sap.com and select Documentation → SAP NetWeaver. From the
documentation, see SAP Library → SAP NetWeaver → People Integration → Portal
→ Administration Guide → System Administration → Transport, Upload, and
Content Mirroring.

4. Create a business package (.sda) from your PAR and transport package.

For more information on creating an .sda file , see SAP Note 696084. You can access
SAP Notes on service marketplace at http://service.sap.com/notes.

3.1.2.2.2.6 Content Provider Logging and Tracing
The content provider framework includes the ContentProvidersLogger class in order to
simplify writing to the J2EE log. The class exposes one static method, getPPLogger(),
which exposes the portal platform logging interface. From this interface, you can call the
log() and trace() methods to send information to the log.

All logs created with this class are written to the following category and location:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 189

● Category: /Server

● Location: com.sap.portal.httpConnectivity.xmlIViewsRuntime

Writing to the log slows performance of the portal, so you should only log
information when you really need to.

Type of Logging
There are two target audiences for the information sent to the log:

● System Administration: System administrators should be able to see where the
problem occurred and what configuration problems exist.

This information should be logged using the log() method, as follows:

ContentProvidersLogger.getPPLogger().log("Information to
Log")

● Development Support: Development support engineers should be able to see what
actions were performed when the problem occurred.

This information should be logged using the trace() method, as follows:

ContentProvidersLogger.getPPLogger().trace ("Information to
Log")

3.1.2.2.3 Essential Information
This section provides the following information to help you create a content provider:

● portalapp.xml [Page 33]: The structure of the portalapp.xml file for this project.

● JARs and Packages [Page 33]: The packages used in this project, and the JAR files
required for compilation.

● Parameters and Constants [Page 33]: A list of parameters used in this project,
including where each is defined and referenced.

3.1.2.2.3.1 portalapp.xml
The following is a sample portalapp.xml for a content provider PAR file:
<?xml version="1.0" encoding="utf-8"?>
<application>
 <registry>
 <entry path="/runtime/transformers" type="subcontext"/>
 <entry path="runtime/transformers/com.sap.portal.contentproviders.myCP"
 name="TransformersProvider" type="service"/>
 </registry>
 <application-config>
 <property name="SharingReference" value="com.sap.portal.contentproviders"/>
 <property name="releasable" value="false"/>
 <property name="startup" value="true"/>
 <property name="Vendor" value="sap.com"/>
 <property name="SecurityArea" value="NetWeaver.Portal"/>
 </application-config>
 <components>
 <component name="CP_STORY">
 <component-config>
 <property name="ClassName"
 value="com.sap.portal.contentproviders.runtime.ContentProvidersComponent"/>
 <property name="SafetyLevel" value="low_safety"/>
 </component-config>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 190

 <component-profile>
 <property name="com.sap.portal.cp.CP_SERVICE_KEY"
 value="com.sap.portal.contentproviders.myCP.ContentProvider"/>
 <property name="com.sap.portal.cp.ENTITY_KEY" value="CP_STORY"/>
 <property name="com.sap.portal.cp.TRANSFORMER_NAME" value="STORY_TO_XHTMLB"/>
 <property name="com.sap.portal.cp.PARAMETERS_LIST" value="story_id"/>
 <property name="com.sap.portal.cp.parameter.story_id" value="">
 <property name="personalization" value="dialog"/>
 <property name="plainDescription" value="Story ID"/>
 </property>
 </component-profile>
 </component>
 </components>
 <services>
 <service name="ContentProvider">
 <service-config>
 <property name="className"
 value="com.sap.portal.contentproviders.myCP.myCPService"/>
 <property name="startup" value="false"/>
 </service-config>
 <service-profile>
 <property name="com.sap.portal.cp.PROVIDER_SITE" value="http://www.myCP.com"/>
 <property name="com.sap.portal.cp.PROVIDER_ICON"
 value="http://www.myCP.com/logobar.gif"/>
 <property name="com.sap.portal.cp.PROVIDER_VERSION" value="1.0"/>
 <property name="com.sap.portal.cp.PROVIDER_NAME" value="myCP"/>
 <property name="PROVIDER_USERNAME" value="username"/>
 <property name="PROVIDER_PASSWORD" value="password"/>
 <property name="com.sap.portal.cp.BASE_URL"
value="http://api.myCP.com/api/?"/>
 </service-profile>
 </service>
 <service name="TransformersProvider">
 <service-config>
 <property name="className"

value="com.sap.portal.contentproviders.myCP.myCPTransformersProviderService"/>
 <property name="SafetyLevel" value="no_safety"/>
 <property name="ResourceBundleName"
 value="myCPTransformersProvider_localization"/>
 <property name="startup" value="false"/>
 </service-config>
 </service>
 </services>

Registry Element
The <registry> element creates an entry in the portal registry for the transformer service
that will be used for the transformers defined in the content provider framework.

For more information, see Transformation Service [Page 33].

<registry>

 <entry path="/runtime/transformers" type="subcontext"/>

 <entry path="runtime/transformers/com.sap.portal.contentproviders.myCP"
 name="TransformersProvider" type="service"/>

 </registry>

Application Configuration Element
The <application-config> element is a standard element for all PAR files. In addition to
the standard properties for this PAR, add a reference to
com.sap.portal.contentproviders in the SharingReference property element.
 <application-config>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 191

 <property name="SharingReference"
 value="com.sap.portal.contentproviders"/>
 <property name="releasable" value="false"/>
 <property name="startup" value="true"/>
 <property name="Vendor" value="sap.com"/>
 <property name="SecurityArea" value="NetWeaver.Portal"/>
 </application-config>

Components Element
You need to create a portal component for each entity (XML source) in your project. For each
portal component that you need to create, add a <component> element in the
<components> section.

For more information on how to create each <component> section, see Step 3: Creating
Entity Portal Components [Page 33].
<component name="CP_STORY">
 <component-config>
 <property name="ClassName" value="com.sap.portal.contentproviders.
runtime.ContentProvidersComponent"/>
 </component-config>
 <component-profile>
 <property name="com.sap.portal.cp.CP_SERVICE_KEY"

 value="com.sap.portal.myCP.ContentProvider"/>
 <property name="com.sap.portal.cp.ENTITY_KEY" value="CP_STORY"/>
 <property name="com.sap.portal.cp.TRANSFORMER_NAME"
value="myTrans"/>
 <property name="com.sap.portal.cp.PARAMETERS_LIST"
value="story_id"/>
 <property name="com.sap.portal.cp.parameter.story_id" value="">
 <property name="personalization" value="dialog"/>
 <property name="plainDescription" value="Story ID"/>
 </property>
 </component-profile>
</component>

Services Element
The <services> element includes two <service> elements, one for the content provider
service and one for the transformation service.

For more information on the element for the content provider service, see Step 1: Creating a
Content Provider Service [Page 33].

For more information on the element for the transformation service, see Transformation
Service [Page 33].

3.1.2.2.3.2 JARs and Packages
This section lists the packages used in this project and the JAR files required for compilation.

Packages
● com.sap.portal.contentproviders

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 192

JAR Files
● com.sap.portal.contentprovidersapi.jar

3.1.2.2.3.3 Parameters and Constants
One of the main features of the content provider framework is that it helps manage all the
parameters that you might want to set for your service, entities and transformers.

This section summarizes the parameters and constants used in the content provider
framework:

Parameter Where to Define Where to Access

Entity
Parameters

Parameters
appended to the
URL for
accessing the
XML source for
this entity.

In portalapp.xml, in a
<property> element named
com.sap.portal.cp.
PARAMETERS_LIST in the entity’s
<component> element.

From the entity’s source
properties handler
(ISourcePropertiesHandler
object).

Entity
Drag&Drop
Parameter

In portalapp.xml, in a
<property> element named
com.sap.portal.cp.
DROP_PARAMETER_NAME in the
entity’s <component> element

The Drag&Drop parameter must be
one of the entity parameters.

Accessed directly by the content
provider portal component.

Entity Header
Parameters

For SOAP only.
HTTP requests
cannot include
headers.

In portalapp.xml, in a
<property> element named
com.sap.portal.cp.
HEADERS_LIST in the entity’s
<component> element

Accessed directly by the content
provider portal component.

Other Entity
Parameters

In portalapp.xml, in <property>
element in entity’s <component>
element.

From the entity’s data handler
(IDataHandler object).

Content Provider
Service
Parameters

In portalapp.xml, in <property>
element in service’s <service>
element.

● Get the service context.

● Get the service profile by
calling the service
context’s
getServiceProfile()
method.

● Get the parameter by
calling profile’s
getProperty()
method.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 193

Transformer
Parameters
(all transformers)

Parameters for
all transformers
associated with
an entity.

Override the entity’s
getGeneralParameters()
method, which returns a Map object of
parameter names and values. Add the
required parameters to this map.

From within the XSL transformer
for this entity.

For example, you can define the
parameter:

<xsl:param
 name="BaseUrl"/>

and then refer to it:

<xsl:value-of
 select="$BaseUrl"/>

Transformer
Parameters
(specific
transformer)

Parameters for a
specific
transformer
associated with
an entity.

Override the entity’s
getEntityTransformerParams()
method, which returns a Map object of
parameter names and values.

Return different key-value pairs for
different transformers associated with
this entity by examining the
ITranformaterInformation
object passed into the method.

Same as above.

Transformer
Resource
Bundle

Constants used
by all
transformers for
the content
provider.

In the resource bundle located in the
/dist/PORTAL-INF/
private/classes folder of the PAR.

The name of the resource bundle is
defined in the <property> element
named ResourceBundleName in the
transformation service’s
<service-config> element.

From within the XSL transformer
for this entity.

For example:
<xsl:value-of select=
 "resBundle:getString(
 $ResourceBundle,
 'STORY_TITLE')" />

3.1.3 Creating Administration Interfaces
The portal provides tools for building administration interfaces that enable portal
administrators to create and edit portal content.

For example, you can build a portal component and create a wizard that guides
administrators when they want to create a portal object based on the portal component. You
can also create an editor that makes it easier for administrators to edit existing portal objects
based on the component.

This section describes the following:

● Creating Wizards [Page 33]

● Creating PCM Wizards [Page 33]

● Creating Editors [Page 33]

3.1.3.1 Creating Wizards
This section describes how to use the wizard framework to create wizards for creating portal
objects in the PCD.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 194

Purpose
The wizard framework enables you to create administration wizards for creating new portal
content. After creating and deploying a wizard, you can specify within a new portal component
that your wizard be run whenever an administrator starts to create a new iView based on this
component.edits an iView or other PCD object based on the new component.

The wizard framework enables you to create generic wizards. The wizard toolkit
provides additional wizard functionality for creating iViews and other PCD
objects.

For more information on the wizard toolkit, see the
com.sap.portal.admin.wizard packages in the Javadocs.

This section describes the following:

● Architecture [Page 33]: Background information on the wizard framework.

● How to Create a Wizard [Page 33]: How to use the wizard framework API to build a
wizard.

● Essential Information [Page 33]: The portalapp.xml configuration and the JAR files
for working with the wizard framework.

Assigning a Wizard
You can assign a wizard to a portal component so that when an administrator creates an
iView or portal object from a template based on the portal component, the wizard is run.

To assign an editor to a portal component, set the
com.sap.portal.reserved.iview.WizardURL property in the <component-config>
element of the portal component’s deployment descriptor to the full name of the wizard
component. For more information on the wizard component, see Step 2: Creating the Wizard
Component [Page 33].

3.1.3.1.1 Architecture
This section provides background information on how the wizard framework works.

3.1.3.1.1.1 Wizard Look and Feel
Every wizard has a similar look-and-feel based on the wizard framework. The following is an
example of a wizard, and how it is displayed in the portal:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 195

Wizard Tabs

Pane
Contents

Toolbar

Wizard Title

Pane Title

Step
Counter

Every wizard has the following parts:

● Wizard Tabs: One tab is displayed for each open wizard. The title depends on the
purpose of the wizard, and is set by the component that launches the wizard.

● Wizard and Pane Titles: Set by the wizard component and each pane.

● Step Counter: The pane’s position within the current wizard.

● Pane Contents: The user interface defined by the AbstractWizardPane class for
the current pane.

● Toolbar: A set of buttons for navigating between panes in the wizard. The toolbar
contains the following buttons:

○ Cancel: Close the wizard without taking any action.

○ Back: Go back to the previous pane.

○ Next: Go to the next pane.

○ Finish: Close the wizard and take any necessary action based on the input in
the wizard. You must define the actions in a non-visible pane to which you
navigate after Finish is clicked.

3.1.3.1.1.2 Wizard Framework Objects
A custom wizard consists of the following objects:

● Wizard: A portal component whose class extends AbstractWizard and which
represents the overall wizard. The following are key wizard objects:

○ Wizard Context (IWizardContext): Holds the current state of the wizard, as
well as the data model for holding data entered by the administrator when
running the wizard.

○ Configurable Wizard (IConfigurableWizard): Used for configuring a wizard
at startup, in setupWizard() of the AbstractWizard class.

The configurable wizard object can be used to create the following:

■ Transition: Represents a navigation step between two panes in a
wizard. A transition specifies a source and target pane, and the toolbar
button that causes the navigation. You can also specify a condition,
making the transition contingent on the condition being true.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 196

You create transitions with the IConfigurableWizard object, but do
not have access to transition objects.

■ Dependency: Represents a relationship between two items in the data
model, so that when the source item is changed the target item is erased.

You create dependencies with the IConfigurableWizard object, but
do not have access to dependency objects.

For more information, see Data Model [Page 33].

● Panes (AbstractWizardPane): A set of Java classes, each of which implements
AbstractWizardPane and represents one pane of the user interface.

● Non-Visible Panes (AbstractActionState): A set of Java classes, each of which
implements AbstractActionState.

The non-visible pane is used to perform actions while navigating between two visible
panes. It can also be used for the final pane, performing actions on the data provided
by the administrator via the wizard.

● Conditions (ICondition): A class that implements the ICondition interface whose
isTrue() method returns a Boolean. The class is used to add a condition to
transitions.

For more information, see Step 2: Creating the Wizard Component [Page 33].

Key Classes/Interfaces
Class/Interface Description
AbstractWizard The wizard component extends this class.

AbstractWizardPane Each wizard pane extends this class.

AbstractActionState Each non-visible wizard pane extends this class.

IWizardContext Represents the current state of the wizard

IConfigurableWizard Provides methods for configuring the wizard.

ICondition Each transition condition extends this class.

IWizardComponent All panes and wizard UI components implement this
interface.

3.1.3.1.1.3 Data Model
The data that is entered by an administrator in a wizard is generally kept in the wizard data
model, a set of key-value pairs stored in the wizard context. The data model provides a way
to keep wizard data so that it is accessible to all wizard panes.

Another key advantage of keeping the wizard’s data in the data model is that the wizard
framework can automatically store values entered in a UI control in the data model, and can
automatically load into UI controls values set in the data model.

This synchronization – between data model and UI control – can only be done with wizard
framework UI controls, which are part of the
com.sapportals.admin.wizardframework.components package. These controls are
based on HTMLB controls.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 197

The wizard context is provided as an IWizardContext parameter in key methods of the
wizard framework. For example, in setupPane() of a particular pane, the wizard context is
supplied, as shown in the method’s signature:

protected void setupPane(IWizardContext ctx, FlowContainer pane) {
}

You can retrieve values from the data model and alter the user interface based on the values.

Wizard Framework Components
Wizard framework components are used to synchronize a data model item with a user
interface control. The following are the available controls:

● CheckboxChoiceComponent

● CheckboxSelectionComponent

● DropdownSelectionComponent

● Group

● HTMLScriptComponent

● ListDisplayComponent

● ListSelectionComponent

● MultilineInputComponent

● MultiSelectionComponent

● ProgressBarComponent

● RadioButtonSelectionComponent

● TextInputComponent

● TableViewComponent

The components are all part of the
com.sapportals.admin.wizardframework.components package.
To synchronize a UI control with a specific item in the data model, call
setValueTargetpath() on the control and pass the name of the data model item that will
store the control’s value.

For example, the following creates an input field called Last Name, whose value is
associated with the data model item details.lastName.
TextInputComponent firstName = new TextInputComponent("Last Name");
firstName.setValueTargetPath("details.lastName");

Dependencies
You may want to erase specific data model items when the value for another item changes.
You can set up this dependency by calling addDependency() on the
IConfigurableWizard object and supplying the source and target data model items. This
is done in setupWizard() of the AbstractWizard object.
The following causes all items with the string prefix of the value in
AddressPane.ADDRESS_PANE_KEY to be erased whenever the last_name item is
changed:
wizard.addDependency("last_name", AddressPane.ADDRESS_PANE_KEY);

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 198

3.1.3.1.1.4 Process Flow
The following is the wizard framework process flow, showing the methods that are called on
the AbstractWizardPane object and the user events that occur, starting from when a pane
is first displayed:

● setupPane(): Creates the user interface for the pane.

● doBeforeDisplay(): Performs synchronization between the data model and the
pane. The default implementation calls the pane’s myDoBeforeDisplay() method,
and then calls doBeforeDisplay() on all the wizard components within the pane.

Implement myDoBeforeDisplay() to set the values of HTMLB controls in your pane
based on the data model.

● User Input: The user enters data into the user interface controls, and then clicks a
toolbar button.

● processInput(): Performs synchronization between the pane and the data model,
saving to the data model the values entered into wizard controls by the administrator.
The default implementation calls the pane’s myProcessInput() method, and then
calls processInput() on all the wizard components within the pane.

Implement myProcessInput() to save to the data model the data from any HTMLB
controls that you created in the pane.

The processInput() method is called after a user clicks a toolbar button, causing a
new request to be made to the wizard component.

● getErrorMessages(): Validates the data for the pane. If the data is valid, the
method returns null. If the data is not valid, the method returns a List of error
messages, and flow returns to setupPane(), above.

● doAfterSubmit(): Performs any actions on the data if the data is valid.

The wizard then navigates to the next pane based on the transitions set by the wizard, and
the flow starts again with setupPane(), above.

Non-visible Panes
For a non-visible pane, the wizard framework simply calls doAction() on the
AbstractActionState object, and then navigates to the next pane based on the
transitions set by the wizard. The flow starts again with setupPane(), above.

3.1.3.1.2 How to Create a Wizard
A wizard is a portal application, deployed in a PAR, with the following parts:

● Wizard Component: A portal component that represents the overall wizard.

● Panes: Each pane is a Java class that defines the user interface for one section of the
wizard.

● Conditions: A Java class that defines a condition for transitioning from one pane to
another.

Workflow
The following are the steps required for creating a wizard:
...

1. Step 1: Creating Panes [Page 33]

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 199

2. Step 2: Creating the Wizard Component [Page 33]

3. Step 3: Creating Conditions [Page 33]

3.1.3.1.2.1 Step 1: Creating Panes
A wizard contains one or more panes that contain the input fields, buttons and other controls
that make up the user interface.

Procedure
For each pane, perform the following:
...

1. Create a new class that extends AbstractWizardPane.

2. Implement setupPane(), in which you build a user interface with the help of HTMLB
and wizard framework components. The following is the method’s signature:

protected void setupPane(IWizardContext ctx, FlowContainer pane) {
}

3. Create your user interface with HTMLB and wizard framework controls that you add to
the FlowContainer object passed into the method.

For example, the following adds an input field called first_name, whose value is
associated with the data model field info.firstName.

TextInputComponent firstNameComp =
 new TextInputComponent("first name", "");
firstNameComp.setValueTargetPath("info.firstName");
pane.addComponent("first_name", firstNameComp, false);

It is best to use wizard framework controls, as these can be synchronized with the data
model.

For more information on wizard framework controls, see Data Model [Page 33].

For more information on HTMLB controls, see HTML-Business for Java [Page 33].

Options
The following lists additional methods that you can implement:

 getTitle(): Sets the pane title.

 myDoBeforeDisplay(): Performs any initialization before the pane is displayed,
such as setting the values of HTMLB controls from the data model.

 myProcessInput(): Processes data entered into the wizard UI, and saves to the
data model the data from any HTMLB controls in the pane.

3.1.3.1.2.2 Step 2: Creating the Wizard Component
Each wizard contains a wizard component, whose Java class extends AbstractWizard.
This class is descended from AbstractPortalComponent, making the wizard a standard
iView that can be displayed in the portal administration pages.

AbstractWizard requires you to implement one method, setupWizard(), which is
passed an IConfigurableWizard object. In this method, the wizard does the following:

• Sets the wizard title.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 200

• Adds panes to the IConfigurableWizard object

• Sets the transitions between panes.

• Sets dependencies between data model objects.

Procedure
...

1. Create a new class that extends AbstractWizard.

2. Implement setupWizard(), which has the following signature:
public void setupWizard(
 com.sapportals.admin.wizardframework.api.IConfigurableWizard
wizard,
 IPortalComponentProfile profile,
 java.util.Map params,
 java.util.ResourceBundle bundle) {

}

The method receives an IConfigurableWizard object, which is used to create
panes, add transitions, and add dependencies.

In this method, do the following:

○ Create Panes: To create and add a pane to the wizard, supply a key for the
pane and the pane’s class name, as shown in the following example:

wizard.addPane(PersonalDetailsPane.PERSONAL_DETAILS_PANE_KEY,
 PersonalDetailsPane.class.getName());

○ Add Transitions: Transitions determine to what panes the wizard navigates
when each button is clicked.

You only need transitions if the wizard is not a linear set of panes. If no
transitions are created, the wizard navigates from pane to pane in the order they
were added to the wizard.

The following enables the Next button when the address pane is displayed, and
specifies that the wizard display the table pane when the button is clicked:

wizard.addTransition(AddressPane.ADDRESS_PANE_KEY,
 NEXT, null, TablePane.TV_PANE_KEY);

Each transition can also contain a condition that must return true in order for
the transition to take effect. If the condition is false, the navigation specified by
the transition does not take place.

A condition is an instance of a class that extends ICondition. For more
information, see Step 3: Creating Conditions [Page 33].

The following is an example of a transition with a condition:
wizard.addTransition(PersonalDetailsPane.PERSONAL_DETAILS_PANE_KEY,
 NEXT, stuCond, StudentPane.STUDENT_PANE_KEY);

○ Add Dependencies: Dependencies cause objects in the data model to be
deleted whenever the value of other objects change. For example, you may
want to clear the address field if the administrator changes the name field.

The following clears all properties that start with the address pane key if the last
name in the personal details pane was changed:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 201

wizard.addDependency(PersonalDetailsPane.PERSONAL_DETAILS_PANE_KEY
 +".last_name", AddressPane.ADDRESS_PANE_KEY);

3. Create a <component> element in the portalapp.xml for the wizard component,
similar to the element for a standard component.

Add a property element called isStateless in the <component-profile> element
called to determine if session data is maintained on the client (true) or on the server
(false).

<components>
 <component name="trainSample">
 <component-config>
 <property name="ClassName" value="TrainWizard"/>
 <property name="LocalModeAllowed" value="true"/>
 <property name="SafetyLevel" value="low_safety"/>
 </component-config>
 <component-profile>
 <property name="isStateless" value="true"/>
 </component-profile>
 </component>
</components>

Result
The following is an example of setupWizard() that creates:

● 6 panes

● A close pane that closes the wizard

● A condition (isStudent)

● Several transitions that define how the wizard navigates between panes

● One data dependency

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 202

public void setupWizard(
 com.sapportals.admin.wizardframework.api.IConfigurableWizard
wizard,
 IPortalComponentProfile profile,
 java.util.Map params,
 java.util.ResourceBundle bundle) {

 wizard.setTitle("Order Train Tickets");

 wizard.addPane(PersonalDetailsPane.PERSONAL_DETAILS_PANE_KEY,
 PersonalDetailsPane.class.getName());
 wizard.addPane(AddressPane.ADDRESS_PANE_KEY,
 AddressPane.class.getName());
 wizard.addPane(StudentPane.STUDENT_PANE_KEY,
 StudentPane.class.getName());

 wizard.addPane("close",com.sapportals.admin.wizardframework.
 components.CloseWizardComponent.class.getName());
 wizard.addPane(TicketInfo.TICKET_INFO_PANE_KEY,
 TicketInfo.class.getName());
 wizard.addPane(ShowPanes.SHOW_PANE_KEY,
ShowPanes.class.getName());
 wizard.addPane(TablePane.TV_PANE_KEY, TablePane.class.getName());

//creating an instance of the ICondition, IsStudent
 IsStudent stuCond = new IsStudent();

//creating the reverse condition from IsStudent
 ICondition notStuCond = new IsStudent() {
 public boolean isTrue(IWizardContext ctx) {
 return !super.isTrue(ctx);
 }
 };

wizard.addTransition(PersonalDetailsPane.PERSONAL_DETAILS_PANE_KEY,
 NEXT, stuCond, StudentPane.STUDENT_PANE_KEY);

wizard.addTransition(PersonalDetailsPane.PERSONAL_DETAILS_PANE_KEY,
 NEXT, notStuCond, AddressPane.ADDRESS_PANE_KEY);

 wizard.addTransition(AddressPane.ADDRESS_PANE_KEY, BACK, stuCond,
 StudentPane.STUDENT_PANE_KEY);
 wizard.addTransition(AddressPane.ADDRESS_PANE_KEY, BACK,
 notStuCond,PersonalDetailsPane.PERSONAL_DETAILS_PANE_KEY);

 wizard.addTransition(StudentPane.STUDENT_PANE_KEY, BACK, null,
 PersonalDetailsPane.PERSONAL_DETAILS_PANE_KEY);
 wizard.addTransition(StudentPane.STUDENT_PANE_KEY, NEXT, null,
 AddressPane.ADDRESS_PANE_KEY);

 wizard.addTransition(AddressPane.ADDRESS_PANE_KEY, NEXT, null,
 TablePane.TV_PANE_KEY);
 wizard.addTransition(TicketInfo.TICKET_INFO_PANE_KEY, BACK, null,
 AddressPane.ADDRESS_PANE_KEY);

 wizard.addTransition(TicketInfo.TICKET_INFO_PANE_KEY, NEXT, null,
 TablePane.TV_PANE_KEY);

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 203

 wizard.addTransition(TablePane.TV_PANE_KEY, NEXT, null,
 ShowPanes.SHOW_PANE_KEY);
 wizard.addTransition(TablePane.TV_PANE_KEY, BACK, null,
 AddressPane.ADDRESS_PANE_KEY);

 wizard.addTransition(ShowPanes.SHOW_PANE_KEY, FINISH, null,
 "close");
 wizard.addTransition(ShowPanes.SHOW_PANE_KEY, BACK, null,
 TablePane.TV_PANE_KEY);

wizard.addDependency(PersonalDetailsPane.PERSONAL_DETAILS_PANE_KEY
 +".last_name", AddressPane.ADDRESS_PANE_KEY);
}

3.1.3.1.2.3 Step 3: Creating Conditions
Conditions can be added to transitions to determine whether the navigation defined in the
transition occurs.

In a transition, you specify a button, a condition, a source pane and a target pane. If the user
clicks the button in the source pane, the wizard navigates to the target pane only if the
condition is true. If no condition is specified (that is, null), the transition always occurs if the
button is clicked.

For more information on transitions, see Step 2: Creating the Wizard Component [Page 33].

Procedure
...

1. Create a new class that implements ICondition.

2. Implement isTrue(), which has the following signature:
public boolean isTrue(IWizardContext ctx) {

}

Using Conditions
The following describes how to use the ICondition class:
...

1. When creating transitions in your wizard component, create an instance of the condition
class, as in the following example:

IsStudent stuCond = new IsStudent();

2. If needed, create another condition class that checks if the original condition is false, as
in the following example:

ICondition notStuCond = new IsStudent() {
 public boolean isTrue(IWizardContext ctx) {
 return !super.isTrue(ctx);
 }
};

3. Specify the condition in a transition. In the following example, the Next button on the
personal details pane navigates to the student pane if the user is a student, and to the
address pane if the user is not a student:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 204

wizard.addTransition(PersonalDetailsPane.PERSONAL_DETAILS_PANE_KEY,
 NEXT, stuCond, StudentPane.STUDENT_PANE_KEY);

wizard.addTransition(PersonalDetailsPane.PERSONAL_DETAILS_PANE_KEY,
 NEXT, notStuCond, AddressPane.ADDRESS_PANE_KEY);

3.1.3.1.3 Essential Information
This section provides the following information to help you create wizards:

● portalapp.xml [Page 33]: Information about the portalapp.xml file for a wizard
application.

● JARs and Packages [Page 33]: The packages and JAR files required for creating a
wizard.

3.1.3.1.3.1 portalapp.xml
The following is a sample portalapp.xml for a wizard:
<application>
 <application-config>
 <property name="SharingReference"
 value="com.sap.portal.admin.wizardframework"/>
 <property name="Vendor" value="sap.com"/>
 <property name="SecurityArea" value="NetWeaver.Portal"/>
 </application-config>
 <services>
 </services>
 <components>
 <component name="trainSample">
 <component-config>
 <property name="ClassName" value="TrainWizard"/>
 <property name="LocalModeAllowed" value="true"/>
 <property name="SafetyLevel" value="low_safety"/>
 </component-config>
 <component-profile>
 <property name="isStateless" value="true">
 </property>
 </component-profile>
 </component>
 </components>
</application>

 Application Configuration Element
In the <application-config> element, add a SharingReference for the following
applications:

Service/Component SharingReference

Wizard Framework com.sap.portal.admin.wizardframework

<application-config>
 <property name="releasable" value="false"/>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 205

 <property name="Vendor" value="sap.com"/>
 <property name="SecurityArea" value="NetWeaver.Portal"/>
 <property name="SharingReference"
 value="com.sap.portal.admin.wizardframework" />
</application-config>

Components Element
A wizard contains one portal component, the wizard component, which is based on a class
that extends AbstractWizard. For more information on creating the editor component’s
<component> element, see Step 2: Creating the Wizard Component [Page 33].
<components>
 <component name="trainSample">
 <component-config>
 <property name="ClassName" value="TrainWizard"/>
 <property name="LocalModeAllowed" value="true"/>
 <property name="SafetyLevel" value="low_safety"/>
 </component-config>
 <component-profile>
 <property name="isStateless" value="true"/>
 </component-profile>
 </component>
</components>

3.1.3.1.3.2 JARs and Packages

Packages
● com.sapportals.admin.wizardframework

JARs
● com.sap.portal.admin.wizardframework_api.jar

3.1.3.2 Creating PCM Wizards
This section describes how to use the wizard toolkit to create a PCM wizard for
administrators.

Purpose
The wizard toolkit enables you to create administration wizards for creating new portal
objects, which are stored in the PCD. The wizard toolkit is built on top of the wizard
framework, and adds the following functionality:

● Automatically synchronizes wizard input fields with the properties of the portal object to
be created.

● Adds a set of standard panes that are required for creating all types of portal objects.

This section describes the following:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 206

● Architecture [Page 33]: Provides background information on the wizard toolkit.

● How to Create a PCM Wizard [Page 33]: Describes how to use the wizard toolkit API to
build a PCM wizard.

● Essential Information [Page 33]: Describes the portalapp.xml configuration and the
JAR files for working with the wizard toolkit.

Prerequisites

● Familiarity with the wizard framework and how to create standard wizards. For more
information, see Creating a Wizard [Page 33].

3.1.3.2.1 Architecture
This section provides background information on how the wizard toolkit works.

A PCM wizard is only launched when you create a new iView from an iView
template, and not when creating an iView from a PAR.

3.1.3.2.1.1 PCM Wizard Look and Feel
PCM wizards are similar to standard wizards. All wizards contain a set of panes and a toolbar
at the bottom of the wizard for navigating between panes.

PCM wizards also come with the following predefined panes that are displayed or activated
automatically:

● Init (non-visible): Initializes the wizard, such as setting the title and other parameters.

● Info: Provides a user interface to enable the administrator to enter standard fields for
all objects, such as the name and ID for the object.

● Summary: Displays a summary of the information entered by the administrator, and

enables the administrator to create the object or go back and change the information.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 207

● Save (non-visible): Saves the new object with all the properties defined by the wizard.

● FinishPane: Displays after the new object is created, and provides options to:

○ Open the editor for the new object.

○ Rerun the wizard to create another object.

○ Close the wizard.

For your custom functionality, you create custom panes that are displayed after the Init pane
and before the Summary pane.

The process flow, that is, when each pane is displayed or called, is described in Process Flow
[Page 33].

3.1.3.2.1.2 Process Flow
The following shows the order in which the wizard toolkit activates the panes in a PCM
wizard:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 208

Init Pane

Info Pane

Summary Pane

Save Pane

Finish Pane

User Panes

Pane’s shaded gray
are non-visible panes.

User panes are panes created by you specifically for your wizard. All other panes are
automatically created and called by the wizard toolkit.

3.1.3.2.1.3 Wizard Toolkit Objects
PCM wizards contain the same objects as standard wizards, such as wizards, panes,
transitions and conditions, with the following changes:

● The wizard component extends AbstractPCMWizard (not AbstractWizard), which
automatically provides the default panes and transitions for PCM wizards.

● The wizard toolkit contains helper classes for creating input controls and synchronizing
them with properties of portal objects.

Key Classes/Interfaces
Shaded objects are new to the wizard toolkit. All other objects are inherited from the wizard
framework.

Class/Interface Description
AbstractPCMWizard The PCM wizard component extends this class.

AbstractWizardPane Each wizard pane extends this class.

AbstractActionState Each non-visible wizard pane extends this class.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 209

IWizardContext Represents the current state of the wizard.

IConfigurableWizard Provides methods for configuring the wizard.

ICondition Each transition condition extends this class.

IWizardComponent All panes and wizard UI components implement this
interface.

IBasicObjectCreationService

A helper class for working with PCM objects.

For more information, see Synchronizing with the
Property Editor [Page 33].

IWizardComponentFactory

A factory class for creating the appropriate wizard
control for a specific object property.

For more information, see Synchronizing with the
Property Editor [Page 33].

3.1.3.2.1.4 Synchronizing with the Property Editor
One of the key features of the wizard toolkit is that you can synchronize wizard controls with
properties of the object to be created. The wizard can automatically save the information
entered into a control by the administrator to the corresponding property in the object.

When creating the user interface for a pane in the pane’s setupPane() method, you create
wizard controls and synchronize them to a property of the object to be created.

For example, a portal component defines a property called Email Address, and a template
object based on this component exists in the portal. In the wizard for the component, you can
create a pane that includes a wizard component for this property, as follows:
...

1. Get the ID of the template by using an IBasicObjectCreationService helper
object.

Use the standard PortalRuntime.getRuntimeResources().getService()
method for creating this helper object.

IBasicObjectCreationService _basicObjService =
 (IBasicObjectCreationService) PortalRuntime.getRuntimeResources()
 .getService(IBasicObjectCreationService.KEY);

String targetId = _basicObjService.getTargetIdParam(context);

2. Create the appropriate control for the Email Address property by using an
IWizardComponentFactory object. The IWizardComponentFactory object
queries the template to determine the appropriate control.

Use the standard PortalRuntime.getRuntimeResources().getService()
method for creating this factory object.

IWizardComponentFactory wizardCompFactory =
 (IWizardComponentFactory)PortalRuntime.getRuntimeResources()
 .getService(IWizardComponentFactory.KEY);

AbstractInputComponent emailAddress =
 wizardCompFactory.getControlForAttribute(
 targetId, "Email Address", context.getRequest());

3. Associate the control to the Email Address property of the object to be created.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 210

_basicObjService.setComponentAsAttribute(
 emailAddress,"Email Address",true,context);

You can then add the component to the pane by calling the pane’s addComponent()
method.

3.1.3.2.1.5 Data Model
The data model for PCM wizards is the same as for standard wizards. You can store key-
value pairs in the data model, whose data you can access via an IWizardContext object.

Individual key-value pairs can be automatically associated with specific wizard controls via the
control’s setValueTargetPath() method.

However, the wizard toolkit enables you to directly synchronize controls to properties of the
portal object to be created, without storing the control’s value to the data model.

For more information about the data model, see Data Model [Page 33].

3.1.3.2.2 How to Create a PCM Wizard
A PCM wizard is a portal application, deployed in a PAR, with the following parts:

● PCM Wizard Component: A portal component that represents the overall PCM wizard.

● Panes: Each user pane is a Java class that defines the user interface for one section
of the wizard.

● Conditions: A Java class that defines a condition for transitioning from one pane to
another.

Workflow
The following are the steps required for creating a PCM wizard:
...

1. Step 1: Creating User Panes [Page 33]

2. Step 2: Creating a PCM Wizard Component [Page 33]

3. Step 3: Creating Conditions [Page 33]

3.1.3.2.2.1 Step 1: Creating User Panes
A PCM wizard automatically contains several standard panes, such as the Info and Finish
panes. This procedure describes how to create your own panes for collecting from the
administrator additional data specific to your portal component.

Procedure
For each custom pane, follow the procedure for creating panes for a standard wizard, as
described in Step 1: Creating Panes [Page 33].

For PCM wizard panes, synchronize your input controls with the properties in the portal object
to be created, as described in Synchronizing with the Property Editor [Page 33].

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 211

3.1.3.2.2.2 Step 2: Creating a PCM Wizard Component
Each PCM wizard contains a PCM wizard component, whose Java class extends
AbstractPCMWizard. This class is descended from AbstractPortalComponent, making
the wizard a standard iView that can be displayed in the portal administration pages.

AbstractPCMWizard enables you to implement several methods for handling the following
tasks:

• Adding user panes, which are in addition to the ones automatically added to the
wizard by the AbstractPCMWizard class.

• Setting transitions between panes.

• Setting dependencies between data model objects. This is not so important
because data entered into the wizard by an administrator can be automatically
synchronized to the properties of the portal object to be created, and does not
require use of the wizard framework data model

• Modifying the text that is displayed in the Summary pane.

• Modifying the property values that are saved to the portal object to be created.
This allows you to make last-minute changes to the values entered by the
administrator.

Procedure
...

1. Create a new class that extends AbstractPCMWizard.

2. Implement addUserPanes(), which has the following signature:
protected void addUserPanes(IConfigurableWizard wizard) {
}

Add the panes for the wizard by calling addPane() on the IConfigurableWizard
object passed into the method, as follows:

wizard.addPane(ServerInfo.SERVER_INFO_PANE_KEY,
 ServerInfo.class.getName());

The above assumes that ServerInfo is the name of a class that defines a pane, as
described in Step 1: Creating User Panes [Page 33].

3. Implement addTransitions(), which has the following signature:
protected void addUserTransitions(IConfigurableWizard wizard) {
}

Add transitions between the wizard panes. For more information on transitions, see
Wizard Framework Objects [Page 33].

The wizard automatically starts the Info pane. You must supply transitions from this
pane. The following example creates a wizard that displays the built-in Info pane, the
custom UserInfo pane, the custom ServerInfo pane, and then the built-in Summary and
Finish panes, in that order:

//Built-in Info pane to custom UserInfo pane
wizard.addTransition(START_PANE, NEXT, null,
 UserInfo.USER_INFO_PANE_KEY);

//UserInfo pane to custom ServerInfo pane
wizard.addTransition(UserInfo.USER_INFO_PANE_KEY, NEXT ,null,
 ServerInfo.SERVER_INFO_PANE_KEY);

//ServerInfo pane to built-in Summary and Finish panes

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 212

wizard.addTransition(ServerInfo.SERVER_INFO_PANE_KEY, NEXT ,null,
 END_PANE);

4. Implement finalizeSummaries(), in order to modify what is displayed on the
summary pane, if necessary.

The method is passed a Map object with key-value pairs that are displayed in the
summary pane. You can modify existing key-value pairs, or add additional pairs.

The following sample takes a key-value pair from the data model (Open Mail) and
adds it to the summary Map, and then adds a prefix to an existing key-value pair (path)
in the summary Map:

public void finalizeSummaries(Map summaries, IWizardContext context)
{

 String openMail = (String) context.getProperty("openMail");
 summaries.put("Open Mail", openMail);

 String path = (String) summaries.get("path");
 path = "http://" + path;
 attributes.put("path",path);
}

5. Implement finalizeDescriptor(), in order to modify the property values that are
stored for the object that you are creating with the wizard.

The method is passed a Map object with key-value pairs that are the property values to
be stored for the new object. Add or modify values, as needed.

At the end of the method, call super.finalizeDescriptor().

6. Create a <component> element in the portalapp.xml for the PCM wizard
component, similar to the element for a standard component and a standard wizard.

Add a property element called isStateless in the component-profile element to
determine if session data is maintained on the client (true) or on the server (false).

<components>
 <component name="pcmSample">
 <component-config>
 <property name="ClassName" value="pcmWizard"/>
 <property name="SafetyLevel" value="low_safety"/>
 </component-config>
 <component-profile>
 <property name="isStateless" value="true"/>
 </component-profile>
 </component>
</components>

Options
In addition to the above steps, you may also want to do the following:

● Set UI Strings: Modify the user-interface strings displayed on the panes automatically
created by the wizard toolkit, that is, the Info, Summary and Finish panes.

To modify the strings, implement the setUIStrings() method, which takes a Map
object as a parameter. To modify a string, add a key-value pair, indicating the string to
modify and the new string.

The key is a constant in the class of one of the pre-defined wizard toolkit panes.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 213

The value is a key in a resource bundle that you attach to your PCM wizard
component. You can attach a resource bundle to any portal component, as described
in Internationalization [Page 27].

For example, to change the question displayed on the Finish pane, add to the Map the
following:

○ Key:
FinishPane.UIStrings.POST_COMPLETION_CHOICE_CAPTION_BUNDLE_KEY

○ Value: The resource bundle key of the new string
protected void setUIStrings(Map map) {
 map.put(FinishPane.UIStrings.POST_COMPLETION_CHOICE_CAPTION_BUNDLE_KEY,
 "NEWSTRING");
}

● Initialize Wizard for Testing: When the wizard is launched, the wizard toolkit
automatically sets initial parameters, such as the location of the new portal object or the
portal component on which to base the new portal object.

During testing, you may run the PCM wizard component as standalone, and now
through the administration tools. If so, you need to set some initial parameters, as
shown in the following example:

public void initWizardSession(IWizardContext context) {
 context.getWizardParameters().put(
 ObjectCreationWizardConstants.SAVE_LOCATION_PARAM,
 "pcd:portal_content/TestObject");
 context.getWizardParameters().put(
 ObjectCreationWizardConstants.TARGET_ID_PARAM,
 "pcd:portal_content/DanielContent/myHelloTemplate");
 context.getWizardParameters().put(
 ObjectCreationWizardConstants.CREATE_MODE_PARAM,
 "com.sapportals.portal.application. Component");
 context.getWizardParameters().put(
 ObjectCreationWizardConstants.OBJECT_TYPE_PARAM,
 "com.sapportals.portal.iview");
 super.initWizardSession(context);
}

3.1.3.2.2.3 Step 3: Creating Conditions
Conditions are created in the same way as conditions for standard wizards.

For more information, see Step 3: Creating Conditions [Page 33].

3.1.3.2.3 Essential Information
This section provides the following information to help you create PCM wizards:

● portalapp.xml [Page 33]: Information about the portalapp.xml file for a PCM wizard
application.

● JARs and Packages [Page 33]: The packages and JAR files required for creating a
PCM wizard.

3.1.3.2.3.1 portalapp.xml
The following is a sample portalapp.xml for a PCM wizard:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 214

<application>
 <application-config>
 <property name="SharingReference"
 value="com.sap.portal.admin.wizardframework"/>
 <property name="Vendor" value="sap.com"/>
 <property name="SecurityArea" value="NetWeaver.Portal"/>
 </application-config>
 <services>
 </services>
 <components>
 <component name="trainSample">
 <component-config>
 <property name="ClassName" value="pcmWizard"/>
 <property name="LocalModeAllowed" value="true"/>
 <property name="SafetyLevel" value="low_safety"/>
 </component-config>
 <component-profile>
 <property name="isStateless" value="true">
 </property>
 </component-profile>
 </component>
 </components>
</application>

 Application Configuration Element
In the <application-config> element, add a SharingReference for the following
services:

Service/Component SharingReference

Wizard Toolkit com.sap.portal.admin.pcmobjectwizardtoolkit

<application-config>
 <property name="SharingReference"
 value="com.sap.portal.admin.pcmobjectwizardtoolkit" />
</application-config>

Components Element
A PCM wizard contains one portal component, the PCM wizard component, which is based
on a class that extends AbstractPCMWizard. For more information on creating the editor
component’s <component> element, see Step 2: Creating a PCM Wizard Component [Page
33].
 <components>
 <component name="pcmSample">
 <component-config>
 <property name="ClassName" value="pcmWizard"/>
 <property name="SafetyLevel" value="low_safety"/>
 </component-config>
 <component-profile>
 <property name="isStateless" value="true">
 </property>
 </component-profile>
 </component>
 </components>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 215

3.1.3.2.3.2 JARs and Packages

Packages
● com.sapportals.admin.pcmobjectwizardtoolkit

JARs
● com.sap.portal.admin.pcmobjectwizardtoolkit_api.jar

3.1.3.3 Creating Editors
This section describes how to use the editor framework to create editors for editing portal
objects in the PCD.

Purpose
The editor framework enables you to create administration editors for configuring iViews and
other PCD objects. These editors are displayed when a portal administrators edits an existing
PCD object.

Once deployed, an editor can be assigned to a specific PCD object, so that when that object
is edited, the corresponding editor is displayed. More commonly, an editor is assigned to a
portal component in a PAR file, so that when an administrator edits any iView based on that
component, the corresponding editor is displayed.

This section describes the following:

● Architecture [Page 33]: Background information on the editor framework.

● How to Create an Editor [Page 33]: How to use the editor framework API to build an
editor.

● Essential Information [Page 33]: The portalapp.xml configuration and the JAR files
for creating an editor.

Assigning an Editor
You can assign an editor to a portal component so that when an administrator edits an iView
or portal object based on the portal component, the editor is run.

To assign an editor to a portal component, set the
com.sap.portal.reserved.iview.EditorURL property in the <component-config>
element of the portal component’s deployment descriptor to the full name of the editor
component. For more information on the editor component, see Step 2: Creating an Editor
Component [Page 33].

Prerequisites
You should be familiar with the Portal Content Studio, which provides a central environment
for content administrators to develop and manage portal content. For more information on the
Portal Content Studio, see Portal Content Studio [External].

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 216

3.1.3.3.1 Architecture
The editor framework architecture is composed of the following parts:

Editor Framework

Wizard Framework

UI and Flow
Layer

Data Handling
Layer

Custom Editor

● Wizard Framework: A set of APIs on which the editor framework is built, and provides

such things as a set of components for use in editors and a data model for maintaining
edited data.

● Editor Framework: A set of APIs that are divided into the following parts:

○ UI and Flow Layer: Builds and renders the editor, manages the data that is
edited in the editor and operates the data handling layer.

○ Data Handling Layer: Loads and saves the data that is edited in the editor.

● Custom Editor: A portal application that contains Java classes and other files for
implementing a custom editor for editing PCD objects.

For information on building a custom editor, see How to Build an Editor.

3.1.3.3.1.1 Editor Look and Feel
An editor defines a set of panes, each of which contains a portion of the user interface for
editing the portal object. The panes are displayed within the editor framework, which provides
some standard editor functionality and a standard look and feel for every editor.

The following shows the basic parts of an editor:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 217

Toolbar (Generic)
Pane Selection

Editor Container

Property Editor

Toolbar (Custom)

Editor Tabs

Every editor has the following parts:

● Editor Tabs: One tab is displayed for each open editor. The editor can set the title
displayed in its tab. The default title is the name of the PCD object being edited.

● Toolbars: A collection of buttons and controls for working with the editor. The following
toolbars are available:

○ Generic: This toolbar is displayed at the top of the editor and contains a fixed
set of standard buttons, such as Save and Close. This toolbar is displayed for all
panes and cannot be modified, though some of the functionality triggered by the
toolbar’s controls can be altered.

○ Custom: On each pane, you can create your own toolbar of buttons, and then
capture the events triggered by the buttons on the server side.

● Pane Selection: A radio button group that enables the administrator to select a pane to
be displayed.

● Editor Container: The area in each pane where your custom user interface is
displayed.

● Property Editor: A built-in user interface that displays the properties of a PCD object,
and enables an administrator to edit them (if they are not read only).

3.1.3.3.1.2 Editor Framework Objects
A custom editor makes use of the following objects:

● Editor: A portal component whose class extends AbstractEditorComponent and
which represents the overall editor. The following are key editor objects:

○ Editor Context (IEditorContext): Holds the current state of editor, as well
as the data model that holds the data currently being edited. The editor context
is an IEditorContext object, which is generally supplied as a parameter in
the key methods of the editor framework.

○ Editor Response (IEditorResponse): Provides access to the portal
response object, and enables you to do the following:

■ Set Save Question: The save question is displayed whenever the
administrator clicks Save in the generic toolbar.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 218

■ Set Administrator Message: This message is displayed in the standard
portal message bar at the end of the current request.

You may want to display a message, for example, after you throw an
exception to cancel the saving of the editor’s data, or after displaying the
user interface for an editor pane.

■ Set Client Properties: These properties are set on the server side but
are available on the client side in parametersMap, a JavaScript object.
Values are obtained via the get() method.

The editor response is an IEditorResponse object, and is available from the
editor context.

● Panes: A set of Java classes, each of which implements IEditorPane and
represents one pane of the user interface. Each pane can have the following
characteristics:

○ Visible/Hidden: If a pane is visible, a radio button is displayed for it in the pane
selection area at the top of the editor. If a pane is invisible, the pane can only be
displayed via code, through an activating an event.

○ Default Pane: The default pane is the pane displayed when the editor is
launched.

○ Activating Event: A pane’s activating event is the server event that causes the
editor to navigate to that pane.

A pane’s properties are set when it is created in the editor component’s
setupEditor() method.

● Data Handler: A Java class that extends PCMDataHandler that defines methods for
loading data into the editor context and saving data from the editor context.

To make the data handler accessible to editors defined in other PARs, the data handler
must be defined as a service and implement IService.

For more information on the editor context and data model, see Data Model [Page 33].

Key Classes/Interfaces
Class/Interface Description

AbstractEditorComponent Extended by the editor component.

IEditorContext Represents the current state of the editor.

IEditorResponse Provides access to the portal response, as
well as additional functionality for the editor
framework.

IEditorPane Implemented by each pane.

PCMDataHandler Extended by an editor’s custom data
handler.

3.1.3.3.1.3 Data Model
The wizard framework, on which the editor framework is based, provides a data model that
makes it easier to handle and store the data that administrators enter into the editor.

The data model provides the following benefits:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 219

● Holds data across requests, so that the data is available to all the panes and to the
data handler.

● Data items within the data model can be associated with wizard framework UI controls,
so that data entered into the control is automatically saved into the data model, and
values stored in the data model are automatically loaded into the controls.

Wizard framework controls are defined in the
com.sapportals.admin.wizardframework.components package.

The data model is a set of key-value pairs that is available via the editor context, which is
exposed as an IEditorContext parameter in key methods of the editor framework.

For example, when the data handler’s loadData() event is called, the editor context is
supplied and you can load default values into the data model. The following example saves
the value credit in the details.paymentMethod property of the data model:
public void loadData(
 IEditorContext context,
 IPrincipal principal,
 PPLogger logger)
 throws EditorDataException {

 context.setProperty("details.paymentMethod", "credit");
}

Data Model and UI Controls
To synchronize a wizard framework UI control with a specific value in the data model, call
setValueTargetPath() on the control and pass the property name in the data model that
holds the control’s value.

For example, the following creates an input field called Last Name, whose value is associated
with the editor context property details.lastName.
TextInputComponent firstName = new TextInputComponent("Last Name");
firstName.setValueTargetPath("details.lastName");

If you change the value in the data model, the control’s value automatically changes. The
following changes the value of the data model property details.lastName, which causes
the value to be displayed in the Last Name control.
context.setProperty("details.lastName", "Smith");

HTMLB controls cannot be linked directly to the data model. Store the values of a pane’s
HTMLB controls into the data model during the processInput() method, as described in
Step 1: Creating Panes [Page 33].

Loading and Saving Data
You can create a data handler to handle the loading of data into the data model and the
saving of the data model into the PCD. A data handler provides the following methods:

● loadData(): Loads data into the data model.

● saveData(): Stores the data model into the PCD.

For more information on creating a data handler, see Step 3: Creating a Data Handler [Page
33].

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 220

Reloading Data
The editor framework calls loadData() on the data handler when the editor is first launched,
and whenever the user clicks Refresh. If you need the data reloaded at any other time, call
setLoadDataRequired() on the editor context and pass the value true.
context.setLoadDataRequired(true);

Dirty State
To indicate to the editor that data has changed and, therefore, should be saved, set the dirty
state to true. This enables the Save button, and also triggers a dialog for saving changes if
the administrator clicks Close.

Set the dirty state by calling setDirty() on the editor context, as follows

context.setDirty(true);

3.1.3.3.1.4 Events
The editor can trigger events when administrators perform actions within the editor, such as
clicking a button. The following types of events can be triggered:

● Generic Events [Page 33]: Events triggered when an administrator clicks a button in
the generic toolbar at the top of the editor. These events are triggered and captured
automatically by the editor framework.

You cannot change the buttons displayed in the generic events toolbar, but you can
create a custom events handler for overriding or extending the standard event
handling.

● Custom Events [Page 33]: Events, either client or server side, that you trigger and
capture.

3.1.3.3.1.4.1 Generic Events
The following lists the generic events that are triggered when the corresponding button is
clicked in the generic toolbar at the top of the editor, and describes the default handling of the
events:

● Save: Executes the saveData() method on the editor’s data handler. For more
information on data handlers, see Step 3: Creating a Data Handler [Page 33].

● Close: Closes the editor.

If object properties were changed (that is, the dirty state was set either by the property
editor or manually by the editor), the editor framework first displays a dialog asking
whether to save the changes. If the administrator clicks Yes, the saveData() method
on the data handler for the editor is called.

● Refresh: Calls loadData()on the data handler for the editor.

● Edit Mode: Calls the loadData()on the data handler for the editor and tries to write-
enable the editor.

Edit Mode enables you to start editing an object that was opened in read-only mode.
The editor may be in read-only mode because the object was locked when the editor
was launched, or the administrator did not have permission to edit the object.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 221

Instead of having to close and reopen the editor, the administrator can click Edit Mode
to check if the object is now unlocked or permissions were granted to edit the object.

● Preview (no default implementation): Calls handlePreviewEvent() on the editor’s
event handler. The default event handler for an editor provides an empty
implementation for the preview event handler.

Custom Generic Events Handler
You can override the default handling of the generic events by creating an event handler that
either:

● Extends GenericEventsHandler: You can extend the implementation of an event
handler by overriding a handler method, providing your own implementation, and at the
end of the method calling the same handler method in the super class.

● Implements IGenericEventsHandler: You can replace the default implementation
of the event handler for the Refresh, Edit Mode or Preview events.

To include a custom event handler, specify the event handler class in the
com.sap.portal.admin.editorframework.eventsHandler property of the
<component-config> element for the editor component in the portalapp.xml, as shown
in the following example:
<property name="com.sap.portal.admin.editorframework.eventsHandler"
 value="myEventsHandler"/>

3.1.3.3.1.4.2 Custom Events
You can trigger events, either client or server side, using the standard Enterprise Portal Client
Framework coding. The following are examples:

● Client Side: When creating the UI for a pane, call setOnClientClick() on an
HTMLB button control and pass the name of a client-side JavaScript function. This
function is called when an administrator clicks the button.

paymentTypeButton.setOnClientClick("alertSubmit()");

● Server Side: A server-side event can be triggered in the following ways:

○ When creating the UI for a pane, call setOnClick() on an HTMLB button
control and pass the name of a server-side event. A server-side event is
triggered when an administrator clicks the button.

paymentType.setOnClick("coordPayType");

○ Create a custom toolbar button, as described in Step 1: Creating Panes [Page
33]. A server-side event is triggered when an administrator clicks the button.

○ Call raiseServerEvent() from JavaScript code.
function callServerEvent() {
 raiseServerEvent("myServerEvent");
}

Capturing Events
Server-side events can be captured by the following:

● Event Handler Method: You can create a method to be executed when a server event
is triggered. For an event called event, doEvent() is called.

An event is captured in the same pane in which it was triggered.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 222

● Editor Pane: You can specify that an editor pane be displayed whenever a server-side
event is triggered. This provides a way for an editor to navigate between panes without
the user selecting a pane radio button.

To specify a pane to be displayed for a server-side event, call
setActivatingEvent() on the pane object and specify the event that triggers the
editor to navigate to that pane. This is done in the editor component’s setupEditor()
method.

For example, the following specifies that the personalDetails server-side event
triggers the editor to navigate to the personalDetails pane:

personalDetailsPane.setActivatingEvent("personalDetails");

3.1.3.3.1.5 Process Flow
The following shows the process flow when an editor is launched. The green rectangle
includes the steps that occur within the current pane object.

Each user event causes another request, which is handled by the current pane class.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 223

Start

setupEditor()
Editor component instantiates

and configures panes

init()

processInput()

Handle Event

createUI()
Pane

Generic
Event?

Navigate
Event?

Event Handler
[e.g., doEvent()]

Generic
Events
Handler

Save
Close

Preview
Refresh

Edit Mode

User Event

Navigates
to another
pane

Yes

Yes

Call loadData(), if necessary

No

No

End

3.1.3.3.1.6 Parameters
This section describes additional parameters in the editor framework.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 224

Editor Parameters
The editor context holds the parameters that were passed to the editor in the URL, including
the object ID of the object being edited, editor ID and session ID. To get these parameters, do
the following:

● To get a Map of all the parameters, call getIntialParameters() on the editor
context.

● To get the object ID, call getObjectID() on the editor context.

Client Parameters
The editor framework enables you to set a client-side parameter from a server-side method,
for example, during creation of the user interface for a pane or during the handling of a
server-side event.

To create a client-side parameter, call setClientProperty() on the editor response and
pass the parameter name and value, as shown in the following example, where context is
the editor context:
context.getEditorResponse().setClientProperty("myKey","myValue");

The client-side parameters are available from the parametersMap JavaScript object by
calling the object’s get() method, as in the following example:

parametersMap.get("myKey")

On the client side, you can add additional parameters to parametersMap by calling the
object’s set() method – for example, parametersMap.set("myKey2","myValue2") –
but these parameters are only available during the current response.

3.1.3.3.2 How to Create an Editor
An editor is a portal application, deployed in a PAR, with the following parts:

● Editor Component: A portal component that represents the overall editor.

● Panes: Each pane is a Java class that defines the user interface for one section of the
editor.

● Data Handler: A Java class that defines where to store the data gathered within the
editor.

Workflow
The following are the steps required for creating an editor:
...

1. Step 1: Creating Panes [Page 33]

2. Step 2: Creating an Editor Component [Page 33]

3. Step 3: Creating a Data Handler [Page 33]

3.1.3.3.2.1 Step 1: Creating Panes
An editor contains one or more panes that contain the input fields, buttons and other controls
that make up the user interface.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 225

An editor with a single visible pane displays the title of the pane in the title bar of the editor,
just below the toolbar. An editor with more than one visible pane displays in the title bar a
radio button group that enables the user to navigate between panes.

When possible, use wizard framework controls for building the pane’s user
interface. Each of these controls enable you to associate it with an item in the
data model so that the wizard framework automatically saves the control’s value
to the data model.

If the wizard framework does not contain the control that you need, you can use
HTMLB controls, but you will have to manually save the control’s value to the
data model in the processInput() method for that pane.

Procedure
For each pane, perform the following:
...

1. Create a new class that implements IEditorPane.

2. Implement createUI(), in which you build a user interface with the help of wizard
framework and HTMLB controls. The following is the method’s signature:

public void createUI(IEditorContext context, IWorkspace workspace) {
}

The IWorkspace object passed into the method represents the entire editor window.

3. From the workspace, get the IEditorContainer, which represents the area of the
editor window set aside for your custom user interface.

IEditorContainer container = workspace.getEditorContainer();

4. Create your user interface with wizard framework and HTMLB controls that you add to
the editor’s IEditorContainer object.

For example, the following adds an input field called lastnameID, whose initial value is
set to the value stored in the data model property called details.lastName, and the
field is enabled or disabled based on whether the editor is read only.

InputField lastName = new InputField("lastNameID");
lastName.setValue(ctx.getProperty("details.lastName"));
container.addComponent("Last Name", lastName);
lastName.setEnabled(!ctx.isReadOnly());

For more information on HTMLB controls, see HTML-Business for Java [Page 33].

5. Implement the following IEditorPane methods, which are called on every request for
the pane:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 226

• init(): Perform any initialization for the pane.

• getEditorResources(): Load any resources for the pane, such as
JavaScript files or style sheets.

• processInput(): Store user input from HTMLB controls in the editor
context. The editor context and the HTMLB page context are passed into the
method.

For example, for an HTMLB input control called lastNameID, the following
stores the user input in the editor context property called
details.lastName:

context.setProperty("details.lastName",
 pageContext.getDataForComponentId("lastNameID").
 getValueAsString());

User input for wizard framework controls are automatically stored in the editor
context.

Options
The following lists additional steps that you can perform within the pane class:

● Set Read-Only State: You can determine if the editor and, therefore, the pane should
be read only, and then set the editor context to read only for the current request, as
follows:

context.setReadOnly();

● Navigate to Another Pane: To navigate to another pane, trigger the server event that
was set for that pane. For example, the following creates an HTMLB button called
creditCardID whose onClick event raises the creditPane event:

Button creditCard = new Button("creditCardID");
creditCard.setOnClick("creditPane");

This causes the creditPane server event to be triggered. The editor navigates to the
credit pane if the credit pane’s activating event was set to creditPane, as follows:

creditCard.setActivatingEvent("creditPane");

For more information on creating instances of panes and setting the activating event,
see Step 2: Creating an Editor Component [Page 33].

For more information on events, see Events [Page 33].

● Create a Custom Toolbar: You can create a toolbar of custom buttons at the bottom
of the pane. The following example shows how to create a custom toolbar button:

Action action = new Action("myAction","My Action");
workspace.getToolBar().add(action);

When an administrator clicks the custom button, a server-side event is triggered whose
name is the first parameter in the constructor for the button. In the above example, an
event called myAction is triggered, and the event is handled by the pane’s
doMyAction() method.

3.1.3.3.2.2 Step 2: Creating an Editor Component
Each editor contains an editor component, whose Java class extends
AbstractEditorComponent, a descendent of AbstractPortalComponent, making the

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 227

editor a portal component that can be displayed as an View in the administration pages of the
portal.

AbstractEditorComponent implements IEditorBuilder, which defines only one
method, setupEditor(), which is passed an IEditorConfiguration object. In this
method, the editor does the following:

● Creates instances of the panes as PaneMetaData objects.

● Adds the panes to the IEditorConfiguration object.

● Sets the default pane (that is, the pane that is displayed when the editor is launched).

Procedure
...

1. Create a new class that extends AbstractEditorComponent.

2. Implement setupEditor(), in which you will create instances of the panes, configure
them, and add them to the editor. The following is the method’s signature:

public void setupEditor(
 IEditorConfiguration editorConfig,
 IPortalComponentProfile profile,
 Map params,
 ResourceBundle editorTexts) {

}

3. Create instances of the panes for the editor and configure the panes. For each pane,
do the following:

a. Create a PaneMetaData object for representing the pane. The PaneMetaData
constructor takes the Class object of your pane class, and a string that is the
name of the pane.

PaneMetaData personalDetailsPane =
 new PaneMetaData(PersonalDetailsPane.class, "Personal Info");

b. Set the tooltip displayed when hovering over the radio button that displays the
pane.

personalDetailsPane.setDescription("personal details information");

c. Set the server event that causes the pane to be displayed.
personalDetailsPane.setActivatingEvent("personalDetails");

A pane can also be displayed by the user by clicking the pane’s radio button at
the top of the editor.

d. Indicate whether a radio button is displayed for this pane in the pane selection
area at the top of the editor.

personalDetailsPane.setPaneSelectionMember(true);

If no radio button is displayed for the pane, the only way to display the pane is
via an activating event.

4. Add each pane to the editor by calling addEditorPane() on the
IEditorConfiguration object that is passed into the setupEditor() method.

editorConfig.addEditorPane(personalDetailsPane);

5. Specify the default pane, that is, the pane that is displayed when the editor is launched.
editorConfig.setDefaultEditorPane(paymentPane);

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 228

6. Create an entry in the portalapp.xml for the editor component. The <component>
element is similar to a standard component, except that you specify the following in the
<component-profile> element:

○ Data Handler: In the
com.sap.portal.admin.editorframework.dataHandler property,
specify the class or service that implements the data handler.

For more information on creating the data handler, see Step 3: Creating a Data
Handler [Page 33] and portalapp.xml [Page 33].

○ JavaScript Resource: If you are including a JavaScript resource for the editor,
specify in the com.sap.portal.admin.editorframework.jsResource
property the path to the JavaScript file.

○ Generic Events Handler: If you are including a custom generic events handler,
specify in the
com.sap.portal.admin.editorframework.eventsHandler property the
class that implements the events handler.

For more information on creating custom generic events handlers, see Generic
Events [Page 33].

○ iView Properties: Specify iView properties in order to properly display the
editor. For example, remove the iView tray and set the isolation mode to URL.

The following is an example <component> element for an editor component:

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 229

 <components>
 <component name="TrainEditor">
 <component-config>
 <property name="ClassName" value="myPackage.TrainEditor"/>
 <property name="SafetyLevel" value="low_safety"/>
 </component-config>
 <component-profile>
 <property name=
 "com.sap.portal.admin.editorframework.dataHandler"
 value="myEditor.myDataHandler"/>
 <property name="com.sap.portal.iview.ShowTray"
value="false"/>
 <property name="com.sap.portal.reserved.iview.IsolationMode"
 value="URL"/>
 <property name="com.sap.portal.iview.HeightType"
 value="FULL_PAGE"/>
 <property name="isStateless" value="false" />
 </component-profile>
 </component>
 </components>

Result
The following is an example of setupEditor() for creating and configuring two panes:
public void setupEditor(
 IEditorConfiguration editorConfig,
 IPortalComponentProfile profile,
 Map params,
 ResourceBundle editorTexts) {

 //Create and configure personal info pane.
 PaneMetaData personalDetailsPane =
 new PaneMetaData(PersonalDetailsPane.class, "Personal Info");
 personalDetailsPane.setDescription("personal details
information");
 personalDetailsPane.setActivatingEvent("personalDetails");
 personalDetailsPane.setPaneSelectionMember(true);

 //Create and configure the payment info pane.
 PaneMetaData paymentPane =
 new PaneMetaData(PaymentPane.class, "Payment Info");
 paymentPane.setPaneSelectionMember(true);
 paymentPane.setActivatingEvent("paymentPane");

 //Add panes to the editor.
 editorConfig.addEditorPane(personalDetailsPane);
 editorConfig.addEditorPane(paymentPane);

 //Set default pane.
 editorConfig.setDefaultEditorPane(PersonalDetailsPane.class);

}

3.1.3.3.2.3 Step 3: Creating a Data Handler
You can create a custom data handler for your editor for loading initial values into the editor
controls and saving the values entered by the user to the PCD. A data handler, which extends
PCMDataHandler, implements loadData() and saveData().

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 230

The loadData() method is called when the editor is launched, when the editor is refreshed
(that is, when the administrator clicks Refresh) and when the editor manually requests a
reload of data by calling setLoadDataRequired() on the editor context.

The saveData() is called when the editor framework tries to save the editor’s data, for
example, when the user clicks Save in the editor toolbar.

If you do not create a data handler for your editor, the default data handler is called. The
default handler does not load any data and only saves changes made to the property editor.

Procedure
...

1. Create a new class that extends PCMDataHandler.

2. Implement loadData(), in which you initialize the data model by setting properties in
the editor context. The context is passed into the method as an IEditorContext
object.

The following is the method’s signature:
public void loadData(
 IEditorContext context,
 IPrincipal principal,
 PPLogger logger)
 throws EditorDataException {

}

In the editor context, set the value for properties that later will be saved to the PCD for
the currently edited PCD object, as in the following example:

context.setProperty("payment.type", "creditCard");

3. Implement saveData(), in which you save properties from the editor context into the
PCD. The following is the method’s signature:

public void saveData(
 IEditorContext context,
 IPrincipal principal,
 PPLogger logger)
 throws EditorDataException, EditorResourceException {

}

In saveData(), do the following:

○ Save Data from the Editor: The data entered by the user in your editor is
stored in the data model in the editor context. Save this data to the PCD, that is,
save each item in the data model to a specific attribute of the PCD object that is
being edited.

The following is an example of looking up the current PCD object and saving an
object attribute:

//Get the object ID for the currently edited PCD object.
Map parametersMap = context.getInitialParameters();
String objId = (String)parametersMap.get("objectID");

//Set environment variables for the PCD lookup.
Hashtable env = new Hashtable();
env.put(Context.SECURITY_PRINCIPAL, principal);
env.put(Constants.APPLY_ASPECT_TO_CONTEXTS,
 Constants.APPLY_ASPECT_TO_CONTEXTS);
env.put(Constants.REQUESTED_ASPECT,

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 231

 PcmConstants.ASPECT_ADMINISTRATION);

//Perform the lookup, returning an IAdminBase object.
InitialContext iCtx;
IAdminBase adminBase = null;
try {
 iCtx = new InitialContext(env);
 adminBase = (IAdminBase)iCtx.lookup(objId);
} catch (NamingException ne) {
}

//Get the object's IAttributeSet interface.
IAttributeSet attrSet = (IAttributeSet)
 adminBase.getImplementation(IAdminBase.ATTRIBUTE_SET);

//Set the attribute.
attrSet.putAttribute("myProperty", "200");

//Save the changes.
try {
 attrSet.save();
} catch (ValidationException e) {
 e.printStackTrace();
} catch (IOException e) {
 e.printStackTrace();
}

○ Save Changes Made in the Property Editor: Call saveData() on the data
handler’s super class, as follows:

super.saveData(context, principal, logger);

This saves any changes made to the object via the property editor.

4. If you want the data handler to be available to editors in other portal applications
(PARs), implement the IService interface.

Retrieving Values from the Property Editor
From the data handler’s getModifiedPropertyObject() method, you can retrieve the
value of any property that is displayed in the property editor, as in the following example:
IProperty prop = this.getModifiedPropertyObject(context).getProperty(
 "com.sap.portal.pcm.Description");
String description = prop.getValue();

3.1.3.3.3 Essential Information
This section provides the following information to help you manage systems:

● portalapp.xml [Page 33]: Information about the portalapp.xml file for an editor
application.

● JARs and Packages [Page 33]: The packages and JAR files required for creating an
editor.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 232

3.1.3.3.3.1 portalapp.xml
The following is a sample portalapp.xml for an editor:
<application>
 <application-config>
 <property name="releasable" value="false"/>
 <property name="Vendor" value="sap.com"/>
 <property name="SecurityArea" value="NetWeaver.Portal"/>
 <property name="SharingReference" value=
 "com.sap.portal.admin.wizardframework,
 com.sap.portal.admin.editorframework, com.sap.portal.htmlb" />
 </application-config>

 <components>
 <component name="TrainEditor">
 <component-config>
 <property name="ClassName" value="TrainEditor"/>
 <property name="SafetyLevel" value="low_safety"/>
 </component-config>
 <component-profile>
 <property name=
 "com.sap.portal.admin.editorframework.dataHandler"
 value="myEditor.myDataHandler"/>
 <property name="com.sap.portal.iview.ShowTray"
value="false"/>
 <property name="com.sap.portal.reserved.iview.IsolationMode"
 value="URL"/>
 <property name="com.sap.portal.iview.HeightType"
 value="FULL_PAGE"/>
 <property name="isStateless" value="false" />
 </component-profile>
 </component>
 </components>

 <services>
 <service name="myDataHandler">
 <service-config>
 <property name="className" value="TrainDataHandler" />
 <property name="SafetyLevel" value="medium_safety" />
 <property name="startup" value="false" />
 </service-config>
 </service>
 </services>

</application>

Application Configuration Element
In the <application-config> element, add a SharingReference for the following
services:

Service/Component Sharing Reference

Wizard Framework com.sap.portal.admin.wizardframework

Editor Framework com.sap.portal.admin.editorframework

HTMLB com.sap.portal.htmlb

<application-config>
 <property name="releasable" value="false"/>
 <property name="Vendor" value="sap.com"/>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 233

 <property name="SecurityArea" value="NetWeaver.Portal"/>
 <property name="SharingReference" value=
 "com.sap.portal.admin.wizardframework,
 com.sap.portal.admin.editorframework, com.sap.portal.htmlb"
/>
</application-config>

Components Element
An editor contains one portal component, the editor component, which is based on a class
that extends AbstractEditorComponent. For more information on creating the editor
component’s <component> element, see Step 2: Creating an Editor Component [Page 33].
 <components>
 <component name="TrainEditor">
 <component-config>
 <property name="ClassName" value="myPackage.TrainEditor"/>
 <property name="SafetyLevel" value="low_safety"/>
 </component-config>
 <component-profile>
 <property name=
 "com.sap.portal.admin.editorframework.dataHandler"
 value="myEditor.myDataHandler"/>
 <property name="com.sap.portal.iview.ShowTray"
value="false"/>
 <property name="com.sap.portal.reserved.iview.IsolationMode"
 value="URL"/>
 <property name="com.sap.portal.iview.HeightType"
 value="FULL_PAGE"/>
 <property name="isStateless" value="false" />
 </component-profile>
 </component>
 </components>

Services Element
If you want the data handler to be available to editors in other portal applications (PARs), you
must expose the data handler as a portal service and list it in the <services> element. The
data handler class must implement IService.

If the data handler is exposed as a service, the name of the data handler service – instead of
the class – is specified in the
com.sap.portal.admin.editorframework.dataHandler property in the <config-
profile> section for any editor component that wants to use it, as described in Component
Element above.
 <services>
 <service name="myDataHandler">
 <service-config>
 <property name="className" value="TrainDataHandler" />
 <property name="SafetyLevel" value="medium_safety" />
 <property name="startup" value="false" />
 </service-config>
 </service>
 </services>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 234

3.1.3.3.3.2 JARs and Packages

Packages
● com.sapportals.admin.wizardframework.components

● com.sap.portal.admin.editor

● com.sapportals.htmlb

● com.sapportals.common (for logger)

JARs
● com.sap.portal.admin.wizardframework_api.jar

● com.sap.portal.admin.editorframework_api.jar

3.1.4 Client-Side Eventing

Purpose
The Enterprise Portal Client Framework (EPCF) provides an infrastructure for scripting used
in iViews and by the portal.

To keep the application design simple and maintain compatibility to different browsers, Web
applications usually avoid scripting. However, there are tasks that make it necessary to use
scripting, such as:

● Increasing user acceptance for example with context sensitive entry helpers

● Enhancing response time of the application for example through validation of input
values

When a business application uses more than one iView, you need the EPCF service to
transfer data between the iViews. The EPCF service provides:

● Mechanisms for eventing between iViews.

● A Java object, called a client data bag, that serves as transient data buffer on the
browser.

The EPCF implementation itself is based on JavaScript and Java applets.

3.1.4.1 EPCF Levels
The EPCF level defines which functionality of the EPCF service is available to the Web
application. The EPCF level affects the size of the generated HTML data is generated, that is
sent to the client. A higher level generates more HTML data. The EPCF has the following
levels.

0: No EPCF Service

This level generates no JavaScript or Java applet framework functions. Communication
between iViews is not possible.

1: JavaScript

This level generates framework functions for JavaScript.

2: JavaScript and Applet

This level generates framework functions for JavaScript and Java applet.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 235

Detailed feature list

Feature Level Description

Implicit softening the
JavaScript Origin Policy
[Page 33]

1 Enables scripting between
IFrames from the same
domain but different hosts.

System function 1 Retrieves the EPCF version,
the current EPCF level and
client information.

Client eventing 1 Client communication service
for iViews.

Predefined Client Events 1 Collection of useful client
events.

Client Data Bag 1* / 2 Buffer for the client that
stores JavaScript data as
long as the portal session
exists.

3.1.4.2 EPCF API
The EPCF service defines the Enterprise Portal Client Manager (EPCM) JavaScript object.
With the methods of the EPCM object you can access the EPCF service functions as follows:

EPCM.[API_method_name]([Params]*);

iViews can access the EPCM object from every portal page or IFrame. Every iView of the
Portal Runtime (PRT) contains the EPCM object. As a result every embedded or isolated
iView can use the EPCF service with the method:

EPCM.subscribeEvent(, eventName, eventHandler);

For details on namespaces, see section Namespaces [Page 33] in the glossary.

Every EPCM object stores the data it receives and delegates them automatically to the
registered EPCM objects.

With EPCF level 2 every portal page and as a result in all isolated iViews, contain a Java
applet. The applet serves as a class factory for methods that return references to the intrinsic
classes. These classes are implemented as Singletons therefore every class has only a
single instance in a portal session, even when the iViews are reloaded. The applet object is
instantiated inside every portal page frame.
The EPCF API has following parts:

● System API

The system API [Page 33] provides methods to get the version and the level of the
EPCF service and information about the client.

● Event API

The event API [Page 33] , which allows iViews to communicate with each other and
with the portal environment itself on the. This is done by using JavaScript functions on
the client which are invoked on client events like onload, onclick and so on.

● Client Data Bag API

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 236

The client data bag API [Page 33] offers a transient data buffer for iViews. The data
remains in the buffer are saved even after the iView or the whole portal page is
reloaded. Depending on the EPCF level, following storage mechanisms are used:

○ EPCF level 1 - JavaScript

Values are stored as cookies in the browser.

○ EPCF level 2 – Java Applet

Values are stored as a Java class attribute.

● WorkProtect API

The WorkProtect API [Page 33] provides the infrastructure for handling unsaved data in
a stateful application.

● Navigation API

The Navigation API [Page 33] provides methods to navigate in the portal.

● EPCM Proxy

The EPCM proxy API [Page 33] enables the EPCF functions in portal applications that
are rendered in their own IFrame (for example, ITS-based applications and BSP).

3.1.4.2.1 System API
With the EPCF system API you have access to the settings of the EPCF service.

EPCM.getVersion()
This method returns the current framework version as type number.

Usage
<script language="JavaScript">

 var version = EPCM.getVersion();

</script>

EPCM.getLevel()
This method returns the current EPCF level as type number.

The EPCF level defines which EPCF services are available. The portal application has to take
care, that it uses services which are available at the current EPCF level.

Usage
<script language ="JavaScript">

 if (EPCM.getLevel() >= 2) {

 EPCM.storeClientData("urn:com.sap:myObjects",

 "person", "Albert Borland");

 }

 </script>

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 237

EPCM.getUAType()
This method returns the client type as type number.

Usually this method will be used together with the method getUAVersion() and
getUAPlatform(). The return value can be compared to predefined EPCM-constants:

EPCM.MSIE, EPCM.NETSCAPE, EPCM.MOZILLA, EPCM.OPERA, EPCM.NOKIA,
EPCM_UP, EPCM_ERICSSON, EPCM_MSPIE, EPCM_PALM EPCM.OTHER.

Usage
<SCRIPT language ="JavaScript">

 if(EPCM.getUAType() == EPCM.MSIE){/*codingfor IE*/ }

 if(EPCM.getUAType() == EPCM.MOZILLA){/*codingfor
Mozilla*/ }

 </SCRIPT>

EPCM. getUAVersion()
This method returns version of the client as type number.

Usage
<SCRIPT language ="JavaScript">

 if(EPCM.getUAType() == EPCM.MSIE){

 if(EPCM.getUAVersion() == 5.0){/*codingfor MSIE 5.0
*/ }

 if(EPCM.getUAVersion() > 5.5){/*codingfor MSIE 5.0+*/ }

 }

 </SCRIPT>

EPCM.getUAPlatform()
This method returns the platform on which the client is running as type number.

The return value can be compared to predefined EPCM constants:

EPCM.NT_PLATFORM, EPCM.WIN_PLATFORM, EPCM.MAC_PLATFORM,
EPCM.LINUX_PLATFORM, EPCM.WAP_PLATFORM, EPCM.PDA_PLATFORM,
EPCM.OTHER_PLATFORM.

Usage
<SCRIPT language ="JavaScript">

 if(EPCM.getUAPlatform() == EPCM.LINUX_PLATFORM){

 /* coding that will only be processed if the client runs

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 238

LINUX */

 }

</SCRIPT>

getInstanceId() Method
This method returns an unique EPCF instance as type String.

The method is used by the EPCF core to distinguish the pages after a page refresh.

Usage
<SCRIPT language ="JavaScript">

 document.write("EPCMInstanceId = " + EPCM.getInstanceId());

</SCRIPT>

EPCM.getUniqueWindowId()
This method returns an unique identifier of the IFrame as type String.

You can use this method to append the returned IFrame identifier string to the name you use
to define a client data bag. This creates a client data bag that can only be accessed by a
specific IFrame.

The method returns null when the object returned by window.top is not
accessible because of security reasons (JavaScript origin policy [Page 33]).

Usage
<SCRIPT language ="JavaScript">

 document.write("WindowId = " + EPCM.getUniqueWindowId());

 ...

 ECPM.storeClientData(

"com.sap.portal:test",EPCM.getUniqueWindowId()+"Item",myItem);

 ...

 </SCRIPT>

3.1.4.2.2 Event API
The EPCF event API provides methods for the event handling on the client.

EPCM.subscribeEvent(nameSpace, eventName, eventHandler)
This method assigns an event handler to the specified event.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 239

The method sets the event handler to the subscription list for the event defined by the
nameSpace and the eventName. The combination of nameSpace, eventName and
eventHandler must be unique. It is not possible to register the same event handler to several
events. See section Namespaces [Page 33] for more details.

Isolated iViews have to subscribe on every page Refresh or Reload.

Parameter Description

Parameter Type Description

nameSpace String URN [Page 33] of the event namespace.

eventName String The event name you subscribe to. You can use an
asterisk (*) to subscribe for all events of this name-
space.

eventHandler Function Reference to the event handler.

Usage
<script language ="JavaScript">

 function onWakeup(eventObj) {

 alert("got a wakeup call from " +

 eventObj.sourceId + ": " + eventObj.dataObject);

 }

 ...

 EPCM.subscribeEvent("urn:com.sap:alarmClock",

 "morningCall", onWakeup);

 ...

 EPCM.subscribeEvent("urn:com.sap:alarmClock", "*",
onWakeup);

<script>

EPCM.raiseEvent(nameSpace, eventName, dataObject [, sourceId])
This method raises the event defined by nameSpace and eventName. The EPCF service
calls all event handlers which are registered for this event and passes the event object on to
the event handler.

The event object is created by the EPCF service whenever an event is raised. It combines the
dataObject, the eventName and the sourceId (which may be null) to a single argument for the
event handler.

Parameter Description

Parameter Type Description

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 240

nameSpace String URN [Page 33] of the event name-space.

eventName String The event name with which the event is raised..

dataObject Object An object (String, Number, Boolean or Object) that
contains a description of the event.

sourceId

(optional)

String The component id of the event source, for example, the
id defined at design-time. Specify Null or no parameter if
you do not need the id.

Usage
<SCRIPT language ="JavaScript">

 ...

 EPCM.raiseEvent("urn:com.sap:alarmClock", "morningCall",

 "Good morning ladies and gentlemen", "iView_0815");

 ...

<SCRIPT>

3.1.4.2.3 Client Data Bag API
The EPCF client data bag API provides methods to store data in a transient data buffer on the
client.

EPCM.storeClientData(nameSpace, name, value)
This method saves data in value under a key. The key is generated by combining the
parameters nameSpace and name. If the key already exists, the stored data will be
overwritten.

Parameter Description

Parameter Type Description

nameSpace String URN [Page 33] for the first part of the key under which
the data is stored. nameSpace will be combined with
name.

name String This name, combined with namespace, creates the key
under which the data is stored.

value String Data to be stored.

The parameter value must be of type String. Primitive data types will be
converted to String, complex data types and references are not supported. This
restriction is necessary to guarantee that the client data bag functions are
working in a JavaScript environment using the browser cookies for clients that
have no Java support.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 241

Usage
<SCRIPT language ="JavaScript">

 var selectedPerson = "Tim Taylor"

 EPCM.storeClientData("urn:com.sap.myObjects", "person",

 selectedPerson);

</SCRIPT>

EPCM.loadClientData(nameSpace, name)
This method returns the data stored under the specified key as String. The key is generated
by a combination of the parameters nameSpace and name. If the key does not exist, the
method returns null.

Parameter Description

Parameter Type Description

nameSpace String URN [Page 33] for the first part of the key from which the
data is reloaded. nameSpace will be combined with
name.

name String This name, combined with namespace, is the key from
which the data is reloaded.

Usage
<SCRIPT language ="JavaScript">

 var person=EPCM.loadClientData("urn:com.sap.myObjects",
"person");

 if (person != null){

 /* process person */

 }

</SCRIPT>

deleteClientData(nameSpace, name)
This method deletes the data stored under the specified key and the key itself. The key is
generated by a combination of the parameters nameSpace and name.

Parameter Description

Parameter Type Description

nameSpace String URN [Page 33] for the first part of the key which is.
nameSpace will be combined with name.

name String This name, combined with namespace, is the key from
which is deleted.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 242

Usage
<SCRIPT language ="JavaScript">

 EPCM.deleteClientData("urn:com.sap.myObjects", "person");

</SCRIPT>

3.1.4.2.4 WorkProtect API
The EPCF WorkProtect API provides methods to get the status about unsaved data on the
page.

EPCM.setDirty(indicator)
This method sets the status of the dirty indicator to true or false.

Parameter Description

Parameter Type Description

indicator boolean Status of the dirty indicator:

true: Page contains unsaved data.

false: Page is clean – no unsaved data.

Usage
<SCRIPT language ="JavaScript">

 if (storedValue != enteredValue){

 changedData["DataKey"] = enteredValue;

 EPCM.setDirty(true);

 }

 // do other actions ...

 storeArrayToDataBase(changedData);

 EPCM.setDirty(true);

</SCRIPT>

EPCM.getDirty()
This method returns the current setting of the dirty indicator as type boolean. The
WorkProtect feature uses this method to get the dirty indicator for the entire portal page.

Usage
<SCRIPT language ="JavaScript">

 var isDirty = EPCM.getDirty();

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 243

 alert("Component " + (isDirty) ? "clean" : "dirty");

</SCRIPT>

EPCM.getGlobalDirty()
This method returns the current setting of the dirty indicator as type boolean. The difference
to the getDirty() method is, that the getGlobalDirty() method checks the dirty flag of all iViews
on the page and returns a true value if at least one of the iViews had a dirty flag set to true,
and false otherwise.

Usage
<SCRIPT language ="JavaScript">

 var isDirty = EPCM.getGlobalDirty();

 alert("One component " + (isDirty) ? "clean" : "dirty");

</SCRIPT>

3.1.4.2.5 Navigation API
The Navigation API provides the methods to navigate inside the portal. Refer to section
Enterprise Portal Navigation [External] for more details about the navigation service.

Absolute Navigation
For an absolute navigation you have to know the full path name of the component. The full
path name starts at the navigation hierarchy root node all the way to the navigation target.

EPCM.doNavigate(String target, [int mode, String winFeat, String
winName, int history, String targetTitle, String context])
This method triggers the absolute navigation on the client. By default, when the parameter
mode is not specified, the dirty indicator of the component is checked by the WorkProtect
feature and the target is opened in a new window or on the current portal page depending on
the result of the check.

The optional parameters are new in Enterprise Portal 6.0 and can be used when the target is
displayed in the new window.

The method always returns false, for easier use with event handlers like onClick.

Parameter Description

Parameter Type Description

target String Navigation target that corresponds to the location in PCD
or another structure (see details below)

mode

(optional)

int 0 or not specified:

Depending on the setting of the WorkProtect feature the
target is opened in a new window or on the current
desktop.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 244

1:

Open target in a new window, with no a portal header
and navigation bar.

2:

Open target in a new window, with a portal header and
navigation bar.

winFeat

(optional)

String Window feature string when the target is to be opened in
the new window. This is a comma separated list of
features with no blanks that has the same syntax as the
JavaScript method window.open.

Example: "width=400,height=500".

winName

(optional)

String Window title for when the target is opened in a new
window.

history

(optional)

int history mode

0: Track history entries and allow duplicates.

1: Track history entries and do not allow duplicates.

2: Do not track history entries.

targetTitle String Title for the page title bar. In case the navigation target is
sent through an integrator, the title will be the integrator
title. You can specify a specific title for this navigation
and optional for the history entry.

Context String Navigation context URL.

Usage
<SCRIPT language ="JavaScript">

 // navigate.

 EPCM.doNavigate(

"ROLES://portal_content/folder1/role1/workset1/iView111")

</SCRIPT>

<A HREF="myLink"

 onclick="return EPCM.doNavigate

('ROLES://portal_content/folder1/role1/workset1/iView111')">

This is an HTML Link

Result
This starts the navigation to the iView 111 under role 1.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 245

Figure 1: Navigation hierarchy example

Relative Navigation
For a relative navigation you specify the relative location of the navigation target to the current
navigation node.

EPCM.doRelativeNavigate(String basenodename, int level, List
pnamesList,
 int mode, String winFeat, String winName, int history, String
targetTitle,
 String context])
This method triggers the relative navigation on the client. You have to know the location of the
navigation target relative to the current node. That the navigation model can create an
absolute path, you have to provide at least the level or the pnameslist parameters in
addition to the basnodename parameter.

The optional parameters are new in EP 6.0 and can be used when the target is displayed in
the new window.

The method always returns false, for easier use with event handlers like onClick.

Parameter Description

Parameter Type Description

basenodeName String Current presented URL – current node.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 246

level int Number of hierarchy levels to step up.

pnameslist List A list with all the atomic names of the children nodes,
relative to the node that has been reached by stepping
up the number of levels defined by parameter level.

mode int 0 or not specified:

Depending on the setting of the WorkProtect feature the
target is opened in a new window or on the current
desktop.

1:

Open target in a new window, with no a portal header
and navigation bar.

2: Open target in a new window, with a portal header and
navigation bar.

winFeat

(optional)

String Window feature string when the target is to be opened in
the new window. This is a comma separated list of
features with no blanks that has the same syntax as the
JavaScript method window.open.

Example: "width=400,height=500".

winName

(optional)

String Window title for when the target is opened in a new
window.

history

(optional)

int history mode

0: Track history entries and allow duplicates.

1: Track history entries and do not allow duplicates.

2: Do not track history entries.

targetTitle String Title for the page title bar. In case the navigation target is
sent through an integrator, the title will be the integrator
title. You can specify a specific title for this navigation
and optional for the history entry.

Context String Navigation context URL.

Usage
<SCRIPT language ="JavaScript">

 // navigate.

 EPCM.doRelativeNavigate(

 "ROLES:// portal_content/role3/Folder32/Folder33", 2,
 {"page3"}, ..., ..., ...);

</SCRIPT>

<A HREF="myLink"

 onclick="return EPCM.doRelativeNavigate

 ('ROLES:// portal_content/role3/Folder32/Folder33', 2,
 {"page3"}, ..., ..., ...)">

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 247

This is an HTML Link

Result
This starts the navigation from folder 33 under role 3 to page 3 under role 3. See figure 1.

If you do not provide the first parameter, the current navigation node, the
navigation model will find the current navigation node itself and add it to the path
automatically.

Object Based Navigation
The object based navigation allows navigation based on actual business objects from
productive back end systems. The object based navigation is based on the concept of
business objects, that perform certain operations and iViews that can be declared as
implementers of these operations. Every operation has a priority. When choosing the link of
the object based navigation, the operation with the highest priority, that has an implementing
iView in the user role (the default), will be executed.

EPCM.doObjBasedNavigate(String systemAlias, String
businessObjName,
 String objValue, String operation)
This method allows navigating in a context environment, without a specific URL for a
navigation target. For more details, see the Object Base Navigation description.

The method always returns false, for easier use with event handlers like onClick.

Parameter Description

Parameter Type Description

systemAlias String The system alias of the business object.

businessObjName String Business object name for which the operation was
defined.

objValue String Any data that has to be transferred to the navigation
target when the visualization iView represents relative
data. The objValue can be any string that is added
to the URL of the navigation target (after the "?"
separator) and the target iView can access the
objValue via the iView request object.

operation String Operation that should be performed when the
business object has more than one operation.

The parameters businessObjName and sytemAlias define the MetaMatrix
name of the object based navigation business object.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 248

If the object based navigation uses relation resolving, the objValue parameter
is used to transfer the HRNPLink.

3.1.4.2.6 EPCM Proxy
The EPCM proxy enables the EPCF functions for portal applications that are rendered in their
own IFrame (for example, ITS-based applications and BSP).

Reload Function and Event-Subscription
The EPCF event methods are used by function reference. Since the references are kept
across the IFrame borders, the references become invalid whenever the IFrame content is
reloaded. To solve this problem, you have to use the second signature of the
EPCM.subscribeEvent method that references to the current window object.

EPCM.subscribeEvent(nameSpace, name, window_reference,
method_name)

External applications (for example, BSP, BW-Reports) are rendered in their own IFrame. The
EPCM Object therefore can convert the event handler registration from
[window_reference,method_name] to [iframe_name,method_name]. With this
conversion the method keeps the name and not the object/method reference. When the
IFrame content is reloaded now, the iframe_name and method_name are still valid and the
event handler, that is located inside the IFrame, can be called from the EPCM event manager
outside the IFrame using the following call:

window.frames[iframe_name][method_name](event_data)

IncludeProxy
To simplify the implementation, the EPCMPROXY object is provided that serves as the proxy.
The EPCF calls within the IFrame are delegated by the proxy layer to the upper EPCF layer.
So instead of EPCM calls you use EPCMPROXY. The EPCMPROXY object is defined in the
JavaScript file epcfproxy.js that comes with the portal. The JavaScript file
epcfproxy.js has to be included into your portal application.

Usage
<HTML>
<HEAD>
<TITLE>EPCMProxy test example</TITLE>
<!--
 This is a general proxy to delegate all EPCM calls to the upper fram
e -->
<SCRIPT src="epcfproxy.js"></SCRIPT>
<SCRIPT>//
 var lnDotPos = document.domain.indexOf(".");
 if(lnDotPos>=0)document.domain = document.domain.substr(lnDotPos +
 1);

 function run() {
 // call EPCF method via proxy (transparent for End-User
 EPCMPROXY.subscribeEvent("urn:com.sapportals.portal.epcmdemo.anim
als",
 "onAnimalSelect", window, "handleEvent");
 showCurrentAnimal();
 }

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 249

 function showCurrentAnimal() {
 var lsAnimal =
 EPCMPROXY.loadClientData("urn:com.sapportals.portal.epcmdemo.anima
ls",
 "animalstored");
 if (lsAnimal == null){ lsAnimal = "unknown"; }
 document.getElementById("infoBox").innerHTML = lsAnimal;
 }

 function handleEvent(evt) {
 showCurrentAnimal();
 }

 function showEPCMdata(){
 var data = ""
 data+= "\n EPCMPROXY.getUAType="+EPCMPROXY.getUAType();
 data+= "\n EPCMPROXY.getUAVersion="+EPCMPROXY.getUAVersion()</STRO
NG>;
 data+= "\n EPCMPROXY.getUAPlatform="+EPCMPROXY.getUAPlatform()</ST
RONG>;
 data+= "\n EPCMPROXY.getUAVersion="+EPCMPROXY.getVersion();
 data+= "\n EPCMPROXY.getInstanceId="+EPCMPROXY.getInstanceId()</ST
RONG>;
 data+= "\n EPCMPROXY.getUniqueWindowId="+EPCMPROXY.getUniqueWindow
Id()
 ;
 alert(data);
 }
</SCRIPT>

</HEAD>
<BODY onLoad="run()">
<DIV class="header"> EPCMProxy test component </DIV>
<P>
<BUTTONonClick="location.reload()">reload</BUTTON>
<BUTTONonClick="showEPCMdata()">show EPCM Data</BUTTON>
<DIVid="infoBox"></DIV>
</BODY>
</HTML>

There must be document - domain alignment so that the parent EPCM object
can be accessed across the IFrame border. See section JavaScript Origin Policy
[Page 33] for more details.

Use the object-call-signature‚ with the reference to the window object for the
EPCMPROXY.subscribeEvent() method.

Restrictions
Restrictions for the EPCFPROXY object.

● Following APIs are available for the EPCMPROXY object:

○ System API [Page 33]

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 250

○ Event API [Page 33]

○ Client data Bag API [Page 33]

○ WorkProtect and Cross Navigation API [Page 33]

● The EPCMPROXY object delegates the calls up one level. If your portal application
uses additional Framesets or IFrames, the calls inside the subframes are not
processed.

● To avoid the JavaScript errors, encapsulate the EPCFPROXY calls with JavaScript
try/catch statements.

● The JavaScript file epcfproxy.js is not a part of the portal core. The file must be
stored in the application code repository and delivered with the portal application.

3.1.4.3 EPCF Configuration
To configure the EPCF service you have to be logged in as administrator.

Configuration steps:
...

1. Choose the command System Administration in the top level navigation.

2. Choose the commands System Configuration → Service Configuration

3. Choose the Browse tag and open the node Applications.

4. Open the node com.sap.portal.epcf.loader.

5. Open the subnode Services and you will see the entry epcfloader.

6. Click the epcfloader entry with the right mouse key and select Edit.

The property page is displayed and you can modify the values. To save the changes, choose
the Save button.

If you are working in a cluster environment, you have to restart the EPCF
service so that the changes take immediate effect on all cluster nodes.

If the EPCF property values are not set correctly, the EPCF service uses the
default settings at runtime.

EPCF Properties

Property Description

applet.archive = < on | off > Defines if the classes of the Java applet are
transferred as single class files or in one
Java archive (JAR). This setting has only an
affect if the framework.level property is
set to 2.

on: All classes are loaded from the server to
the client in one JAR file.

off: Every class is loaded from the server to
the client individually.

For a productive system we recommend the
value on.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 251

applet.trace.level = < 0 | 1 | 2
>

This setting only has an affect if the
framework.level property is set to 2.

The applet.trace.level controls the
level of error messages displayed. A higher
applet.trace.level reduces the portal
performance.

0: Display errors only.

1: Display errors and warnings.

2: Display errors, warnings and information.

For a productive system we recommend the
value 0.

framework.level = < 0 | 1 | 2 > Defines the EPCF service level in use.
Please refer to section EPCF Level [Page 33]
for more details.

The default setting is 2.

See also
Work Protect Mode for EP 6.0 [Page 33]

Properties for EP 5.0 [Page 33]

3.1.4.4 WorkProtect Feature for EP 6.0
To match the concept of the WorkProtect feature, a portal application must meet the following
requirements:

● Maintain the dirty indicator

● Adjust portal links (This function is currently only supported by CRM).

Maintaining the Dirty Indicator
The dirty indicator status of a portal application informs the portal that there is unsaved data.

The portal application sets the dirty indicator when the user enters a new value
into an input field. The portal application resets the dirty indicator when the user
saves the value (for example when the user chooses the Save button).

See section WorkProtect and Cross Navigation API [Page 33] for more details.

Adjusting Portal Links
The portal can only check the current dirty indicator and perform the navigation without losing
data, if the portal application replaces all the links that can destroy the contents of the content
area with links having the following syntax (analogous to New Navigation Model / WorkProtect
Mode , section Cross Navigation):

The parameter <any_PCD_URL> specifies the location of a page or an external service in the
user role. Constants must be enclosed in quotation marks.

You can find the correct value for the page in the Role Editor.

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 252

Make sure that you update the corresponding parameter values for the <PCD_URL> in the
secondary links and navigation targets when you change the role structure.

Configuration Test
Test tool: com.sap.portal.epcf.loader.Dirty

The test tool supports the tracing and solving of problems related to the dirty indicator. You
can find the tool under

System Administration → Support → Support Desk → Client Framework

3.1.4.5 Navigation
The portal navigation model supports the navigation and WorkProtect feature. These features
allow tight integration of stateful applications in the portal environment and improve the
usability of the applications running in the portal.

See also:
Navigation Service [External]

Navigation API [Page 33]

WorkProtect API [Page 33]

Availability
The JavaScript based API has been introduced in EP 5.0.4.1 (see SAP Note 543274) and is
compatible to the API in EP 6.0.

Business Case for Navigation
Portal implementations usually have separate areas for handling navigation and displaying
content. The navigation area typically visualizes a navigation tree and highlights the selected
node. The content area visualizes this selected node, for example, a portal page, document
or portal application). This model resembles a simple file system browser and works well with
stateless portal applications.

However, this approach does not meet all requirements for an enterprise solution, which
should be able to handle complex business processes in parallel and switch from one context
to another.

Navigation Target
The navigation target specifies the location of an iView or a page in the current user role. The
target can be obtained from the portal catalog as a value that is concatenated by folder id s,
roles or other objects.

The navigation target has to be prefixed with the corresponding navigation connector name
that is used for retrieving the navigation structure. When accessing iViews and pages in the
role from the Portal Content Directory (PCD), you have to add the prefix ROLES:// to the
URL.

Example:
We have created a custom role (MyRole) and assigned an iView (MyIView) to it:

portal_content (root folder) → MyRole (folder) → MyRole (role) →
MyTest (folder) → MyIView (iView)

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 253

The corresponding navigation target is:

ROLES://portal_content/MyRole/MyRole/MyTest/MyIView

When you change the role structure, you have to update the corresponding values used in
secondary links or used as navigation target; always keep both in sync.

Compatibility to EP 5.0
In the Enterprise Portal 5.0 the navigation target to the portal pages or external services are
specified without the prefix for example, /roles/MyEP50Role/MyEP50Folder/MyEPApp.
These navigation targets are also valid in EP 6.0.

When you have migrated the content from EP5.0 to EP6.0, the migrated content is in folder
portal_content/com.sap.portal.migrated/ep_5.0 . The portal navigation will
check for incomplete navigation targets and it to the new schema automatically.

ROLES://portal_content/com.sap.portal.migrated/ep_5.0/roles/MyEP50Role/MyEP50Folder/M
yEPApp

Navigation Features for Navigation Targets
The Enterprise Portal offers the following features for navigation targets:

● Start with Navigation Target

This feature lets you start the portal and automatically navigate to any portal page or
iView inside the role.

● Navigation

This feature allows seamless navigation from portal applications. The primary links in
the navigation as well as the secondary links in the content area can be used in a portal
application. The navigation updates the content area correctly and highlights the
corresponding node in the navigation tree - for a primary link or another instance.

Start with Navigation Target
The portal can be started in the browser with an URL that starts the first page assigned in the
user role. The URL has the following structure:

<your_portal_server>/<portal_alias>

This URL can be extended by the navigation target that will be called automatically after the
start. You have to specify a valid page (by default, index.htm). The extended URL has the
following structure:

<your_portal_server>/<portal_alias>/<initial_page>?
NavigationTarget=<escaped_NavigationTarget>

The <escaped_NavigationTarget> parameter represents the escaped location of the page or
iView in the role. Escape is necessary to avoid conflicts when using special characters. See
the JavaScript function escape for more details.

Example:
http://myportal.wdf.sap.com:8100/irj/index.htm ?

NavigationTarget=ROLES%3A//portal_content/MyRole/MyRole/MyTest/M
yIView

Core Development Tasks March 2006

Creating and Managing Content

Running an Enterprise Portal 254

Navigation
The solution implemented for secondary links in the portal component uses a combination of
a HTML hyperlink and a call of a EPCF service method EPCM.doNavigate() [Page 33].

This is HTML Link

The String parameter target represents the location of an iView or a page in the role. The
value is available from the portal content catalog.

Constant String values must be enclosed in JavaScript in single quotes.

When the link is activate, the EPCM.doNavigate() method informs the Top Level
Navigation (TLN) about the required navigation target. The TLN will handle this request it in
the same way as any other navigation using primary links.

3.1.4.6 Glossary
Terms used in the EPCF service description.

3.1.4.6.1 Client Data Bag
The client data bag is a transient data buffer for the Web client (browser) which is active as
long as the session of the browser. For the portal that is as long as the user is logged on to
the portal.

An iView can access the client data bag with the Enterprise Portal Client Manager (EPCM)
object.

3.1.4.6.2 JavaScript Origin Policy
The JavaScript Origin Policy controls the access to the Document Object Model (DOM) from
different frames. Scripting between two frames is permitted only if both frame sources come
from the same top level domain.

All browsers support the JavaScript Origin Policy, so foreign web sites are unable to retrieve
data from the portal page or the iViews.

An similar origin policy also applies for the Java Virtual Machine (JVM). Classes/objects can
only interact with classes/objects which are loaded from the same location. Therefore it is
impossible for a foreign applet to access the data inside the Client Data Bag or use the Client
Data Channel.

For more information see Microsoft documentation at internet address
msdn.microsoft.com/library/default.asp?url=/workshop/author/om/xframe
_scripting_security.asp
and modzilla documentation at internet adress
www.mozilla.org/projects/security/components/same-origin.html

3.1.4.6.3 Namespaces
The World Wide Web Consortium (W3C) (http://www.w3c.org) defined the naming and
addressing standards for Web development. The Enterprise Portal uses these standards in
the EPCF service for the events and Client Data Bag [Page 33].

Core Development Tasks March 2006

Uniform Resource Identifier (URI)

Running an Enterprise Portal 255

This section refers to Request for Comments (RFC). The comment for the specified RFC
number can be found at http://www.ietf.org/rfc/.

Name Syntax
Some methods, for example, EPCM.raiseEvent(...), expect a Name as argument. Name
is a String variable with restricted characters.

Valid characters for Name are:

Range Characters

Lowercase characters a to z

Uppercase characters A to Z

Numerical characters 0 to 9

Additional characters Underscore(_), Dash (-)

Namespace Syntax
The namespace definition is compliant with the Unified Resource Name (URN) specification,
which is available from the World Wide Web Consortium. Namespaces used in JavaScript
functions calls must be compliant to this specification.

Namespaces reserved by the Enterprise Portal

Reserved name-space Used for

com.sapportals.portal.* Portal core development

com.sapportals.* Portal core development

The namespace must start with the string "urn:" followed by the structure (in Backus-Naur
form)

<URN>::="urn:" <Namespace_identifier> ":"
<Namespace_Specific_String>

The tokens <namespace_identifier> and <Namespace_Specific_String> must be
compliant with the recommendation RFC 2141 and RFC 1630. We recommend that you use
only lowercase, uppercase and numerical characters.

3.2 Uniform Resource Identifier (URI)
It addresses a resource in the Internet in the following way:

● By name

This is called Uniform Resource Name (URN).

● By location,

This is called Uniform Resource Locator (URL).

3.3 Uniform Resource Locator (URL)
It addresses a resource in the Internet. The URL is the address you enter into the address
field of your browser. The URL syntax describes a subset of the Uniform Resource Identifier
syntax.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 256

3.4 Uniform Resource Name (URN)
It addresses a resource in the Internet, regardless of its location. The URN syntax follows the
rules of the URI. A URN can also be used to define distinct entities without being associated
to an existing resource. The name spaces in the portal make use of this feature. A URN has
the prefix: urn://. For further information about the syntax, see the description for RFC
2141 at www.ietf.org.

3.4.1 Page Builder

Purpose
The page builder component loads the portal applications and builds the page so that it is
displayed properly in the browser. The page building process has two stages:
...

1. The page builder gets the list of portal applications that are on that page from the page
editor. It reads the properties of the portal applications and loads the portal applications
using the Portal Runtime (PRT).

2. The page builder loads the page layout component that is based on a JSP file. It
represents the actual visual layout of the page and can be edited in the layout view of
the page editor. The page layout component takes the response from every portal
application, wraps it with a tray and places it on the page at the right location.

The page building process is done asynchronously, therefore the loading time of the page
takes not longer than the time it takes for the slowest portal application in the page to load
(unless a specific Page Timeout was defined).

Page Layout Component
The page builder layout is defined by JSP templates with a dedicated tag library for
organizing portal applications on a page. The main tag of the tag library is the container tag
<lyt:container> which serves as space holder for columns (and rows in a future release)
of portal applications. Every container turns into a HTML table with a portal application in
every cell.

If a portal application should be placed in a tray, the page layout wraps it with an HTML
Business for Java (HTMLB) tray control.

3.4.1.1 Isolation Modes
EP6.0 page builder offers the following isolation modes for a portal application:

● EMBEDDED

● URL

See also

Enterprise Portal Client Framework (EPCF) [Page 33]: Client events.

EMBEDDED
The generated content for the portal application is embedded into the HTML code of the page
without transformation. It is part of the page content. The page builder has no control over the
appearance of the content.

The EMPBEDDED isolation mode has following features:

● The content of the portal applications is generated on the server without additional
requests from the browser to the server.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 257

● All portal applications on the page are called asynchronous on the server and sent in
one page response to the client.

● Interactions with the portal application and reload actions will reload the entire page.
This results in flickering pages and lowers the performance, when all portal applications
are reloaded.

● The portal application window size is not controlled by the page. The window height
parameter has no effect on the portal application when in EMBEDDED mode.

● The page builder does not add scroll bars to the window of the portal application.

● Server (PRT) events and client (EPCF) events are supported.

Limitations
● HTMLB portal applications, which have to keep the state of input fields by form, will

loose the data of the input fields when other portal application forms on the page are
submitted.

● Request parameters to keep the portal application state, will be lost when other portal
applications also keep the state.

● The portal application is part of the entire HTML code of page. Therefore the script
names of a portal application have to be unique, to avoid collisions with other scripts of
other portal applications on the page.

● The HTMLB ScrollContainer control with the height attribute set to 100% will shrink to
zero height.

● External content (to the portal server) is very limited and must be handled with special
care (for example, resources and cookie handling). URLIViewsRuntime can not be
used.

● Portal application can only use the same codepage (charset) for the page (UTF-8).

Schematic

URL
The portal application is in an IFrame, isolated from the HTML code of the page.

The URL isolation mode has following features:

● The Page Builder generates the IFrame and sets the source attribute (SRC) to point to
the URI of the portal application.

● The content of the portal application comes in an additional server request.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 258

● Interactions with the portal application and reload actions will affect only the portal
application itself and not the entire page. The result is a flicker-free page and a
performance advantage since not all portal applications are reloaded.

● The page builder has full control over the IFrame size. The page builder can set portal
application window height to a fixed, full page or automatic according to the content of
the portal application.

● The IFrame is generated with scroll bars.

● The width of portal application window can be controlled better, since the IFrame has a
horizontal scroll bar when the content exceeds the window width.

● Only client events (EPCF) are supported.

Schematic

Recommended Usage of Isolation Modes
If your content is large and the client rendering takes to long, switch to URL or EMBEDDED
isolation mode.

Use the EMBEDDED isolation mode when the portal applications on the page are connected
with Portal Object Model (POM) events to other portal applications and need to repaint
themselves, through the server, according to client actions.

Use the EMBEDDED isolation mode also for pages (as the page property) and for portal
applications that have no other portal application on the page (as a navigation node).

Use the URL Isolation Mode when it is required to present external content (not from the
portal server) or several portal applications on a page that need different codepages
(charsets).

It is strongly recommended not to use EMBEDDED isolation mode and URL isolation mode
on same page.

Portal pages should have EMBEDDED isolation mode to save an additional request to fetch
the page.

External content should have URL isolation mode.

Test your portal application always in the portal environment. Execute it on a
page in the portal framework with the other portal applications on the page.

3.4.1.2 Page Builder API
The page builder API provides methods to control the page size, refresh the page and page
personalization.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 259

In this chapter we refer to term iView ID. The iView ID is the URI of the iView in the
Portal Content Directory (PCD).

Full specified URI on an iView:

pcd:portal_content/every_user/general/eu_role/com.sap.porta
l.mypages/com.sap.portal.eu_ws/com.sap.portal.home/com.sap.
portal.pageBuilderDefault

The iView domain has to be relaxed before using the page builder API.

For native portal components, Java iViews, this is done automatically by the
EPCM object. See section JavaScript Origin Policy [Page 33] for more details.

See also

Isolation modes [Page 33]

3.4.1.2.1 Client API
The methods in this section are provided by the JavaScript object pageSupport that exists on
every portal page. Although the pageSupport object resides on the page document, iViews
using the URL isolation mode must refer to their parent document to get the pageSupport
object.

pageSupport.getIvuId (wndRef)
This method returns the iView ID of the iView specified by parameter wndRef as type String.

An alternative to this method, is to use PRT API on the server.

request.getComponentContext ().GetContextName ()

Use the client-side method if your iView uses URL isolation mode and if you
have no access to the PRT API.

Parameter Description

Parameter Type Description

wndRef Object The HTML window object of the iView.

Usage
<SCRIPT language ="JavaScript">

 var myId = parent.pageSupport.getIvuId(self);

<SCRIPT>

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 260

pageSupport.getIvuFrameObj (ivuId)
This method returns the iView IFrame object of the iView specified by the iView ID as type
Object.

This method is only relevant for iViews using URL isolation mode.

Parameter Description

Parameter Type Description

ivuId String iView ID of the iView.

Usage
<SCRIPT language ="JavaScript">

 ...

 var myId = parent.pageSupport.getIvuId(self);

 var myIframe = parent.pageSupport.getIvuFrameObj(myId);

 myIframe.style.width += 100;

 ...

<SCRIPT>

pageSupport.getIvuWindow (ivuId)
This method returns the iView window of the iView specified by the iView ID as type Object.

This method is only relevant for iViews using URL isolation mode.

Parameter Description

Parameter Type Description

ivuId String iView ID of the iView.

Usage
<SCRIPT language ="JavaScript">

 ...

 var myId = parent.pageSupport.getIvuId(self);

 var myWindow = parent.pageSupport.getIvuFrameWindow(myId);

 myWindow.location.href = "url";

 ...

<SCRIPT>

pageSupport.ivuExpand (ivuId)
This method opens an iView, specified by the iView ID, in a new window. The method returns
a boolean value that is false if the method failed and true if the method was successful.

This method simulates the Open in new window option of the iView tray.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 261

Parameter Description

Parameter Type Description

ivuId String iView ID of the iView.

Usage
<SCRIPT language ="JavaScript">

 ...

 var myId = parent.pageSupport.getIvuId(self);

 parent.pageSupport.ivuExpand(myId);

 ...

<SCRIPT>

pageSupport.ivuRefresh (ivuId)
This method refreshes an iView specified by the iView ID. The method returns a boolean
value that is false if the method failed and true if the method was successful.

If the iView content is in the portal cache it will be replaced by new content generated for this
iView.

This method simulates the Refresh option of the iView tray.

Parameter Description

Parameter Type Description

ivuId String iView ID of the iView.

Usage
<SCRIPT language ="JavaScript">

 ...

 var myId = parent.pageSupport.getIvuId(self);

 parent.pageSupport.ivuRefresh(myId);

 ...

<SCRIPT>

pageSupport.ivuReload (ivuId)
This method reloads an iView specified by the iView ID. The method returns a boolean value
that is false if the method failed and true if the method was successful.

The iView content is retrieved from the portal cache. See method
pageSupport.ivuRefresh(ivuID).

Parameter Description

Parameter Type Description

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 262

ivuId String iView ID of the iView.

Usage
<SCRIPT language ="JavaScript">

 ...

 var myId = parent.pageSupport.getIvuId(self);

 parent.pageSupport.ivuReload(myId);

 ...

<SCRIPT>

pageSupport.ivuPersonalize (ivuId)
This method opens the personalization dialog for the iView specified by the iView ID. The
method returns a boolean value that is false if the method failed and true if the method
was successful.

This method simulates the Personalize option of the iView tray.

Parameter Description

Parameter Type Description

ivuId String iView ID of the iView.

Usage
<SCRIPT language ="JavaScript">

 ...

 var myId = parent.pageSupport.getIvuId(self);

 parent.pageSupport.ivuPersonalize(myId);

 ...

<SCRIPT>

pageSupport.ivuHelp (ivuId)
This method opens the help component for the iView specified by the iView ID. The method
returns a boolean value that is false if the method failed and true if the method was
successful.

This method simulates the Help option of the iView tray.

Parameter Description

Parameter Type Description

ivuId String iView ID of the iView.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 263

Usage
<SCRIPT language ="JavaScript">

 ...

 var myId = parent.pageSupport.getIvuId(self);

 parent.pageSupport.ivuHelp(myId);

 ...

<SCRIPT>

pageSupport.ivuRemove (ivuId)
This method removes the iView, specified by the iView ID, from the page. The method returns
a boolean value that is false if the method failed and true if the method was successful.

When the iView was added to the page by the user with the personalization dialog, the iView
will be deleted from the page.

When the iView was set on the page by the administrator, the iView will be hidden and not
deleted. The iView can be made visible again with the personalization dialog by the user.

This method simulates the Remove from page option of the iView tray.

Parameter Description

Parameter Type Description

ivuId String iView ID of the iView.

Usage
<SCRIPT language ="JavaScript">

 ...

 var myId = parent.pageSupport.getIvuId(self);

 parent.pageSupport.ivuRemove(myId);

 ...

<SCRIPT>

pageSupport.ivuAdjustHeight (ivuId [,height])
This method adjusts the height of the IFrame that contains the iView, specified by the iView
ID. The method returns a boolean value that is false if the method failed and true if the
method was successful.

This method is only relevant for iViews using URL isolation mode.

Use this method when the iView changes its size and you want the IFrame to change its size
also. If you do not specify the height parameter, the IFrame height will be adjusted to the
current size of the iView. This is same behaviour as for iViews that have the automatic height
property.

Parameter Description

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 264

Parameter Type Description

ivuId String iView ID of the iView.

Height

(optional)

Integer Height of the IFrame.

Usage
<SCRIPT language ="JavaScript">

 ...

 var myId = parent.pageSupport.getIvuId(self);

 parent.pageSupport.adjustHeight(myId, 500);

 ...

<SCRIPT>

pageSupport.ivuRecalcTray (ivuId)
This method is for Netscape browsers to adjust the tray size (which contains the iView)
according to iView content. The method returns a boolean value that is false if the method
failed and true if the method was successful.

Parameter Description

Parameter Type Description

ivuId String iView ID of the iView.

Usage
<SCRIPT language ="JavaScript">

 ...

 var myId = parent.pageSupport.getIvuId(self);

 parent.pageSupport.ivuRecalcTray (myId);

 ...

<SCRIPT>

pageSupport.ivuAddTrayOption (ivuId, optionTitle, optionFunct)
This method add a new entry to the tray (which contains the iView) options menu. The
method returns a boolean value that is false if the method failed and true if the method
was successful.

For multilingual application, the iView developer has to take care about the translation of the
optionTitle parameter.

Parameter Description

Parameter Type Description

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 265

ivuId String iView ID of the iView.

optionTitle String Title of the option. The title is displayed in the option
menu of the tray.

optionFunc String JavaScript code that will be executed when the option is
chosen.

Usage
<SCRIPT language ="JavaScript">

 ...

 var myId = parent.pageSupport.getIvuId(self);

parent.pageSupport.ivuAddTrayOption(myId,"hello","alert('hello')
");

 ...

<SCRIPT>

3.4.1.2.2 Client Events
The events in this section are provided by the JavaScript object EPCM that exists on every
portal page, when the EPCF [Page 33] service is activated.

External portal applications that have no EPCM object must use the regular page client API.

The events expect a parameter in the form:
{Id : "iview id" , Window : iview HTML frame window}

If the iView ID is not null, the window parameter is ignored. The window parameter was
designed to support Java portal applications and external iViews using the URL isolation
mode. According to the kind of iView set the parameter as follows:

● For a Java portal application, specify the iView ID and set the window parameter to
null.

● For an external iView, set the iView ID to null and the window parameter to self.

You get the iView ID using the Portal Runtime (PRT) API on the server with following
command:

request.getComponentContext ().GetContextName ();

See also

Isolation modes [Page 33]

Client API [Page 33]

EPCF service [Page 33]

The page builder has following events:

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 266

expand

EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "expand", {Id:id,
Window:window})
The expand event opens an iView in a new window.

This event simulates the Open in new window option of the iView tray.

Parameter Description

Parameter Type Description

id String iView ID of the iView.

Window Object The HTML window object of the iView.

Usage
<SCRIPT language ="JavaScript">

 ...

// For Java portal components:

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "expand",

{Id:"<%=componentRequest.getComponentContext().GetContextName()%
>"

 , Window:null})

 ...

// For external iviews

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "expand",

 {Id:null, Window:self})

 ...

<SCRIPT>

refresh

EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "refresh", {Id:id,
Window:window})
The refresh event refreshes an iView. If the iView content is in the portal cache it will be
replaced by new content generated for this iView.

This event simulates the Refresh option of the iView tray.

Parameter Description

Parameter Type Description

id String iView ID of the iView.

Window Object The HTML window object of the iView.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 267

Usage
<SCRIPT language ="JavaScript">

 ...

// For Java portal components:

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "refresh",

{Id:"<%=componentRequest.getComponentContext().GetContextName()%
>",
 Window:null})

// For external iViews

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "refresh",
 {Id:null, Window:self})

 ...

<SCRIPT>

reload

EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "reload", {Id:id,
Window:window})
The reload event reloads an iView. The iView content is retrieved from the portal cache.

Parameter Description

Parameter Type Description

id String iView ID of the iView.

Window Object The HTML window object of the iView.

Usage
<SCRIPT language ="JavaScript">

 ...

// For Java portal components:

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "reload",

{Id:"<%=componentRequest.getComponentContext().GetContextName()%
>",
 Window:null})

// For external iViews

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "reload",
 {Id:null, Window:self})

 ...

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 268

<SCRIPT>

personalize

EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "personalize", {Id:id,
Window:window})
The reload event starts the personalization dialog. This event simulates the Personalize
option of the iView tray.

Parameter Description

Parameter Type Description

id String iView ID of the iView.

Window Object The HTML window object of the iView.

Usage
<SCRIPT language ="JavaScript">

 ...

// For Java portal components:

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder",
"personalize",

{Id:"<%=componentRequest.getComponentContext().GetContextName()%
>",
 Window:null})

// For external iViews

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder",
"personalize",
 {Id:null, Window:self})

 ...

<SCRIPT>

remove

EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "remove", {Id:id,
Window:window})
The remove event removes the iView from the page.

When the iView was added to the page by the user with the personalization dialog, the iView
will be deleted from the page.

When the iView was set on the page by the administrator, the iView will be hidden and not
deleted. The iView can be made visible again with the personalization dialog by the user.

This event simulates the Remove from page option of the iView tray.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 269

Parameter Description

Parameter Type Description

id String iView ID of the iView.

Window Object The HTML window object of the iView.

Usage
<SCRIPT language ="JavaScript">

 ...

// For Java portal components:

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "remove",

{Id:"<%=componentRequest.getComponentContext().GetContextName()%
>",
 Window:null})

// For external iViews

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "remove",
 {Id:null, Window:self})

 ...

<SCRIPT>

help

EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "help", {Id:id,
Window:window})
The help event starts the help component for the iView. This event simulates the Help option
of the iView tray.

Parameter Description

Parameter Type Description

id String iView ID of the iView.

Window Object The HTML window object of the iView.

Usage
<SCRIPT language ="JavaScript">

 ...

// For Java portal components:

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "help",

{Id:"<%=componentRequest.getComponentContext().GetContextName()%
>",

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 270

 Window:null})

// For external iViews

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "help",
 {Id:null, Window:self})

 ...

<SCRIPT>

adjustHeight

EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "adjustHeight",
{Id:id, Window:window, [,Height:height]})
The adjustHeight event adjusts the height of the IFrame that contains the iView.

This method is only relevant for iViews using URL isolation mode.

Use this event when the iView changes its size and you want the IFrame to change its size
also. If you do not specify the height parameter, the IFrame height will be adjusted to the
current size of the iView. This is same behaviour as for iViews that have the automatic height
property.

Parameter Description

Parameter Type Description

id String iView ID of the iView.

Window Object The HTML window object of the iView.

height Integer Height of the IFrame.

Usage
<SCRIPT language ="JavaScript">

 ...

// For Java portal components:

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder",
"adjustHeight",

{Id:"<%=componentRequest.getComponentContext().GetContextName()%
>",
 Window:null})

// For external iViews

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "
adjustHeight ",
 {Id:null, Window:self})

 ...

<SCRIPT>

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 271

recalcTray

EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "recalcTray", {Id:id,
Window:window})
This event is for Netscape browsers to adjust the tray size (which contains the iView)
according to iView content.

Parameter Description

Parameter Type Description

id String iView ID of the iView.

Window Object The HTML window object of the iView.

Usage
<SCRIPT language ="JavaScript">

 ...

// For Java portal components:

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder",
"recalcTray",

{Id:"<%=componentRequest.getComponentContext().GetContextName()%
>",
 Window:null})

// For external iViews

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder", " recalcTray
",
 {Id:null, Window:self})

 ...

<SCRIPT>

addOption

EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "addOption",
{Id:id, Window:window, Caption:caption, Func:func})
The addOption event adds a new entry to the tray (which contains the iView) options menu.

For multilingual application, the iView developer has to take care about the translation of the
caption parameter.

Parameter Description

Parameter Type Description

Id String iView ID of the iView.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 272

Window Object The HTML window object of the iView.

Caption String Title of the option. The title is displayed in the option
menu of the tray

Func String JavaScript code that will be executed when the option is
chosen.

Usage
<SCRIPT language ="JavaScript">

 ...

// For Java portal components:

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder", "addOption",

{Id:"<%=componentRequest.getComponentContext().GetContextName()%
>",
 Window:null, Caption:"New Option", Func:"alert('new
option')"})

// For external iViews

 EPCM.raiseEvent("urn:com.sapportals:pagebuilder", " addOption
",
 {Id:null, Window:self, Caption:"New Option",
 Func:"alert('new option')"})

 ...

<SCRIPT>

3.4.1.3 Advanced Features

Hide Portal Application
A portal application can notify the page builder, at runtime, that it should not be included in the
response. This feature can be utilized for many scenarios when a certain portal application is
located on a page should not be displayed, according to it is logic. The detailed navigation
iview uses this technique to hide itself when no relevant navigation tree can be displayed.

To use this feature, the portal application must execute the following code in the
doOnNodeReady() method:

request.getNode.setNodeMode(new NodeMode("HideMode"))

This feature is only available for portal applications using the EMBEDDED [Page
33] isolation mode.

Redirect Portal Application
A portal application using the URL [Page 33] isolation mode can instruct the page builder to
reference a URL from the generated IFrame named src, instead including the portal

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 273

application itself. Therefore, a portal application can be used to generate a URL and launch it
from the page.

There are following requirements to use this feature:

● Include the following property to the <component config> section in the property file
(portalapp.xml) of the portal application:

<property name="com.sap.portal.reserved.iview.Redirect"
 value= "true"/>

● Portal application must use the URL isolation mode.

● Use the following code in the doOnNodeReady(..) method:

request.redirect(NewURL);

New Connection for Portal Application
A portal application using the URL [Page 33] isolation mode can use another connection than
the portal Runtime (PRT) default connection
(com.sapportals.portal.prt.connection). This avoids the PRT embedded handling
of certain document hooks, HTML tags handling, for example, <head>, <body> and so on.

To implement new connection you have to implement the IPortalURLBuilder interface and
register it in the portal registry under /runtime/urlbuilders/<NEW CONNECTION
POINT>.

The property file of the portal application (portalapp.xml) needs a property entry in the
<component config> section so that the page builder is notified to use the new
implemented connection. The property entry has the following format:

<property name="RequiredConnectionPoint" value="<NEW
CONNECTION>" />

JavaScript in PageLevel
A portal application can notify the page to add JavaScript files on the page builder document
level. This feature is relevant for isolated portal application only.

To use this feature, the portal application has add the following properties to the property file
(portalapp.xml) in the <component-profile> section:

<property name="com.sap.portal.reserved.iview.PageLevelScript_1"
 value=<"SCRIPT 1 ID"> >

 <property name="Path" value=<"SCRIPT 1 PATH"> />

</property>

<property name="com.sap.portal.reserved.iview.PageLevelScript_n"
 value=<"SCRIPT N ID"> >

 <property name="Path" value=<"SCRIPT NPATH"> />

</property>

Page Timeout
A Page Timeout property can be defined to set maximum (server) loading time for the page.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 274

Usually the page will be sent to the browser as soon as all of the portal applications have
been loaded. If a page that has set the page timeout property to 15 seconds contains an
portal application that requires more than 15 seconds to load, a time out message instead of
the portal application is displayed. Following scenarios are possible:

● If the portal application is cacheable, and this is the first time the page is loaded, the
page builder continues to load the portal application in the background and if the page
is refreshed after the portal application finished loading, the portal application content
will be displayed in place from the cache.

● If the page was already loaded once and the portal application was already cached, the
portal application will come from the cache. This is a fast process and there is no
problem with page timeout. But if the cached content of the portal application is not
valid, the portal application has to be reloaded from the site. If the portal application did
not finish loading when the page timeout occurred, the page will display the old cached
content of the portal application with a message indicating that it is the old cached
content. The portal application is still loaded in the background so in the next time the
page is reloaded it will display the correct cache content.

An administrator or a page developer must avoid the case where a non-cacheable, slow
portal application, with EMBEDDED isolation mode, resides on a page with a page timeout
lower than the actual portal application loading time. The result would be that the portal
application is not loaded into the cache in the background and the portal application will never
be displayed on the page.

A portal application that uses the URL isolation mode will load the portal application directly
from browser, without considering the page timeout property, when the Refresh option has
been chosen.

To the page timeout property add the following property to the property file
(portalapp.xml):

com.sap.portal.page.PageTimeout=20000

The value is defined in milliseconds. The default value is 15 seconds = 15000 milliseconds. A
page timeout value of -1 defines, that there is no time out and that the page will wait for all of
the portal applications to finish loading as long as necessary.

Param List
Portal applications using URL isolation mode are loaded by the browser from an IFrame. The
portal applications are completely isolated from the page structure and from the page load
process and therefore are also isolated from the initial page request. If the initial page request
contained parameters, these parameters will not be passed to the portal application using the
URL isolation mode. To change this behavior, you have to add the property
com.sap.portal.reserved.iview.ParamList to the property file of the portal
application (portalapp.xml). The property contains a list of parameters for the portal
application. There are following options:

● The list contains the parameters for the portal application URL:
<property name=" ...ParamList" value="param1,param2,param3"/>

● To pass on all of the parameters from the request to the portal application you can use
a wildcard (*):

<property name=" ...ParamList" value="*"/>

● To pass on a subset of the parameters from the request to the portal application you
can use a wildcard (*) and define the parameters you want to exclude:

Example:

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 275

<property name=" ...ParamList" value="*,param4,param5"/>

This will pass all of the request parameters excluding parameter 4 and 5.

3.4.2 HTML-Business for Java

Purpose
The HTML-Business for Java document is a supplement to HTML-Business for Java
reference.

The document shows the usage of the controls in the JSP and how to call and process the
JSP in the DynPage.

3.4.2.1 What is HTMLB?
HTMLB (HTML-Business for Java) provides a full set of easy-to-use Web controls. These
guidelines describe the HTMLB controls, their types, usage, attributes, and how to set the
attributes with the JSP-taglib and the classlib.

For each control there is a general page that describes its usage, types, and design-relevant
attributes. A further page describes more technical issues, such as browser compatibility,
editing possibility in the Style Editor, and accessibility issues. Thirdly, the Control API page
provides a development-oriented view of the control with detailed descriptions of attributes
and parameters.

In addition, there are pages that describe general interaction design aspects, such as page
layout, correct usage of certain often-used controls, as well as hints on finding the right
control for a given purpose.

Knowledge of Java, JSP (information can be found at internet address java.sun.com) and
HTML (information can be found at internet address www.w3.org) is helpful when reading
this document.

Basic Idea
HTMLB allows a design-oriented page layout. It is designed to overcome typical servlet
problems, such as:

● Visualization and business logic are not separate.

● Content management consumes a lot of qualified manpower. Skills in HTML, CSS,
JavaScript etc. are essential.

● Development has to take care of different web clients and -versions.

● Maintaining the corporate identity through out the whole application is hard to achieve.

● Namespace conflicts with form elements

HTMLB provides the technological infrastructure for easy customer branding. See Customer
Branding and Style Editor [Page 33].

How it Works
HTML-Business for Java provides the user with an efficient set of controls - similar to
Swing/AWT. The controls are based on servlets and JSP pages. The developer uses bean-
like components or JSP tags. Renderer classes finally translate the components into HTML-
commands.

To demonstrate the similarity from HTMLB to Swing/AWT some synonyms.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 276

HTMLB Swing/AWT

Form ContentPane, JFrame, JDialog

ControlComponent JComponent

Container ContainerContainer

Event AWTEvent, InputEvent ...

Form
It is basically the wrapping paper of your page and essential for the data transfer from the
web client to the web browser and for the event handling. Controls in the form must have
unique control names. The control names are generated by the HTML-Business for Java
renderer - therefore you cannot use for example, JavaScript to manipulate the controls.

Controls
GUI elements that are used to build an application. The controls are placed in a form. Every
control has different attributes that define the "look" of the control. Controls are checkboxes,
radio buttons and grids to name a few.

Some HTMLB controls

Container
Container contain controls. Containers can contain containers - nesting. A simple container
would be a 'tray' containing a 'gridLayout'. The gridLayout contains 'textView' and 'inputField'.

Events
Components can respond to user action. The response is called an event. An event usually
causes a submit (sending the form from the web client to the web server). With the control
that can create an event you specify the name of the event handling routine. The web server
receives the form, analyzes it and calls the event handling routine which does the further
processing.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 277

Mobile Features
The mobile features enhance the functionality of HTML-Business for Java for mobile devices
such as Pocket PCs, WAP-enabled mobile phones and other mobile device/browser
combinations. The mobile features support a device-independent development of
components for mobile devices by providing special renderer classes. These renderer classes
consider the special features of different mobile devices and the browsers used.

For more information, see Mobile HTMLBusiness for Java [Page 33] and Mobile Extensions
to the Java Servlet Containers [Page 33].

3.4.2.2 About the Reference

Structure of the Description
The description of the controls is structured in:

● General description - what is it

● Attributes of the control

● Overview of the attributes with possible values, defaults and the manipulation with the
JSP-taglib and classlib.

● Example

The M column in the overview table specifies if the parameter is mandatory. A mandatory
parameter is marked with a * in that column.

The values column in the overview table specifies which type of parameter the attribute
expects. Possible entries are:

● String

An ASCII string. Usually event handling routines, names, titles etc.

● String (cs)

A case sensitive ASCII string. Usually event handling routines, names, titles etc.

● Units

An integer value specified in web client units. According to the HTML standard units
can be specified in:

○ Pixel (px)

Pixels are the smallest addressable unit on the web client. A web client has a
maximum resolution, that is the number of horizontal times vertical pixel (for
example, 800x600, 1024x768 etc.) When you specify units in pixel you can
make sure that your control is displayed on every web client in the same size.

Pixel is the default unit.

Both expressions set the width of a control to 500 pixel.
width="500"
width="500px"

○ Percent (%)

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 278

The percentage specified is calculated from the visible space of the web client. If
for example, a width of a control is specified with 50% the control uses half of
the of the web client width. The control changes its width according to the web
client dynamically (for example, if the web client window gets scaled).

The width of a control is set to 30% of the web client.
width="30%"

The default value for the attribute is marked with a value in parenthesis, if it applies, for
example (100).

● Numeric

A numeric expression.

● Others

If an attribute requires specific values. Booleans require "TRUE" or "FALSE" or text
size can only be "LARGE", "MEDIUM" and "SMALL". Default values are marked with
(d).

When the default value for the text size is MEDIUM it is depicted as:

LARGE
MEDIUM (d)
SMALL

Controls

General
To use the controls you have to know about the syntax and the attributes of the controls.
Every control has different attributes. In the description we describe the attributes and gather
the information in a table which shows the usage with the taglib and the classlib.

Import Statments
When you use the methods in a Servlet, Abstract Portal Component or DynPage, you have to
import the controls. The IDE, like Eclipse, give you a hint if an import statement is needed and
suggest an import statement. A HTMLB control, for example inputField, is defined in two
packages, so the IDE will offer you two choices:

com.sapportals.htmlb.InputField

com.sapportals.htmlb.unifiedrendering.controls.InputField

The com.sapportals.htmlb.InputField package is the one to use. The
com.sapportals.htmlb.unifiedrendering.controls.* package is
for internal use only.

Syntax
Programming with the JSP taglib follows the XML syntax. Each control is "wrapped" in tags.
To identify the tags as XML the prefix

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 279

hbj: (stands for: HTML-Business for Java)

is used. Some controls (for example, tray, group) also need a tag body. The tag body
specifies the controls that are placed "inside" the tag. The syntax would be like:

Tag
 <hbj:control comment: begin of tag for HTMLB control
 attributes comment: setting of attributes of HTMLB control
 </hbj:mycontrol> comment: end of tag for HTMLB control

Tag with "quick" end of tag (only possible when the tag has no body)
 <hbj:control comment: begin of tag for HTMLB controls
 attributes comment: setting of attributes of HTMLB control
 /> comment: end of tag for HTMLB controls

Tag with body
 <hbj:control comment: begin of tag for HTMLB control
 attributes comment: setting of attributes of HTMLB control
 < comment: end of tag for HTMLB control
 <hbj:a_control_in_the_body
 attributes
 />
 <hbj:next_control_in_the_body
 attributes
 />
 more controls

 </hbj:control> comment: end of tag for HTMLB controls with body

Scriptlet
A scriptlet can contain any number of language statements, variable or method declarations,
or expressions that are valid in the page scripting language.

Within a scriptlet, you can do any of the following:

● Declare variables or methods to use later in the file.

● Write expressions valid in the page scripting language.

● Use any of the implicit objects or any object declared with a <jsp:useBean> element.

● Write any other statement valid in the scripting language used in the JSP page (if you
use the Java programming language, the statements must conform to the Java
Language Specification).

Any text, HTML tags, or JSP elements must be written outside the scriptlet.

Scriptlets are executed at request time, when the JSP container processes the client request.
If the scriptlet produces output, the output is stored in the out object.

Certain attributes (if the column "JSP taglib" in the attribute table to each control has no entry)
can only be assigned using scriptlets. The scriptlet has to be placed in the tag body of the
HTMLB control. The scriptlet starts with <% and ends with %>. The following example uses
the button [Page 33]control and sets some attributes with a scriptlet.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 280

Example
 <hbj:button
 id="OrderConfirm"
 width="100px"
 tooltip="Click here to confirm order"
 onClick="ProcessConfirm"
 disabled="false"
 design="STANDARD"
 >
 <% comment: start scriptlet in the tag body
 // set the text for the button
 OrderConfirm.setText("Confirm");
 // set "width" - this overrides "width" set in attribute section
 OrderConfirm.setWidth("125px");
 %> comment: end of scriptlet
 </hbj:button>

Result

Enumeration Values
In the classlib column some values have to be set as enumeration values. In the classlib
column you find the class name and the enum (separated by a dot).

breadcrumb.setSize(BreadCrumbSize.MEDIUM)

For an executable program you have to add the location of the enum. That is:

com.sap.htmlb.enum.

So according to the example above you have to specify:

Your program:
breadcrumb.setSize(com.sap.htmlb.enum.BreadCrumbSize.MEDIUM);

To save some typing when you enumeration values more often the package can be imported:
<%@ page import="com.sap.htmlb.enum.BreadCrumbSize, " %>

Boolean Values
Taglib:
Boolean values are specified as string and can be lowercase and/or uppercase.

Classlib:
Boolean values are specified as boolean and have to be specified only in lowercase
characters.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 281

3.4.2.3 General

Purpose
General information about the user interface, how to make customer branding, error handling
and general accessibility information.

Customer Branding and Style Editor [Page 33]

Error Handling

 [Page 33]Accessibility of HTMLB Controls [Page 33]

3.4.2.3.1 Customer Branding and Style Editor

Purpose
Portal software must reflect the customers corporate identity and branding guidelines. For this
reason, we provide a technological infrastructure and tools to support customers in this goal.
The current portal release offers a certain amount of design flexibility that allows our
customers to fulfill their branding needs.

This flexibility is achieved by:

● Placing all design information into cascading style sheets (CSS) instead of writing it
directly into the code. As far as possible, images are defined with the CSS attribute
background-image.

● Using only central CSS in all HTMLB controls.

● Shipping predefined design variants (color templates) of the portal among which our
customers can choose.

● Providing the Style Editor tool for supporting branding activities at the customers' sites.

Below you see the portal with the Mango and Polarwind standard design and the same portal
with a customized design.

Portal standard design Mango and Polarwind

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 282

Example of a customized design

Further Information
Style Editor [Page 33]

HTMLB Controls and Style Editor [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 283

3.4.2.3.1.1 Style Editor

Purpose
The Style Editor is a Web-based tool, which allows a designer or administrator to copy and
then modify any of our predefined color templates to create a new design. With the Style
Editor, an authorized user can change the look-and-feel of the portal without having to be an
HTML expert. For example, no knowledge about CSS attribute names is required. Below, you
see the entry screen of the Style Editor, where users can select between predefined and
customized designs, provided the customer created such.

Design selection screen showing all available color templates

A clearly defined number of styles, such as the background colors, font colors, or images are
presented on the user interface. Users can immediately check their changes in the preview
area.

The Style Editor creates the CSS files for all platforms and browser versions that SAP Portals
supports. Note that style sheets cannot be edited directly. The following example shows the
user interface for changing the look of the tabstrip control.

Customizing the tabstrip control

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 284

Customer branding with the Style Editor works for central CSS only. Imagine
that a customer wants to change the light blue color of the standard design to a
light yellow all over the portal content area. If you as a developer defined an
area with a light blue background directly in your code, the customer has no
chance to change this color. Therefore, use central rendering mechanisms only.

3.4.2.3.1.2 HTMLB Controls and Style Editor

Purpose
The look of most visible HTMLB controls can be adapted with the Style Editor. See section
Editability in Style Editor on the More Info page for the respective HTMLB controls.

Controls that use common styles only, such as the standard font color, are not presented in
the Style Editor. Examples for these controls are the checkbox, the dropdown list box, and the
radio button. The look of these controls can be customized by changing common styles, such
as text, links, or cursor definitions.

Browser Platforms
There is a difference with respect to which attributes can be edited or not on different browser
platforms. In general, the options for Netscape 4.7 are more restricted than those for other
Web browsers.

The following controls cannot be changed for Netscape 4.7 as target platform:

● Cursor: Cursor for clickable and non-clickable elements

● Input Field: Background color of editable and non-editable input fields

● Button: Buttons have the default HTML look (gray and 3D); only the font type and size
can be changed via common styles

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 285

● Text Edit: The default HTML element is used; only the font type and size can be
changed via common styles

For details with respect to specific controls, see section Editability in Style Editor on the More
Info pages.

Common Styles
There are so-called common styles, which affect more than one control in the content area.
We list these styles here, in order to avoid redundant lists for each control.

While for Internet Explorer 5 and above, the common styles affect the controls cursor, input
field, link and text, for Netscape 4.7 common styles affect only link and text.

Common styles for controls and different browsers platforms

Control Style IE 5
and above

Netscape 4.7

Cursor Cursor for Clickable Elements X

 Cursor for Non-Clickable Elements X

Input Field Background Color for Editable Fields X

 Background Color for Non-Editable Fields X

Link Font Color for Unvisited Links X X

 Text Decoration for Unvisited Links X X

 Font Color for Active Links X

 Text Decoration for Active Links X

 Font Color for Links on Mouseover (Hover) X

 Text Decoration for Links on Mouseover X

 Font Color for Visited Links X X

 Text Decoration for Visited Links X X

Text

Text Styles Standard Font Family X X

Standard Text Standard Font Size X X

 Standard Font Color X X

 Standard Font Style X X

 Standard Font Weight X X

Non-Standard
Text

Font Size for Small Text X X

 Font Size for Large Text X X

 Font Size for Extra Large Text X X

 Font Style for Text Used as a Reference X X

 Font Color for Headlines X X

 Font Weight for Headlines X X

 Font Weight for Emphasized Text X X

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 286

3.4.2.3.2 Error Handling

Purpose
Beside help, error handling is an important aspect of user support. Error handling helps
users to overcome problem situations and to continue their work.

Typically, error handling is done by indicating the location where the error occurred and by
sending an error message that notes the error, explains the reason for it and - ideally -
provides hints on how to remedy the error situation.

For details on message texts see chapter Formulating Messages in the SAP Reference Lists
on the SAP Design Guild.

This page covers three areas:

Error Prevention

Error Handling for Fields

Error Handling in Tables

Related Controls
Flow Layout

 [Page 33]Grid Layout [Page 33]

3.4.2.3.2.1 Error Prevention

Purpose

Error Prevention Comes First!
Before handling errors, you should first ask how errors can be prevented. Generally, you
should design iViews and Web applications so that errors cannot occur. Preventing errors -
instead of remedying them - has the following benefits:

● Users cannot come into error situations - many users have problems with recovering
from errors.

● The users' work is not interrupted by error messages.

● Users are not confused or puzzled by (often cryptic) error messages.

● There is no need for a screen area that display errors.

If it is not possible to prevent errors, follow the guidelines presented in Error Handling for
Fields [Page 33].

How You can Prevent Errors
Often it needs some rethinking and the giving up "old habits" to find design solutions that
prevent errors instead of sending an error message after an error has occurred.

In the following we provide some ideas and examples that may stimulate your imagination
when looking for ways how errors can be prevented.

Prevent Wrong or Invalid Inputs - General

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 287

● Use precise descriptions and instructions - do not be too short (especially for Web
applications)

● Indicate required fields (through a red asterisk *) and an explaining text

Prevent Wrong or Invalid Inputs

● Numeric fields: Prevent users from entering letters by parsing the input string.

● Date and time fields: Provide "intelligent" date and time fields that are preformatted, or
provide selection controls instead of input fields (dropdown lists, spin buttons, calendar
controls).

● Currency fields: Use preformatted fields.

Prevent Incomplete Inputs

● Indicate required fields (through a red asterisk *) and an explaining text

Prevent Invalid Actions

● Disable buttons that cannot be used in the current context.

● Do not offer functionality that is not needed.

Prevent Disastrous Actions

● If actions can have severe consequences for the user, add explaining texts to the
respective buttons and inform the users about the consequences

● Send dialogs if users can loose data

Use Controls in the Correct and Intended Ways

● Do not use screen elements where uses expect to use them in any order, if there are
dependencies or if a certain sequence of steps has to be followed.

Do not use tabstrips for views that depend on each other and cannot be viewed
at random. At best, do not force users to perform steps in a fixed sequence.

● In general, do not use controls in other than the intended ways. "Creative" use of
controls clashes with the users' expectations and may lead to severe usage problems.

Do not misuse checkboxes as radiobuttons just because you like the look of the
checkboxes better.

Make the Page/iView and its Purpose Clear to the User

● Often important information is hidden while unimportant information dominates the
page. In other cases users simply have no clue what an application's purpose is. Thus,
provide the necessary information and arrange it so that relevant things are recognized
first - this way users realize what to do on a screen and how.

● Use precise descriptions and instructions - do not be too short (especially for Web
applications)

3.4.2.3.2.2 Error Handling for Fields

Purpose
Set the field or fields where an error occurred to the error state (see input field) and place an
error message as close to the field where the error occurred as possible (if there is more than
one field, place the message at the first error field). Place the cursor into the (first) error field.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 288

Avoid Popups!
Popups interrupt the users' work flow and thus annoy them.
Exception: You may use popups for severe errors like aborts that need direct user
intervention.

Future Development
After validation of a field, the error message will appear in a line directly below the field. As
this change in layout can be performed locally, there will be no major screen flicker.

iViews: In addition, iViews (trays) will have a status bar where a general error message will
appear. This status bar may also display warnings and success messages (an icon will
indicate the type of the message). The location of the status bar can be either below the title
bar or at the bottom of the tray (open). The status bar may be hidden by the application.

3.4.2.3.2.3 Error Handling in Tables

Purpose
Errors can appear in table views for different reasons. For example, a user may enter invalid
data, or certain items from a set cannot be posted. These cases have to be handled
differently.

Input Errors
If a user enters invalid data, highlight the erroneous fields and scroll the table to the first field
where an error occurred.

If an error message is needed, place it below the table view or - if possible - in a table row
directly below the row where the error(s) occurred.

Future Development

Table views will have a status bar, where the error message will appear. Place the cursor into
the error field and scroll the table to make the field visible in case it is hidden from view.

If there is more than one error field, display the message for the first error field, place the
cursor into that field and scroll the table to make it visible if necessary.

If the cursor is placed into a subsequent error field, display the message for the respective
field. If an error is corrected move the cursor to the subsequent error field if there is one and
display the respective error message.

If the focus is outside the table view, display the first error message again.

iViews: In addition the planned status bar of an iView (tray) may display a general error
message.

Posting Errors
Posting errors often do not require to cancel the whole posting process. It is only necessary to
correct and re-post those items that were erroneous. Therefore, redisplay the table view with
the erroneous items only and provide the user with a possibility to correct the items. Place an
error message above the table.

Future Development

Place the error message inside the status bar of the table view.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 289

3.4.2.3.3 Accessibility of HTMLB Controls

Use

General Information
This page offers general information for application developers using HTMLB who want to
make their Web applications accessible. For details see section Accessibility on the More Info
page for the respective controls.

Most accessibility features are already provided by the central rendering engine of HTMLB.
Therefore, application developers only have to add those features that cannot be provided by
default.

As an application developer, keep in mind that you cannot affect page elements on the basis
of HTML tags or attributes. The only interface to the HTMLB controls is the HTMLB
programming interface -- the HTMLB attributes and methods for the respective controls.

Application developers cannot set the title attribute of elements in order to
extend descriptions, they have to use the setTooltip method, instead.

They also cannot set the summary attribute of tables, they have to use the
setSummary method provided by HTMLB.

Descriptions
The central HTMLB rendering engine already provides general descriptions for HTMLB
controls, such as the type, the state, and on-screen text. Therefore, application developers
only have to complement descriptions in case that users need more specific descriptions or
instructions. The descriptions written by the application developers are added to the default
descriptions that are provided by the central rendering mechanism.

A button description has to be extended if a button opens a new window.

In general, a description has to be extended if a button introduces an interaction
that cannot be recognized by a blind user.

Accessibility Flag

Also note that the resulting description that is sent to the users depends on the state of the
accessibility flag:

● If the accessibility flag is set, the default description is extended by the description that
the application developer provided.

● If the flag is not set only the description that the application developer provided is sent
to the user.

Keyboard Accessibility
As application developers cannot set HTML attributes directly, they do not have access to the
tabIndex attribute of elements. Consequently, application developers cannot add elements to
the accessibility hierarchy themselves in order to make them keyboard accessible.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 290

Input Elements and Corresponding Labels
Input elements, such as checkboxes, dropdown listboxes, input fields, radiobuttons, and text
edit controls need to be connected to a label, so that screen readers recognize the
association of the label with the input element. Use the HTMLB label control for this purpose
(use method setLabelFor for identifying the corresponding control).

The connection between a label and its corresponding input element also simplifies the
interaction with the element when using the keyboard or mouse.

References
● SAP Portals Accessibility Guidelines

● API Java Docs

3.4.2.4 Layout

Purpose
This page describes a general strategy for layouting Web pages, applications, and iViews.
Layouting a page is not just "throwing" controls on a page. Several aspects have to be
considered, such as

● Flow of control - how the user progresses through a page when doing his or her work

● Dependencies - how elements on a page affect each other

● Togetherness - which elements on a page belong to each other, there may be closer
and farther relations between elements

● Aesthetics and general Gestalt principles - how information can be effectively
communicated visually

There are three steps in layouting - these can be done in the following sequence: Determine
the ...

3. Sequence of elements (vertical, horizontal)

4. Nesting of elements

5. Spacing between elements at different hierarchy levels.

The sequence takes care of the flow of control, dependencies, and information about which
elements belong together - the latter in a more linear fashion. The nesting also takes care of
dependencies and of togetherness -- but in a hierarchical or top-down fashion. The spacing
takes care for aesthetics and the proper application of Gestalt principles (mostly
togetherness).

Structure of the Layout Section in these Guidelines
This paragraph covers general layout aspects, such as the roles of sequence, nesting and
spacing. Layout Hierarchy [Page 33] covers the detailed nesting, that is, which objects have
to be on the same level and which can be nested. The pages on Flow Layout [Page 33], Grid
Layout [Page 33], and the pages on spacing (single [Page 33]and grouped [Page
33]controls) cover the details of spacing.

General Page Layout Aspects [Page 33]

Layout Hierarchy [Page 33]

Spacing Between Grouped Controls

 [Page 33]Spacing Between Single Controls [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 291

3.4.2.4.1 General Page Layout Aspects

The Role of Sequence
The sequence of elements should typically be determined by the flow of control, that is, the
way how users perform their tasks. Often, however, a task may not be linear or users have to
step back because of errors. Here, the page designer has to find a "natural" sequence that fits
most users and scenarios.

In addition, conventions, such as the reading direction, play an important role for the
arrangement of elements. For Western cultures, the typical arrangement of elements is from
left to right and from top to bottom, just like the reading direction. Dependencies are also
typically communicated this way. "First things first" is also a motto, which expresses that there
is a "natural progression" in most things we do. For example, when entering a customer's
address we start with the name, which is the main information that determines the remainder
of the information - we do not start with the street and house number, even though one might
infer the customer's name from that information.

Such a rule may be natural to everybody and most designers follow it without even thinking
about it. Problems occur, however, if this rule is broken, and the flow or dependencies go into
the opposite direction. Such reversals often present severe obstacles for users.

Arranging elements on a page is the first step in page design. This can also be done in a
prototypical fashion and tested with users (for example with paper prototypes) without
worrying for the details of the page design.

The Role of Nesting
There are two basic ways to visually indicate the relation between elements - closeness and
nesting. Closeness means that objects, which are located closely together, are perceived as
more closely related than objects that are farther apart from each other. Closeness of
elements is typically combined with direction to indicate flow of control or dependencies. For
example, first you enter a value into a search field (left) and then you click the related Go
button next to it (right).

Nesting is used to indicate more complex hierarchical relations and dependencies between
objects. Nesting is also a way to hide details from users because users can first deal with the
high-level objects and then decide, which one they want to inspect more closely.

Nesting can make pages much more complex than simple sequencing of elements because
nesting requires the introduction of borders or other visual separators that may clutter pages
visually. Therefore, nesting rules have been established that aim to prevent the creation of
overly complex pages (see Layout Hierarchy [Page 33] and the respective controls). Spacing
can help to reduce the cluttering effect but often requires more space than is available.

Nesting can also be explored in a prototypical fashion (paper prototypes, HTML prototypes);
here, the prototype may already be more detailed than in the initial phase.

The Role of Spacing
Spacing is very importing in communicating which elements belong together; it also affects
readability and the ability of users to recognize information on a page.

In general, application developers should not need to bother with the details of spacing, that
is, with how many pixels they have to insert between, for example, a button and the border of
a group. There are two HTMLB controls, the grid layout [Page 33] and the flow layout [Page
33], which take care for the exact spacing. In addition, containers, such as the tray and the
group, also care for the outer spacing.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 292

Note: Currently, the spacing controls do not work as intended. Therefore, developers should
consult the pages on the grid layout [Page 33] and on the flow layout [Page 33] for the
limitations of these controls.

Only high-level prototypes that intend to offer a realistic preview of a final page need to bother
with detailed spacing.

Related Topics
Forms using Check Boxes [Page 33]

Forms using Radio Buttons [Page 33]

Forms using different list types [Page 33] (Drop Down Listbox, Itemlist, Listbox)

3.4.2.4.2 Layout Hierarchy
This page describes the layout hierarchy of Web pages, which defines the options for nesting
page elements. In short, this page tells designers, which page element can be placed into
which container element - including placing containers inside containers.

The layout hierarchy is the basis for establishing textual layout rules for pages and page
sections. The main goal of such rules is to prevent overly complex and visually cluttered
pages caused by excessive nesting.

These rules do not comprise the spacing between and within elements.

From Containers to the Layout Hierarchy

 [Page 33]Layout Hierarchy for iViews and Web Applications

 [Page 33]Table Overview of the Layout Hierarchy

 [Page 33]General Nesting Rules [Page 33]

3.4.2.4.2.1 From Containers to the Layout Hierarchy
Page elements can either be containers or non-containers. Containers can contain other
elements, non-containers not. The layout hierarchy described below basically deals with
container elements, that is, with elements that can contain other elements including other
containers. This is critical because too much nesting can let a page appear visually
overloaded.

Application Containers
At the root of the layout hierarchy there is a "root" container that contains the application. In
the Web or portal environment, there are two cases to consider:

● The application container is a simple background, such as a frame or window. This is
the case for the so-called Web applications, including the portal administration
applications

● The application container is a tray or tile. The container which may have elements and
controls on its own; the application that resides inside this container may use the
services of the container. From the application's point of view the container is all it
knows about -- at least from a design perspective.

Container Controls Inside Applications
Inside an application, container controls define the layout hierarchy of an application. Such
containers are:

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 293

● Areas (Web applications only)

● Tabstrips

● Groups

● Subgroups (group of simple elements with or without heading - not included in a group
control)

A Matter of Interpretation - Linear Sequences vs. Sequences of
Containers
From a technical point of view, not all of these containers are "real" containers. Areas are
subdivisions of an application. That is, areas form a linear sequence within an application.
Subgroups are groups of simple page elements that may be introduced by a heading.
Typically, they are separated from the remainder of the page by whitespace or separator
lines.

From a layout point of view, however, it is easier to view areas and subgroups as "real"
containers - for the layout process this does not make any difference. The advantage of
regarding these elements as real containers is that a layout can be expressed in a
hierarchical or treelike fashion, which makes it easy to gain an overview of the page or
application structure.

Non-Containers
While containers create the "skeleton" of a page, non-containers are the "flesh" of a page.
These elements are fields, buttons, selection elements, text units, and tables. As these
elements differ in complexity, nesting rules ensure that a page cannot become too complex.
For example, table views are similar in complexity to groups and tabstrips. Therefore, they are
placed on the same level in the layout hierarchy as these containers. A respective rule that
takes this aspect into account would state that table views may not be placed into groups or
tabstrips if they are the only control that is inside the container.

Separators
Separators, such as line or whitespace "separate" elements or containers. Therefore, they are
difficult to integrate into a hierarchical model of a page layout. They can be viewed as
"concluding elements" or "borders" of containers (they are easier to integrate into a "linear"
model of the layout).

Note that separators are different. While you would separate containers or elements that are
on the same hierarchy level whitespace, you would use lines because that would introduce
unnecessary framing.

Creating the Layout Hierarchy
The layout hierarchy is created by placing containers and simple elements on a page. The
rules presented below govern how page elements can be combined, either by sequencing
them vertically or horizontally, or by nesting.

Containers may contain containers (nodes), simple elements (leaves), or both. In addition,
non-containers may reside on the same hierarchy level as containers. But they are "end
nodes" and do not continue the layout hierarchy.

A table view may reside on the same level as a group or a tabstrip

The layout rules presented below specify:

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 294

● Which containers may contain which other container(s) - including itself

● The specific conditions for the nesting, for example, alone or together with other
elements

● How many levels deep the nesting may be

● Which simple elements may be placed into which container - and the specific
conditions for this

● Which containers and which simple elements are on the same hierarchy level

3.4.2.4.2.2 Layout Hierarchy for iViews and Web Applications
Depending on the container elements used, different application types can have different
layout hierarchies. In the case of the portal environment, there are Web applications and
iViews. Both application types use different containers, serve different purposes, and
therefore differ in complexity with respect to the layout.

iView
● Tray = iView container

○ Tabstrip - may contain:

■ Group (if it is not the only element)

■ Subgroup

■ Table View (if it is not the only element)

■ Simple Elements

■ Separators

○ Group - may contain:

■ Group (if it is not the only element, different group types only)

■ Subgroup

■ Table View (if it is not the only element)

■ Simple Elements

■ Separators

○ Subgroup - may contain:

■ Simple Elements

■ Separators

○ Table View

○ Simple Elements

○ Separators

Generally, there should not be more than one level of nesting within trays/iViews. Also note
that tabstrips may not be nested.

Simple elements are: input fields, selection elements, text, buttons, ...

A similar tree can be created for real iViews based on the elements used.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 295

Web Application
● Application Background = Window/frame background = application container

○ Area - may contain:

■ Tabstrip - may contain:

● Group (if it is not the only element)

● Subgroup

● Table View (if it is not the only element)

● Simple Elements

● Separators

■ Group - may contain:

● Tabstrip (if it is not the only element)

● Group (if it is not the only element, different group types only)

● Subgroup

● Table View (if it is not the only element)

● Simple Elements

● Separators

■ Subgroup - may contain:

● Simple Elements

● Separators

■ Table View

■ Simple Elements

■ Separators

○ Single elements

Generally, there should not be more than one level of nesting within Web applications. Also
note that tabstrips may not be nested.

Simple elements are: input fields, selection elements, text, buttons, ...

A similar tree can be created for real Web applications, based on the elements
used.

The critical question for Web applications is, whether single elements and
containers other than areas can be placed on the application background.
Currently, the application background may not be used for non-container
elements (see the IAC Guidelines in the SAP Design Guild). In R/3 applications,
header data may be placed on the application background; there is no such a
container concept in R/3 applications as areas.

3.4.2.4.2.3 Table Overview of the Layout Hierarchy
The following table overviews present a more detailed description of the layout hierarchy for
iViews and Web applications. Red cells explicitly prohibit certain nestings. Yellow cells

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 296

indicate cases where elements can be placed into other elements with certain restrictions only
(see also the reasons for these rules).

iView
Container Element

below can be
placed
within
Container
to the right

iView (Tray) Tabstrip Group Subgroup

Tabstrip yes: together
with other
elements
no: as single
element

no no * no

Group yes: together
with other
elements
no: as single
element

yes possible - but
use with care!

one level at
maximum - use
different types
for the nesting

no

Subgroup yes yes yes no

Table View yes: together
with other
elements
no: as single
element

yes no * no

Text Area,
Graphic

yes yes yes no

Separator
(White Space,
Line)

yes yes yes no

Heading yes: for
subgroup, text
area, graphic

yes: subgroup,
text area,
graphic

yes: subgroup,
text area,
graphic

yes
(as heading for
the subgroup)

Field, Selection
Element, Icon,
Button

yes yes yes yes

Legend

● *) As iViews are simple applications, tabstrips and table views should not be placed into
group controls.

● Red cells: Nesting forbidden

● Yellow cells: Nesting allowed under certain conditions only

● The bold no's indicate common errors, such as nested tabstrips.

Web Application
Element Container

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 297

below can be
placed
within Container
to the right

Area Tabstrip Group Subgroup

Tabstrip yes (can be a
single element
with area header
as title)

no yes: together
with other
elements
no: as single
element

no

Group yes: together with
other elements
no: as single
element

yes possible - but
use with care!

one level at
maximum - use
different types
for the nesting

no

Subgroup yes yes yes no

Table View yes yes yes: together
with other
elements
no: as single
element

no

Text Area,
Graphic

yes yes yes no

Separator
(White Space,
Line)

yes yes yes no

Heading yes: group, text
area, graphic

yes: subgroup,
text area, graphic

yes: subgroup,
text area,
graphic

yes

Button yes yes yes yes

Field, Selection
Element, Icon,
Button

yes: Header data,
group
no: other data

yes yes yes

Legend

● Red cells: Nesting forbidden

● Yellow cells: Nesting allowed under certain conditions only

● The bold no's indicate common errors, such as nested tabstrips.

3.4.2.4.2.4 General Nesting Rules
The following nesting rules are derived from the table overviews above and arranged
according to design rationales, such as avoiding too much framing and avoiding redundant
headers.

Avoid Redundant Headers
The nesting rules defined for the layout hierarchy strive for avoiding redundant headings.
Thus, do not place:

● Singular group boxes within areas (Web applications only), or tabstrips

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 298

● Singular tables with a table heading within group controls

Avoid Too much Framing (Visual Complexity)
Too many frames and borders make screens visually complex and waste screen space.
Thus, do not place:

● Singular tables with a table header within group controls - use a table heading instead

● Singular tabstrips within group controls - Web applications: place them in areas
instead; use header texts, or the area header as a title for the tabstrip

● Group controls within group controls - use groups with text headers and separators
instead (not forbidden but should be used with care - try to use different types for the
nesting)

● Tabstrips within tabstrips - nesting tabstrips is a perfect way of information hiding

● Separator lines between containers or container-like elements.

3.4.2.4.3 Spacing Between Grouped Controls

The values you find in here for spacing and layouting can not be used with the
grid layout control currently in usage, and are not meant to be used with it. The
grid layout control as the current SAP layouting tool does only support very
simple design possibilities. For information how to use the grid layout control
see: Grid Layout - Usage and Types [Page 33].
A new form layout control is being developed and will be available latest with the
6.0 version of the portal. The pages about spacing you find under the first point
"1. General" have been written to support the development of the form layout
tool, and to meet the necessities of future design needs in advance.

This paragraph describes the detailed spacing between grouped controls. For the spacing
between single controls, see Spacing Between Single Controls [Page 33].

The following issues are covered:

Spacing in a Tray [Page 33] - the offset between a tray's border and its content

What's a Correct Spacing Good for [Page 33] - the reasoning behind tray offsets and
caesuras

Spacing between Primary and Secondary Groups [Page 33] - the spacing between primary
and secondary groups, that is, between nested groups

Spacing between Group Controls with Header and Border [Page 33] - this comprises more
complex controls and the groups

Spacing of Elements in Groups [Page 33] - the offset within groups, such as the offset
between the group border and its content and the group header and its content

Arranging Groups [Page 33] - Alignment of groups and offsets between groups within trays

Spacing Soft Groups [Page 33] - Spacing rules for groupings that do not use a group control
as container

The spacing rules in short:

● Offset between tray border/header and content: 5 pixels

● Spacing between primary and secondary groups: 10 pixels

● Spacing between group controls with header and border: 10 pixels

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 299

● Offset within groups, i.e. between group border and content: 5 pixels

● Spacing within groups: 10 pixels between title and content, 10 pixels between content
and buttons

● Spacing between soft groups: 15 pixels horizontally, 30 pixels vertically

In this paragraph you find positive and some negative examples for these cases.

3.4.2.4.3.1 Benefits of Correct Spacing
We use offsets for both groupings and caesuras. In the examples of Spacing in a tray [Page
33] a 5 pixel offset around the tray's content area ensures that a tray's content is realized as
being in the tray.
Caesuras separate areas from each other. They stress the individual character of the single
area, for instance the group.

3.4.2.4.3.2 Spacing in a Tray
Offset around a tray in EP5.0. The tray offset was
only delivered by the grid layout control and thus is
only 5 pixels and not 10 as assumed.

This part of the HTMLB guidelines has
been updated. The former
specifications for the tray offset are
not valid any longer. The old
specifications are now canceled and
replaced by new ones.

The reason for this is that due to
technical reasons in EP5.0 the tray
did not deliver the 5 pixel offset it was
supposed to, though the grid layout
control did so. Thus an offset of only
five pixels was possible.
With EP6.0 the offset for the tray
content will be delivered by the tray
itself. See the further specifications.

Offset around a tray in EP60

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 300

By EP6.0 the whole content offset of a
tray will be delivered by the tray itself.
With the new design for EP6.0 new
design specifications have been
made. The new tray offset is specified
in the picture on the left.

Example of an offset around a tray

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 301

Although you do not always need an
offset on the right side, you must
always give one to the tray. Whether
the offset is needed, depends to the
tray's current size which is dependent
to the current layout of the portal.

Example of a wrong offset around a tray

Avoid this. No offset at all gives the
impression of elements falling out of
the tray.

3.4.2.4.3.3 Spacing between Primary and Secondary Groups
Spacing around secondary groups

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 302

The spacing around grouping controls of the type "primary group" and "secondary group", i.e.,
groups without a border and without a header area, should be 10 pixels.

Example of spacing around secondary groups

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 303

The caesuras clearly stress three areas, realized as three groups.

Example of wrong spacing around secondary groups

A smaller offset blurs the contrast between secondary group control and the tray's background.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 304

3.4.2.4.3.4 Spacing between Group Controls with Header and
Border

Group controls with header and border should also be surrounded by a 10 pixel offset to
clearly separate the single groups from each other.

Spacing group controls with header and border

A smaller offset makes the area around the borders noisy and disquiet. When more then two
borders come together in a very small space it is very hard to figure out which border belongs
to which group. It becomes even harder, when the borders have the same color.

Example of noisy interface

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 305

3.4.2.4.3.5 Spacing of Elements in Groups
A group's content should be surrounded by an offset of five pixels.

A group's inner offset – borders

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 306

Leave an offset of 10 pixels beneath titles and above buttons.

A group's inner offset - inner spacing

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 307

3.4.2.4.3.6 Arranging Groups
Groups must have a vertical alignment which is achieved by giving them a width of 50%. A
horizontal alignment is nice to have but not necessary. However, a scenario like the following
must be avoided by any means.

Arranged groups

Example of unaligned groups

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 308

3.4.2.4.3.7 Spacing Soft Groups
All those groupings which are not hold together by a second or third control that, on the visual
side, is rendered as a box, are called soft groups. Soft groups are formatted text or elements
that are both, gathered under a header and separated by caesuras. We separate soft groups
from each other by using blank space. The advantage of doing so is, we need less code as
we do not use an additional control. Second, we have a quite interface as we do not use
group boxes with borders or HTML elements like horizontal rulers. The disadvantage of this
method is, we have to waste a lot of space to clearly separate single groups from each other.
Use a caesura of 15 pixels to separate soft groups from each other.

Soft groups

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 309

Title and Text can be assigned clearly.

Example of soft groups

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 310

It is possible to use a two column layout like in this example. If doing so, a caesura of 30
pixels should be used.

Caesura between a two column layout

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 311

Whenever we decide to use a layout of this kind, we do not use more then two columns.
When using two columns we can decide between dividing the available space in proportions
of:

1/2 and 1/2
or: 2/3 and 1/3
or: 1/3 and 2/3.

Multiple column layout

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 312

3.4.2.4.4 Spacing Between Single Controls

The values you find in here for spacing and layouting can not be used with the
grid layout control currently in usage, and are not meant to be used with it. The
grid layout control as the current SAP layouting tool does only support very
simple design possibilities. For information how to use the grid layout control
see: Grid Layout / Usage and Types [Page 33].
A new form layout control is being developed and will be available latest with the
6.0 version of the portal. The pages about spacing you find under the first point
"1. General" have been written to support the development of the form layout
tool, and to meet the necessities of future design needs in advance.

This page describes the detailed spacing between single controls. For the spacing between
grouped controls, see Spacing Between Grouped Controls [Page 33].

The following controls are covered here:

● Groups of Entry Fields [Page 33] - this is the most often needed case for form-line
applications

● Check Box Groups [Page 33] and Radio Button Groups [Page 33] - these elements are
often used in groups for offering choices or options

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 313

● Mixed Form Elements in Vertical Succession [Page 33] - this case covers combinations
of different input elements, which are arranged in one vertical column; for several
columns refer to the spacing for multi-column checkbox/radio button groups

The spacing rules in short:

● Vertical spacing between single elements: 5 pixels for fields and dropdown list boxes, 8
pixels for checkboxes and radio buttons

● Horizontal spacing between multiple columns: 15 pixels

● Horizontal spacing between label and input element, width of label column: Width of
widest label plus an offset of 8 to 22 pixels

● Spacing between selection element and label: 8 pixels for checkboxes and radio
buttons

In this paragraph you find positive and negative examples for all these cases.

3.4.2.4.4.1 Groups of Entry Fields
Offset between fields

Leave an offset of five
pixels between entry
fields.

Fields have ragged edges

At SAP it is common style
to have fields that are left
aligned with ragged
edges on the right side.

Example of justified fields

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 314

Justified fields are not
necessarily wrong.
However, it is hard to
figure out why one needs
a birth date field with
more than eight
characters.

Offset between label and fields

As one can never predict
the length of a field label
on the one side, and how
many fields will be
necessary in one
scenario in succession on
the other, it is hardly
possible to give a
standard offset between
label and entry field.
As a rule of thumb one
can say: In one row of
entry fields that follow
each other in succession
consider the offset
between the widest label
and its entry field. If
possible, try to avoid an
offset smaller then 8
pixels, which is one
character, and wider then
22 pixels, which is three
characters.
In the scenario on the left
the offset between widest
label and its
corresponding entry field
is 8 pixels.

Offset between label and fields

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 315

By restricting the space
next to the widest label to
a maximum size we
ensure that the offset
between the smallest
label and its
corresponding entry field
is not too large and the
user can still adjust label
and entry field to each
other.

Example of too large offset between label and fields

Here you can
still adjust the
largest label
and its
corresponding
field but it
becomes
almost hard
work
adjusting "E-
mail" to its
input field.

Example of too small offset between label and fields

Though all
offsets seem
to look correct
the missing
offset
between
"Reenter Your
Password"
and its entry
field makes
the whole
interface look
ugly.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 316

3.4.2.4.4.2 Check Box Groups
Leave an offset of eight pixels between check boxes and their corresponding label.

Offset between check boxes and their labels

Leave an offset of eight pixels between rows of check boxes.

Offset between rows of check boxes

Leave an offset of 15 pixels between columns of check boxes.

Offset between groups of check boxes

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 317

3.4.2.4.4.3 Radio Button Groups
Offset between radio buttons and their labels

Leave an offset of eight
pixels between radio
buttons and their
corresponding label.

Offset between rows of radio buttons

Leave an offset of eight
pixels between rows of
radio buttons.

Offset between radio button groups

Leave an offset of 15
pixels between columns of
radio buttons.

3.4.2.4.4.4 Mixed Form Elements in Vertical Succession
Offset around mixed form elements in vertical succession

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 318

Between field like
form elements in a
vertical succession
is always an offset
of 5 pixels.

Offset around mixed form elements in vertical succession

Above and beneath
button like form
elements is always
an offset of 8 pixels
regardless of the
following or previous
element.

Offset between horizontal groups of mixed form elements in vertical
succession

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 319

Leave an
offset of 15
pixels
between
columns of
form
elements.

3.4.2.5 Layout Controls

Purpose
To layout a page is not just "throwing" controls on a page. Several aspects have to be
considered, such as:

● Flow of control

How the user progresses through a page when doing his or her work.

● Dependencies

How elements on a page affect each other.

● Togetherness

Which elements on a page belong to each other, there may be closer and farther
relations between elements.

● Aesthetics and general design principles

How information can be effectively communicated visually.

The layout process has three steps - these can be done in the following sequence:

● Sequence of elements (vertical, horizontal).

● Nesting of elements.

● Spacing between elements at different hierarchy levels.

The sequence takes care of the flow of control, dependencies, and information about which
elements belong together - the latter in a more linear fashion. The nesting also takes care of
dependencies and of togetherness - but in a hierarchical or top-down fashion. The spacing
takes care for aesthetics and the proper application of design principles (mostly
togetherness).

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 320

Layout Controls
Content [Page 33]

Document

 [Page 33]Page

 [Page 33]Form

 [Page 33]Flow Layout

 [Page 33]Form Layout

 [Page 33]Grid Layout [Page 33]

3.4.2.5.1 Content

Definition
The Control API creates a scripting variable which provides the rendering context for the
following tags. It is a plain HTML tag.

● id
Identification name of the content.

Attributes M Values Usage

id * String (cs)

Taglib
id="myContent"

Classlib
Set with control document [Page 33]

Example
 <hbj:content id="myContent">
 ...
 </hbj:content>

3.4.2.5.2 Document

Definition
Renders the root tag of the document (for example, <html> or <wml>) depending on the
markup language used. It is a plain HTML tag with no attributes. The document control has
two additional controls:

documentBody [Page 33]: Renders the <body> section of the document

documentHead [Page 33]: Renders the <head> section of the document

Attributes M Values Usage

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 321

id * String (cs) Taglib
Defined with content [Page 33] tag.

Classlib
setDocumentId("myContent")

title * String Taglib
Defined with documentHead [Page 33] tag.

Classlib
setTitle("SAP")

Example
 <hbj:content id="myContent">
 <hbj:document>
 ...
 </hbj:document>
 </hbj:content>

3.4.2.5.2.1 DocumentBody

Definition
Renders <body> section of the document and attaches the appropriate style class. It is a
plain HTML tag with no attributes.

Example
 <hbj:content id="myContent">
 <hbj:document>
 <hbj:documentBody>
 ...
 </hbj:documentBody>
 </hbj:document>
 </hbj:content>

3.4.2.5.2.2 DocumentHead

Definition
Renders <head> section of the document and includes the necessary style sheets and
scripts. It is a plain HTML tag. In the documentHead a nested META element (standard
HTML) can be used. With META element information about the document (name, content,
scheme, http-equiv) can be specified.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 322

● title
Set the title that is usually displayed in the title bar of the web client.

Attributes M Values Usage

title * String Taglib
title="SAP"

Classlib
See 'document' [External] control

Example
 <hbj:content id="myContent">
 <hbj:document>
 <hbj:documentHead title="sap">
 <meta name="description" content="Introduction page">
 <meta name="author" content="sap">
 <meta name="date" content="Jan. 2002">
 ...
 </hbj:documentHead>
 <hbj:documentBody>
 ...
 </hbj:documentBody>
 </hbj:document>
 </hbj:content>

3.4.2.5.3 Page

Definition
Represents a complete HTML page consisting of tags <html>, <head> and <body> and
includes the necessary style sheets and scripts. It is a plain HTML tag.

If JavaScripts are used (for 'onClientClick' events) the page tag is necessary for
the renderer to place the JavaScripts at the end of the page.

● title
Set the title that is usually displayed in the title bar of the web client.

Attributes M Values Usage

title String Taglib
title="sap"

Classlib
See document [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 323

Example
 <hbj:content id="myContent">
 <hbj:page title="sap">
 ...
 </hbj:page>
 </hbj:content>

3.4.2.5.4 Form

Definition
Is the outer shell of the document and encapsulates normal content, markup, controls and
labels of those controls. Forms are essential for the event handling.

● action
Defines the form processing agent. For example, the value might be a HTTP URI to
submit the form to a program or a mailto URI to email the form.

● defaultButton
Defines the default button for this document. This button will fire an event if the user
presses the RETURN / ENTER key in the web agent. Usually the button should have
the 'design' "EMPHASIZED" to graphically show that this button is the default button.
If you write an application for different web clients you should be aware of the fact that
every web client has its own way to handle keyboard input. To achieve the right results
on all web clients you should use the default button always together with an inputField
and the inputField must have the focus (usually the inputField gets the focus because
the user clicked on this field to do some input). In this case the onClick event of the
default button will be fired when the user presses RETURN / ENTER in the inputField.

● encodingType
Defines the content type (MIME type) used to submit the form to the web server.
Examples of content types can be found at internet address
www.w3.org/TR/1998/REC-html40-19980424/interact/forms.html#h-
17.3

If you use a fileUpload control in the JSP you must set the encondingType
attribute to "multipart/form-data".

Example:
<hbj:form encodingType="multipart/form-data">

● focusedControl
Defines the control which has the focus when the page is loaded. The attribute
'focusedControl' for buttons works like the attribute 'defaultButton'. As extension to the
'defaultButton' attribute, the 'focusedControl' attribute can set the focus to
dropdownListBoxes, inputFields and textEdit controls.

● id
Identification name of the form.

● language
Defines the language code for this document. The attribute defines the primary
language and can define a series of sub languages. The language code is according to
ISO 639. The language code and the description can be found at internet address

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 324

www.w3.org/TR/1998/REC-HTML40-19980424/references.html#ref-
RFC1766

● messageBar
Sets a messageBar [Page 33] for the form.

● messageBarAtFormEnd
A boolean value that sets the messageBar at the bottom of the form.

● messageBarRequired
A boolean value that defines if a messageBar is required for this form.

● method
Defines the HTTP method that will be used to submit the form data set. The form data
set is a sequence of control name/current value pairs constructed from successful
controls. A successful control is "valid" for submission. Every control has its control
name paired with its current value as part of the submitted form data set. A successful
control must be defined within a form and must have a control name.

The control name is generated by the HTML-Business for Java renderer. So you
have no way to address the control via for example, JavaScript.

○ GET
The form data set is appended to the URI specified by the action attribute (with
a question-mark (?) as separator) and this new URI is sent to the processing
web agent.

○ POST
The form data set is included in the body of the form and sent to the processing
web agent.

The default method is POST and should not be altered (Limits of GET requests
can cause problems).

● scrollingToLastPosition
A boolean value that controls the position in a form. By default the position in a form is
always reset to "top of form" when the form is submitted (for example, in case of an
event). If the 'scrollingToLastPosition' attribute is set to true the last position in the form
is saved and restored on a submit.

● target
Specifies the name of the frame where the document is to be opened. The following
values refer to w3c HTML-standard.

○ _blank
The web client should load the designated document in a new, unnamed
window.

○ _self
The web client should load the document in the same frame as the element that
refers to the target.

○ _parent
The web client should load the document into the immediate FRAMESET parent
of the current frame. This value is equivalent to _self if the current frame has no
parent.

○ _top
The web client should load the document into the full, original window (thus
canceling all other frames). This value is equivalent to _self if the current frame
has no parent.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 325

● userDefinedMessageBar
A boolean value that defines if a user defined messageBar is used for this form.

Attributes M Values Usage

action String (cs) Taglib
action="/servlet/test.JspTest"

Classlib
setAction("/servlet/test.JspTest")

defaultButton * String (cs) Classlib
setDefaultButton(Button OKButton)

encodingType String Taglib
encodingType="multipart/mime"

Classlib
setEncodingType("multipart/mime")

focusedControl Component Classlib
setFocusedControl(Button OKButton)

setFocusedControl(DropdownListBox dlb)

setFocusedControl(InputField inp_field)

setFocusedControl(TextEdit text_edit)

id * String (cs) Taglib
id="SAPForm"

language String Taglib
language="de"

Classlib
setLanguage("de")

messageBar Component Classlib
setMessagBar(MessageBar [Page 33] bar)

messageBarAt
FormEnd

 FALSE (d)
TRUE

Classlib
setMessageBarAtFormEnd(true)

messageBar
Required

 FALSE (d)
TRUE

Classlib
setMessageBarRequired(true)

method POST (d)
GET

Taglib
method="POST"

Classlib
setMethod("POST")

scrollingToLast
Position

* FALSE (d)
TRUE

Classlib
setScrollingToLastPosition(true)

target _blank
_self (d)
_parent
_top

Taglib
target="_blank"

Classlib
setTarget("_blank")

userDefined
MessageBar

 FALSE (d)
TRUE

Classlib
setUserDefinedMessageBar(true)

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 326

Example
This example also shows the definition of a default button. We define the OKbutton as
default.
The assignment is made by scripting (<% %>) and has to be done where the button is
defined.

 <hbj:form
 id="myFormId"
 method="post"
 target="_blank"
 encodingType="multipart/form-data"
 action="/htmlb/servlet/com.sap.htmlb.test.MyTestJsp1Test">
 This form submits to a new web client window

 because of 'target=_blank'.

 <hbj:inputField
 id="myInputField1"
 type="String"
 invalid="false"
 width="310"
 value="After editing press <Enter> to submit"
 visible="true"
 disabled="false"
 required="true"
 maxlength="30"
 size="50">
 </hbj:inputField>

 <hbj:button
 id="oKbutton"
 text="OK"
 onClick="onOKClick"
 design="EMPHASIZED"
 width="100">
 <%
 myFormId.setDefaultButton(oKbutton);
 %>

 </hbj:button>
 <hbj:button
 id="Infobutton"
 text="Info"
 onClick="onInfoClick"
 width="100"
 />
 <hbj:button
 id="Cancelbutton"
 text="Cancel"
 onClick="onCanClick"
 width="100"
 />
 </hbj:form>

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 327

Result

3.4.2.5.5 Flow Layout

Control API
The flowLayout is a simple container that renders its contents without additions. Itallows to
align controls that do not need to be aligned with other elements in an interface. Controls that
are added to the flowLayout are able to wrap if the available space for displaying all controls
in one line does not suffice.

flowLayout has no tag. It has one method getUI which returns an identification string for the
renderer that is unique for all supported components. The following attributes are inherited
from container.

Attribute M Description Case
sens

Classlib

addComponent Adds a component to the
container.The component is added
to the end of the already added
text/components.

yes addComponent
((component) component)

addRawText Adds text - without encoding - to the
container for example, if HTML
commands have to be added. The
text is added to the end of the
already added text/components.

- addRawText
(java.lang.String text)

addText Adds text encoded to the
container.The text is added to the
end of the already added
text/components.

- addText
(java.lang.String text)

remove
Component

 Removes a component from the
container

yes removeComponent
((component) component)

flowLayout method:

● wrapping
Sets the line wrapping for the flow control.

Attributes M Values Usage

wrapping FALSE (d)
TRUE

Taglib
wrapping="TRUE"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 328

Classlib
setWrapping(true)

3.4.2.5.5.1 Usage & Type

Definition
The flow layout is an invisible control used to combine other controls one after another. It can
be inserted into every container control.

Example of the usage of flow layout

The controls within a flow layout

The controls will wrap to fit the size of its container (in this case a group).

Use
Use the flow layout if you do not need to align controls with other elements in your interface.
Controls that are added to the flow layout are able to wrap if the available space for displaying
all controls in one line does not suffice.

To separate controls within the flow layout you should currently use a Text View [Page 33]
control containing a simple space character.

When use the Flow Layout - When Use the Form Layout
● Use the flow layout if you do not need to align controls with other elements in your

interface; this will enhance performance because the flow layout does not have an
overhead of table structures in the rendering

● Use the form layout to align controls with respect to other controls in the user interface

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 329

Related Controls
Form Layout [Page 33]

Grid Layout [Page 33]

Text View [Page 33]

Further Information
Browser Support & Accessibility (508) [Page 33]

Control API [Page 33]

3.4.2.5.5.2 Browser Support & 508

The flow layout control structures elements in every browser.

Editability in Style Editor
Currently, the flow layout is not changeable by the Style Editor.

Accessibility - 508 Support
The flow layout has no special accessibility enhancements. It can contain several controls
that are by themselves in the accessible hierarchy and might have further descriptions for
blind users.

3.4.2.5.6 Form Layout

Control API
A grid is a two dimensional arrangement of data in rows and columns. The control is similar to
gridLayout but has more features in adjusting the cells of the grid. If no formLayoutCells are
defined no formLayout is displayed.

Limitation:
Large formLayouts (large amount of rows and columns) can cause problems like:

○ Compiler errors that are caused by a 64kB method length limit.

○ Slow processing of page because of huge HTML-Code generated by the JSP-
Compiler

● debugMode
A Boolean value. If set to "TRUE" the formLayoutCell is rendered with a frame. The
frame size is defined by formLayoutCell 'width' and the padding. If a formLayoutCell is
not defined or empty no frame is displayed.
If set to "FALSE" no frame is rendered.

By default the borders of the grid are invisible. To see the borders for layout and debug
reasons set the debug attribute..

Setting the debugMode attribute will add pixels to visualize borders. Therefore
the sizes of the grid layout will change if you reset the attribute. The debugMode

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 330

attribute, as indicated by the name, should only be used for debugging and not
for "styling".

● id
Identification name of the formLayout. You have to specify an id if you want to access
the control.

● marginBottom
Specifies the distance from the bottom of the control to the next control.

● marginLeft
Specifies the distance from the "actual" position to the left side of the control.

● marginRight
Specifies distance from the right side of the control to the next control.

● marginTop
Specifies distance from the "actual" position to the top of the control.

● width
Defines the width of the formLayout. If the 'width' in formLayoutCell is specified in
percent, the percentage will be calculated from the width of the formLayout.
If the formLayoutCell definition exceeds the 'width' of the formLayout the
formLayoutCell content will be wrapped.

●

Attribute M Values Usage

debugMode FALSE (d)

TRUE

Taglib
debugMode="TRUE"

Classlib
setDebugMode(true)

id * String Taglib
id="ZIPCode_form"

Classlib
setId("ZIPCode_form")

marginBottom Unit (0) Taglib
marginBottom="5"

Classlib
setMarginBottom("5")

marginLeft Unit (0) Taglib
marginLeft="5"

Classlib
setMarginLeft("5")

marginRight Unit (0) Taglib
marginRight="5"

Classlib
setMarginRight("5")

marginTop Unit (0) Taglib
marginTop="5"

Classlib
setMarginTop("5")

width Unit (100%) Taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 331

width="500"

Classlib
setWidth("500")

formLayoutRow
Defines the rows in the formLayout. The cells (formLayoutCell) have to be nested in form
layout rows.

● id
Identification name of the formLayoutRow. You have to specify an id if you want to
access the control.

● paddingBottom
Specifies the bottom padding of each row in the form layout. The value of the
paddingBottom attribute represents the distance from the bottom border of the cell to
the bottom of the content of each row specified in pixels.

● paddingTop
Specifies the top padding of each row in the form layout. The value of the paddingTop
attribute represents the distance from the top border of the cell to the top of the content
of each row specified in pixels.

Attribute M Values Usage

Id String (cs) Taglib
id="ZIPCode_row01"

Classlib
setId("ZIPCode_row01")

padding Numeric (0) Classlib
setPadding(String top, String bottom)

for example:
setPadding("5", "3")

paddingBottom Numeric (0) Taglib
paddingBottom="3"

Classlib
setPaddingBottom("3")

paddingTop Numeric (0) Taglib
paddingTop="5"

Classlib
setPaddingTop("5")

formLayoutCell
Defines the cells in the formLayoutRow.

● align
Defines the horizontal alignment of the cell content.

○ LEFT
Left justifies the content of the cell.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 332

○ RIGHT
Right justifies the content of the cell.

○ CENTER
Centers the content of the cell.

○ CHAR
Aligns text around a specific character. Not supported by all web clients.

○ JUSTIFY
Sets text in the cell left and right aligned. Not supported by all web clients.

● colspan
Defines the horizontal expansion the cell in columns.

● content
Specifies the content for the cell.

● id
Identification name of the formLayoutCell.

● paddingBottom
Specifies the bottom padding of each cell in the form layout. The value of the
paddingBottom attribute represents the distance from the bottom border of the cell to
the bottom of the content of each cell specified in pixels.

● paddingLeft
Specifies the left padding of each cell in the form layout. The value of the paddingLeft
attribute represents the distance from the left border of the cell to the left side of the
content of each cell specified in pixels.

● paddingRight
Specifies the right padding of each cell in the form layout. The value of the
paddingRight attribute represents the distance from the right border of the cell to the
right side of the content of each cell specified in pixels.

● paddingTop
Specifies the top padding of each cell in the form layout. The value of the paddingTop
attribute represents the distance from the top border of the cell to the top of the content
of each cell specified in pixels.

● valign
Defines the vertical alignment of the cell content.

○ BASELINE
The content of the cell is aligned on the baseline line of the cell (or bottom when
no baseline exits).

○ BOTTOM
The content of the cell is aligned to the bottom line of the cell.

○ MIDDLE
The content of the cell is aligned to the middle of the cell height.

○ TOP
The content of the cell is aligned to the top line of the cell.

● width
Defines the width of the formLayoutCell. One column can have only one width - when
you specify different widths for the same column the width defined last is taken.

Attribute M Values JSP Taglib

align LEFT (d)

RIGHT

Taglib
align="LEFT"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 333

CENTER

CHAR

JUSTIFY

Classlib
setHorizontalAlignment(CellHAlign.LEFT)

colspan Numeric (1) Taglib
colspan="2"

Classlib
setColspan(2)

content String or
Component

Classlib
Text: setContent("A celltext")

Component: setContent(ListBox)
id String (cs) Taglib

id="Cell01"

Classlib
setId("Cell01")

paddingBottom Numeric (0) Taglib
paddingBottom="1"

Classlib
setPaddingBottom("1")

paddingLeft Numeric (0) Taglib
paddingLeft="5"

Classlib
setPaddingLeft("5")

paddingRight Numeric (0) Taglib
paddingRight="3"

Classlib
setPaddingRight("3")

paddingTop Numeric (0) Taglib
paddingTop="2"

Classlib
setPaddingTop("2")

valign BASELINE

BOTTOM

MIDDLE (d)

TOP

Taglib
valign="TOP"

Classlib
setVerticalAlignment(CellVAlign.TOP)

width Unit Taglib
width="20%"

Classlib
setWidth("20%")

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 334

Example

Using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 335

 <hbj:formLayout
 id="myForm"
 marginTop="15px"
 marginRight="30px"
 marginBottom="5px"
 marginLeft="15px"
 width="500px">
 <hbj:formLayoutRow
 id="Row1"
 paddingTop="10px"
 paddingBottom="5px">
 <hbj:formLayoutCell
 id="Cell11"
 align="RIGHT"
 paddingLeft="3"
 paddingTop="5"
 paddingRight="10"
 paddingBottom="5"
 width="40%">
 <hbj:button
 id="myButtonf11"
 text="Button"
 />
 </hbj:formLayoutCell>
 <hbj:formLayoutCell
 id="Cell12"
 align="LEFT"
 paddingLeft="3"
 paddingTop="5"
 paddingRight="10"
 paddingBottom="5">
 <hbj:textView
 text="Celltext aligned left"
 />
 </hbj:formLayoutCell>
 </hbj:formLayoutRow>
 <hbj:formLayoutRow
 id="Row2"
 paddingTop="10px"
 paddingBottom="5px">
 <hbj:formLayoutCell
 id="Cell21"
 align="LEFT"
 paddingLeft="3"
 paddingTop="5"
 paddingRight="10"
 paddingBottom="5">
 <hbj:button
 id="myButtonf21"
 text="Button"
 />
 </hbj:formLayoutCell>
 <hbj:formLayoutCell
 id="Cell22"
 align="RIGHT"
 paddingLeft="3"
 paddingTop="5"
 paddingRight="10"
 paddingBottom="5">
 <hbj:textView
 encode="false"
 text="Celltext aligned right"
 />
 </hbj:formLayoutCell>
 </hbj:formLayoutRow>
 </hbj:formLayout>

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 336

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 337

Using the classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 338

 Form form = (Form)this.getForm();
 FormLayout fl = new FormLayout();
 fl.setId("myForm");

 fl.setMarginTop("15px");
 fl.setMarginRight("30px");
 fl.setMarginBottom("5px");
 fl.setMarginLeft("15px");
 fl.setWidth("500px");
 fl.setDebugMode(true);

 FormLayoutRow row1 = fl.addRow();
 row1.setPaddingTop("10px");
 row1.setPaddingBottom("5px");

 Button button = new Button("button", "button");
 FormLayoutCell cell11 = fl.addComponent(1,1, button);
 cell11.setHorizontalAlignment(CellHAlign.RIGHT);
 cell11.setPaddingLeft("3");
 cell11.setPaddingTop("5");
 cell11.setPaddingRight("10");
 cell11.setPaddingBottom("5");
 cell11.setWidth("40%");

 TextView tv1 = new TextView("tv1");
 tv1.setText("Celltext aligned left");

 FormLayoutCell cell12 = fl.addComponent(1,2, tv1);
 cell12.setHorizontalAlignment(CellHAlign.LEFT);
 cell12.setPaddingLeft("3");
 cell12.setPaddingTop("5");
 cell12.setPaddingRight("10");
 cell12.setPaddingBottom("5");
 cell12.setWidth("40%");

 FormLayoutRow row2 = fl.addRow();
 row2.setPaddingTop("10px");
 row2.setPaddingBottom("5px");

 Button button2 = new Button("button2", "button");
 FormLayoutCell cell21 = fl.addComponent(2,1, button2);
 cell21.setHorizontalAlignment(CellHAlign.LEFT);
 cell21.setPaddingLeft("3");
 cell21.setPaddingTop("5");
 cell21.setPaddingRight("10");
 cell21.setPaddingBottom("5");
 cell21.setWidth("40%");

 TextView tv2 = new TextView("tv2");
 tv2.setText("Celltext aligned right");

 FormLayoutCell cell22 = fl.addComponent(2,2, tv2);
 cell22.setHorizontalAlignment(CellHAlign.RIGHT);
 cell22.setPaddingLeft("3");
 cell22.setPaddingTop("5");
 cell22.setPaddingRight("10");
 cell22.setPaddingBottom("5");
 cell22.setWidth("40%");

 form.addComponent(fl);

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 339

Result

3.4.2.5.6.1 Usage & Type

Definition
The form layout is an invisible control for arranging and aligning controls in an application
container, group, or other container in a tabular manner. Elements can also be around
wrapped within a cell.

The form layout replaces the previous grid layout [Page 33] control.

Three form layouts allow to arrange the above form elements and buttons in the
manner shown; for details see the example

Use
Use the form layout to align controls within containers in a tabular fashion. Especially, use it in
groups, tabstrips and trays (iViews). The grid defined by the form layout is composed of rows,
which contain cells. Thus, rows and columns of the grid are defined implicitly. Cells can span
multiple columns. In addition, elements in a cell can wrap around. Various controls can be
added to the cells.

You can nest form layouts for arranging page elements on different levels.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 340

When use the Form Layout
● Use the form layout to align controls with respect to other controls in the user interface.

The most common usage of the form layout is: (1) laying out forms inside containers,
and (2) arranging different containers or form layouts. See the example below for
details and both uses.

● You can also use the form layout if you do not need to align controls with other
elements in your interface. In this case, insert only one cell into the respective rows and
set the cell's width so that it exceeds the width of the form layout.

The form layout is similar to the grid layout [Page 33] but has more features for
adjusting the grid cells. You need not specify a fixed number of rows and
columns but simply add rows and cells within rows. The form layout also can
wrap around elements in a cell but the flow layout [Page 33] is more efficient for
this purpose.

Overview of the Elements and Spacing
The form layout consists of three elements, each of which has a spacing of its own:

● Form: marginBottom, marginLeft, marginRight, marginTop define the spacing in pixels
between the border of the form layout and its content area; each margin is set to zero
by default.

● Row: paddingBottom, paddingTop define the padding in pixels at the top and bottom of
a row; set to zero by default.

● Cell: paddingBottom, paddingLeft, paddingRight, paddingTop define the spacing in
pixels between the border of the cell and its content area; set to zero by default.

Overview of the different margins and paddings within a form layout:

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 341

When adding elements to a form layout, take care that the margins and the padding at the
different levels are set to the correct values. When nesting form layouts, the margins at the
form level have to be left at the default value of zero in order to avoid additional padding. See
the example below for details.

Example
The following example demonstrates how to use the form layout. First, identify the different
areas within your application that need to be aligned. In the example in figure 3 there are two
areas, a form area containing labels and input elements, and a button row. Both areas are
aligned using separate form layouts. The form layout at the top contains the form area, that is,
the labels and the input elements. The second form layout includes the Save and Cancel
buttons. Then both form layouts are arranged using a third form layout.

Top Form Layout

First create a form layout for the input elements. Set all margins (marginBottom,
marginLeft, marginRight, marginTop) at the form level to 5 pixels. Note that the rules for
Spacing Between Grouped Controls [Page 33] require a spacing of 10 pixels between the tray
border and its content. As 5 pixels are already provided by the tray, the form layout has to
provide the remaining 5 pixels at the appropriate borders.

Then add six rows to the top form layout and add two cells to each row except the fifth one for
achieving a two column layout. In the fifth row, add only one cell and set colspan=2.

The rules in Spacing Between Single Controls [Page 33] require a spaces of 5 pixels between
rows of screen elements. As the top and bottom spacings are already set correctly, set the
bottom padding (paddingBottom) to 5 pixels for all but the last row.

There are alternatives for achieving a 5 pixels spacing between rows but this
approach seems to be the easiest way to do it.

For achieving the correct horizontal spacing between the labels and their corresponding input
elements, do not specify a value for the width of the left cells. Specify a right padding
(paddingRight) between 8 and 22 pixels for the left cells, instead. Leave all other cell
paddings at their default values of zero.

Finally, add the labels and input elements to the respective cells.

Bottom Form Layout

Create a second form layout for the buttons and set all margins at the form level to 5 pixels.
As there are 5 pixels at the bottom of the top form layout and 5 levels at the top of this form
layout, you get automatically a spacing of 10 pixels between the bottom input element and the
buttons.

Add only one row and two columns for the two buttons to the second form layout. Then add a
button to each cell.

Leave the padding at the row and cell levels at their default values of zero, except for the right
cell padding of the left cell. Set this padding (paddingRight) to 5 pixels. This ensures the
correct horizontal spacing between the two buttons.

Two form layouts are used for arranging the controls

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 342

Arranging the Form Layouts

As the two form layouts are to be appear below each other, you need a third form layout that
includes both. This outer form layout needs two rows and one cell in each row, resulting in
only one column (see figure 4). Simply add the two form layouts to the cells.

Note that this outer form layout must not have additional padding or margins. Therefore, let all
four margins at the form level at their default values of zero. Also, leave all other padding
values at their defaults.

A third form layout is used for arranging the two areas vertically

You can temporarily set the attribute debugMode to TRUE to render the form
layout with frames. This makes it easier for you to achieve a proper layout (see
Control API for Form Layout [Page 33] for details).

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 343

Design-relevant Attributes
The form layout has design-relevant attributes on the form level, the row level, and the cell
level. There are also some dependencies between the attribute values on the different levels.
See figure for an overview of the form layout, its elements and spacings.

Form Level

● marginBottom, marginLeft, marginRight, marginTop: Define the spacing in pixels
between the border of the form layout and its content area; each is set to zero by
default.

● width: The width can be specified in pixels or percent of the including container width.
If the width of a cell is also specified in percent and it exceeds the form layout's width
the cell content will be wrapped.

Row Level

● paddingBottom, paddingTop: Define the padding in pixels at the top and bottom of a
row; set to zero by default.

Cell Level

● align (LEFT, RIGHT, CENTER, CHAR, JUSTIFY): Defines the horizontal alignment of
elements within a cell.

● valign (BASELINE, BOTTOM, MIDDLE, TOP): Defines the vertical alignment of
elements within a cell.

● paddingBottom, paddingLeft, paddingRight, paddingTop: Define the spacing in
pixels between the border of the cell and its content area; set to zero by default.

● Width: Defines the width in pixels or percent of the form layout. Note that if different
widths are specified for a column the last value is used in order to avoid conflicts. Also
note that a value exceeding the width of the form layout will cause wrapping behavior.

● colSpan: Defines the horizontal expansion of a cell in columns.

You can also use the Boolean attribute debugMode as an aid for achieving a proper layout. If
it is set to TRUE the cell borders are displayed.

Further Information

Browser Support & Accessibility (508) [Page 33]

Control API [Page 33]

Related Controls
Flow Layout [Page 33]

Grid Layout [Page 33]

3.4.2.5.6.2 Browser Support & 508

The form layout control structures elements in every browser.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 344

Editability in Style Editor
Currently, the form layout is not changeable by the Style Editor.

Accessibility - 508 Support
The form layout has no special accessibility enhancements. It can contain several controls
that are by themselves in the accessible hierarchy and might have further descriptions for
blind users.

3.4.2.5.7 Grid Layout

Control API
A grid is a two dimensional arrangement of data in rows and columns. To avoid unexpected
results, the rows and columns should always be defined by gridLayoutCells instead of using
the 'columnSize' and 'rowSize' attribute. With the gridLayoutCell you have control over the
width of the gridLayoutCell while using the "columnSize" the renderer and web client take the
control. Especially in combination with 'debugMode' attribute set to "FALSE", the layout of the
grid is not displayed as expected.
If no gridLayoutCells are defined no gridLayout is displayed.

Limitation:
Large gridLayouts (large amount of rows and columns) can cause problems like:

○ Compiler errors that are caused by a 64kB method length limit.

○ Slow processing of page because of huge HTML-Code generated by the JSP-
Compiler

To avoid these problems you could use the gridLayout tag and combine it with <tr> & <td>
tags.

● cellPadding
Defines the padding of each cell in the grid layout. The value of the cell padding
attribute represents the distance from the border of the cell to the content of each cell
specified in pixels.

The cellPadding is applied to the top, left, right and bottom of the cell.

● cellSpacing
Specifies the space between the left side of the gridLayout and the left-hand side of the
leftmost gridLayoutCell, the top of the gridLayout and the top side of the topmost row
and so on for the right and bottom of the gridLayout. The attribute also specifies the
amount of space to leave between the gridLayoutCells.
Defines the spacing between cells and the outer boundary in the grid layout in pixels.

● columnSize
Defines the number of columns for the gridLayout. The columns are defined with the
gridLayoutCell control and 'ColumnSize' is overruled by the gridLayoutCell definition.

● debugMode
A Boolean value. If set to "TRUE" the gridLayoutCell is rendered with a frame. The
frame size is defined by gridLayoutCell 'width' and the 'cellpadding'. If a gridLayoutCell
is not defined or empty no frame is displayed.
If set to "FALSE" no frame is rendered. Please check the gridLayout description above
for limitations.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 345

By default the borders of the grid are invisible. To see the borders for layout and debug
reasons set the debug attribute.

Setting the debugMode attribute will add pixels to visualize borders. Therefore
the sizes of the grid layout will change if you reset the attribute. The debugMode
attribute, as indicated by the name, should only be used for debugging and not
for "styling".

● heightPercentage

Sets the height of the grid in percent.

● id
Identification name of the gridLayout.

● rowSize
Defines the number of rows for the gridLayout. The 'rowSize' is overruled when more
rows are defined with the gridLayoutCell control then specified with the 'rowSize'
attribute. If 'rowSize' is higher than the rows defined by the gridLayoutCell, the frame
height of the gridLayout is extended.

● width
Defines the width of the gridLayout. If the 'width' in gridLayoutCell is specified in
percent, the percentage will be calculated from the width of the gridLayout and not from
the width of the form.
If the gridLayoutCell definition exceeds the 'width' of the gridLayout the gridLayoutCell
content will be wrapped.

Attribute M Values Usage

cellPadding Numeric (0) Taglib
cellPadding="5"

Classlib
setCellPadding(5)

cellSpacing Numeric (0) Taglib
cellSpacing="5"

Classlib
setCellSpacing(5)

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 346

columnSize Numeric (0) Taglib
columnSize="3"

Classlib
setColumnSize(3)

debugMode FALSE (d)

TRUE

Taglib
debugMode="TRUE"

Classlib
setDebugMode(true)

heightPercentage Numeric (0) Classlib
setHeightPercentage(20)

id * String (cs) Taglib
id="ZIPCode_grid"

Classlib
setId("ZIPCode_grid")

rowSize Numeric Taglib
rowSize="5"

Classlib
setRowSize(5)

width Unit (100%) Taglib
width="500"

Classlib
setWidth("500")

gridLayoutCell
Defines the cells in the gridLayout.

● columnIndex
Defines the horizontal position of the cell.

● colSpan
Defines the horizontal expansion the cell in percent. If you specify for example, 100, the
cell uses the whole gridLayout width. Cells right of this cell are omitted. A possible
application for this attribute is to display headlines in the gridLayout.

● content
Specifies the content for the cell.

● heightPercentage
Sets the height of the gridLayout cell in percent.

● horizontalAlignment
Defines the horizontal alignment of the cell content.

○ LEFT
Left justifies the content of the cell.

○ RIGHT
Right justifies the content of the cell.

○ CENTER
Centers the content of the cell.

○ CHAR
Aligns text around a specific character. Not supported by all web clients.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 347

○ JUSTIFY
Sets text in the cell left and right aligned. Not supported by all web clients.

● id
Identification name of the gridLayoutCell.

● rowIndex
Defines the vertical position of the cell.

● style
Defines the stylesheet to be used to display the cell.

● verticalAlignment
Defines the vertical alignment of the cell content.

○ BASELINE
The content of the cell is aligned on the baseline line of the cell (or bottom when
no baseline exits).

○ BOTTOM
The content of the cell is aligned to the bottom line of the cell.

○ MIDDLE
The content of the cell is aligned to the middle of the cell height.

○ TOP
The content of the cell is aligned to the top line of the cell.

● width
Defines the width of the gridLayoutCell. One column can have only one width - when
you specify different widths for the same column the width defined last is taken.

Attribute M Values Usage

columnIndex * Numeric Taglib
columnIndex="2"

Classlib
setColumnIndex(2)

colSpan Numeric (0) setColSpan(100)

content String Classlib
Text: setContent("Celltext")

Component: setContent(ListBox)
heightPercentage Numeric (0) Classlib

setHeightPercentage(20)
horizontalAlignment LEFT (d)

RIGHT

CENTER

CHAR

JUSTIFY

Taglib
horizontalAlignment="LEFT"

Classlib
setHAlignment(CellHAlign.LEFT)

id String (cs) Taglib
id="Cell01"

Classlib
setId("Cell01")

rowIndex * Numeric Taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 348

rowIndex="1"

Classlib
setRowIndex(1)

style String Taglib
style="WildStyle"

Classlib
setStyle("WildStyle")

verticalAlignment BASELINE

BOTTOM

MIDDLE (d)

TOP

Taglib
verticalAlignment="TOP"

Classlib
setVAlignment(CellVAlign.TOP)

width Unit Taglib
width="20%"

Classlib
setWidth("20%")

Example

Using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 349

 <hbj:gridLayout
 id="myGridLayout1"
 debugMode="True"
 width="40%"
 cellSpacing="5">
 <hbj:gridLayoutCell
 rowIndex="1"
 columnIndex="1"
 width="10%"
 horizontalAlignment="RIGHT">
 <hbj:button
 id="myButton1"
 text="Button"
 tooltip="Button in the 1st row"
 />
 </hbj:gridLayoutCell>
 <hbj:gridLayoutCell
 id="myGridLayoutCell2"
 rowIndex="1"
 columnIndex="2"
 width="40%"
 horizontalAlignment="LEFT"
 verticalAlignment="BOTTOM">
 Celltext aligned left
 </hbj:gridLayoutCell>
 <hbj:gridLayoutCell
 rowIndex="2"
 columnIndex="1"
 width="20%">
 <hbj:button
 id="myButton2"
 text="Button"
 tooltip="Button in the 2nd row"
 />
 </hbj:gridLayoutCell>
 <hbj:gridLayoutCell
 rowIndex="2"
 columnIndex="2"
 horizontalAlignment="RIGHT">
 Celltext aligned right
 </hbj:gridLayoutCell>
 </hbj:gridLayout>

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 350

Using the classlib
 Form form = (Form)this.getForm();
 GridLayout gl = new GridLayout();
 gl.setId("myGrid");

 gl.setCellSpacing(5);
 gl.setWidth("40%");
 gl.setDebugMode(true);

 Button button = new Button("button", "button");
 GridLayoutCell cell11 = new GridLayoutCell("cell11");
 cell11.setHAlignment(CellHAlign.RIGHT);
 cell11.setWidth("10%");
 cell11.setContent(button);
 gl.addCell(1, 1, cell11);

 TextView tv1 = new TextView("tv1");
 tv1.setText("Celltext aligned left");

 GridLayoutCell cell12 = new GridLayoutCell("cell12");
 cell12.setHAlignment(CellHAlign.LEFT);
 cell12.setWidth("40%");
 cell12.setContent(tv1);
 gl.addCell(1, 2, cell12);

 Button button2 = new Button("button2", "button");
 GridLayoutCell cell21 = new GridLayoutCell("cell21");
 cell21.setHAlignment(CellHAlign.LEFT);
 cell21.setWidth("10%");
 cell21.setContent(button2);
 gl.addCell(2, 1, cell21);

 TextView tv2 = new TextView("tv2");
 tv2.setText("Celltext aligned right");

 GridLayoutCell cell22 = new GridLayoutCell("cell22");
 cell22.setHAlignment(CellHAlign.RIGHT);
 cell22.setWidth("40%");
 cell22.setContent(tv2);
 gl.addCell(2, 2, cell22);

 form.addComponent(gl);

Result

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 351

3.4.2.5.7.1 Usage & Type

Definition
The grid layout is an invisible control that helps you in arranging and aligning controls in an
application, group or other container in a tabular manner.

Grid layout arrangement of controls

Use

The grid layout is obsolete - use the form layout [Page 33], instead.

Currently, it is not possible to achieve the exact paddings and spacings as recommended in
the "Layout" section. The suggestions given here are approximations of the optimal Use the
grid layout to align controls within containers in a tabular fashion. The grid consists of cells
that are arranged in rows and columns. Various controls can be added to the cells. You can
insert the grid layout into any container control. Especially, use it in groups, tabstrips and
trays (iViews). You can also nest grid layouts for arranging page elements on different levels
(see example below).

The most common usage of the grid layout is the layout of forms inside containers and the
arrangement of different containers. There are two attributes for managing the spacing
between rows and columns, cellSpacing and cellPadding. For both of the above cases a
cellSpacing of 5 is recommended. There is no need to use cellPadding for these default
layouts. See the example below for details.

Currently, it is not possible to achieve the exact paddings and spacings as
recommended in the "Layout" section. The suggestions given here are
approximations of the optimal layout. Use these values until new controls are
introduced, which can deal with the layout issues of the grid and flow layout
controls.

When Use the Grid Layout - When Use the Flow Layout
● Use the grid layout to align controls with respect to other controls in the user interface

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 352

Use the form layout [Page 33] instead of the grid layout

● Use the flow layout if you do not need to align controls with other elements in your
interface; this will enhance performance because the flow layout does not have an
overhead of table structures in the rendering

Example
The following example demonstrates how to use the grid layout. First, identify the different
areas within your application that need to be aligned. In the example there are two areas, a
form area containing the input elements that have to be aligned, and a button row, where
buttons have to be added.

Both areas consist of separate grid layouts. The grid at the top contains the form area, the
labels, and the input elements. The second grid includes the Save and Cancel buttons. As the
spacing between the controls should always be 10px, set the cellSpacing to 5.

Step 1 - grid layout arrangement of inner controls

These two areas should appear below each other. Therefore, you need another grid
consisting of one column only and two rows. In the cells you simply add the form area and the
button row (see figure 3). This grid does not need additional padding or spacing because the
two added areas already have the correct spacing.

Step 2 - grid layout arrangement of areas

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 353

You can temporarily set the attribute debugMode to TRUE to render the grid
layout with frames. This helps you in achieving a proper layout (see Control API
for Grid Layout [Page 33] for details).

Design-relevant Attributes
You can set the number of columns (columnSize), and the spacing within (cellPadding) and
between cells (cellSpacing).

You can also use the Boolean attribute debugMode as an aid for achieving a proper layout. If
it is set to TRUE the cell borders are displayed.

Further Information
Browser Support & Accessibility (508) [Page 33]

Control API for Grid Layout [Page 33]

Related Controls
Flow Layout [Page 33]

Form Layout [Page 33]

3.4.2.5.7.2 Browser Support & 508

The grid layout control structures elements in every browser.

Editability in Style Editor
Currently, the grid layout is not changeable by the Style Editor.

Accessibility - 508 Support
The grid layout has no special accessibility enhancements. It can contain several controls that
are by themselves in the accessible hierarchy and might have further descriptions for blind
users.

3.4.2.6 Visible Controls

Purpose
GUI elements that are used to build an application. The controls are placed in a form. Every
control has different attributes that define the "look" of the control. Controls are checkboxes,
radio buttons and grids to name a few.

HTMLB controls example: Chart, date navigator, tabstrip and table view.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 354

Visible Controls
Breadcrumb [Page
33]

Drop Target [Page
33]

Item List [Page 33] Scroll Container
[Page 33]

Button [Page 33] File Upload [Page
33]

Label [Page 33] Table View [Page 33]

Button Row [Page
33]

Group [Page 33] Link [Page 33] Tabstrip [Page 33]

Chart [Page 33] Hover Menu [Page
33]

List Box [Page 33] Text Edit [Page 33]

Checkbox [Page 33] HTML Edit [Page 33] Menu Bar [Page 33] Text View [Page 33]

Date Navigator [Page
33]

Image [Page 33] Nonisolated HTML
Container [Page 33]

Tool Bar [Page 33]

Drag Source [Page
33]

Input Field [Page 33] Progress Indicator
[Page 33]

Tree View [Page 33]

Dropdown List Box
[Page 33]

Isolated HTML
Container [Page 33]

Radio Button [Page
33]

3.4.2.6.1 Breadcrumb

Definition
The breadCrumb represents the sequence of the visited pages (remember the story of Hansel
+ Gretel). It informs the user about his actual position in your application and allows easy
navigation back to start page. An item in the breadCrumb chain is called breadCrumbItem.
BreadCrumbItems can be defined with models or manually.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 355

If the breadCrumb line becomes longer than the web client window it is word wrapped like a
text line - if there is no word separator in the breadCrumbItem value string, the line is not
wrapped.

● behavior
The breadCrumb can behave as a

○ DEFAULT
Each breadCrumbItem can be linked independently.

○ SINGLELINK
The entire breadCrumb string is a single link.

● id
Identification name of the breadCrumb.

● model
Defines the model or bean which provides the breadCrumb with data.
See also IListModel [Page 33].

● nameOfKeyColumn
Specifies the name of the column that contains the key. This is used when you use an
underlying table in the model.

● onClick
Defines the event handling method that will be processed when the user clicks on the
breadcrumb. The BreadCrumbEventClick object allows access to the key, which
breadCrumb element had been clicked and allows the definition of parameters.

● size
Defines the text size of the breadCrumb. Possible values are:

○ LARGE
Double the standard text size.

○ MEDIUM
Standard text size.

○ SMALL
Half of the standard text size.

● tooltip
Defines the hint of the button which is displayed as the mouse cursor passes over the
button, or as the mouse button is pressed but not released.

Attributes M Values Usage

behavior DEFAULT (d)

SINGLELINK
Taglib
behavior="SINGLELINK"

Classlib
setBehavior(BreadCrumbBehavior.
 SINGLELINK)

id * String (cs) Taglib
id="OrderConfirm"

Classlib
setId("OrderConfirm")

model String (cs) Taglib
model="bean.model [Page 33]"

Classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 356

setModel ((IListModel [Page 33]) model)
name
OfKey
Column

 String Taglib
nameOfKeyColumn="col1"

Classlib
setNameOfKeyColumn("col1")

tooltip String Taglib
tooltip="Confirm order"

Classlib
setTooltip("Confirm order")

size LARGE

MEDIUM

SMALL

Taglib
size="MEDIUM"

Classlib
setSize(BreadCrumbSize.MEDIUM)

Events M Values Usage

onClick String (cs)

Taglib
onClick="ProcessCrumb"

Classlib
setOnClick("ProcessCrumb")

breadCrumbItem
Defines the items in the breadCrumb instead of the model.

We strongly recommend models to supply the breadCrumb with data.

● key
A string which is passed on to the event handling routine when the event occurs. A key
string has to be defined and must not be empty.
If the attribute 'behavior' is set to "SINGLELINK" the 'key' is set to "null" when passed
on to the event handling routine.

● value
Defines the text string displayed in the breadCrumb. A value string has to be defined
and must not be empty.

Attributes M Values Usage

key * String (cs)

Taglib
key="EVK1"

Classlib
addItem ("EVK1","1stVisitedPage")

value * String Taglib
value="1stVisitedPage"

Classlib
addItem ("EVK1","1stVisitedPage")

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 357

BreadCrumbClickEvent
Allows access to the event fired by the breadCrumb control.

● setParams
Set the parameters for the HTML page. The parameters depend on the nature of the
event. For example, table related events can include row and column id. The
setParams method is inherited from the com.sapportals.htmlb.event.Event
class. See the HTMLB Javadoc - Class "Event" for more details on how to set
parameters for the HTML page and how to have access.

● getKey
Returns the key of the breadCrumb control element, that has been clicked.

●

Example
using the taglib

 <hbj:breadCrumb
 id="myNavigation"
 tooltip="Navigation and orientation in the application"
 onClick="ProcessbreadCrumbClick"
 size="SMALL"
 >
 <hbj:breadCrumbItem key ="EVK1" value="MainLevel" />
 <hbj:breadCrumbItem key ="EVK2" value="1stLevel" />
 <hbj:breadCrumbItem key ="EVK3" value="2ndLevel" />
 <hbj:breadCrumbItem key ="EVK4" value="3rdLevel" />

 </hbj:breadCrumb>

using the classlib
 Form form = (Form)this.getForm();
 BreadCrumb bc = new BreadCrumb("myNavigation");
 bc.addItem("EVK1", "MainLevel");
 bc.addItem("EVK2", "1stLevel");
 bc.addItem("EVK3", "2ndLevel");
 bc.addItem("EVK4", "3rdLevel");
 bc.setSize(BreadCrumbSize.MEDIUM);
 bc.setTooltip("Navigation and orientation in the application");
 bc.setOnClick("ProcessbreadCrumbClick");
 form.addComponent(bc);

Result

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 358

3.4.2.6.1.1 Usage & Type

Figure 1: Search result using breadcrumbs

Breadcrumbs can be used for:

● inform users about their current position within a hierarchy, such as an application, a
directory, a Website, or a document.

● Allow for easy navigation back to the starting point, or to other levels within a hierarchy

Usage
Software applications and information in the Web are often organized hierarchically: General
information may lead to more specific information, thus creating an information hierarchy. The
breadcrumb control informs the user about the path to a specific content within such a
hierarchy. For example, hit lists typically include a breadcrumb to inform users about the
hierarchy level of a search result and therefore are guides to the list items. If the breadcrumb
uses links in the path description, the user can move to a specific folder or topic.

An item in the breadcrumb chain is called breadcrumb item. Breadcrumb items can be
defined by models or manually.

Figure 2: A wrapped breadcrumb

If the breadcrumb line becomes longer than the width of the browser window, the breadcrumb
is word-wrapped like a text line (figure 2). The wrapping is done at word separators, such as
blanks. If there is no word separator in the breadcrumb item string, the breadcrumb will wrap
behind the breadcrumb item separator ">".

Types
Breadcrumbs can be displayed as simple path information (no link, figure 3 top), as a chain of
clickable locations within the hierarchy (figure 3 center), or as one link that is described by the
path information (figure 3 bottom).

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 359

Figure 3: Simple path information (top), each breadcrumb item is linked independently
(center), whole path is selectable (bottom).

The breadcrumb type is set through the attribute behavior: value SINGLELINK creates a
breadcrumb, where the whole path is selectable; value DEFAULT creates a breadcrumb,
where each item can be linked independently.

Usage - Types
Use the different breadcrumb types for the following purposes:

● Use path information breadcrumbs (figure 3 top) for indicating the location of files inside
a hierarchy.

Example: A list of search results not only shows the hits themselves but also their
paths.

● Use independently linked breadcrumbs (figure 3 center) if you want to allow users to
move up and down within a hierarchy, or to jump to a certain category. The last
breadcrumb always shows the actual page and is no link.

● Use the whole breadcrumb path as one single link (figure 3 bottom) to inform users
about the location of a link target (= the last breadcrumb item) inside a hierarchy.

Design-relevant Attributes
size

Breadcrumbs come in three different font sizes: large, medium (= default) and small (figure 4).
Set the attribute size to the values LARGE, MEDIUM, or SMALL.

Figure 4: Large, medium, and small size breadcrumbs

Use the text size that correspond to the size of the surrounding text. In case space
requirements are tight, use smaller text sizes if available. These sizes may also be used for
design and highlighting reasons.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 360

Releated Controls
Links [Page 33]

3.4.2.6.1.2 Browser Support & 508

In Netscape 4.x and 6.x the breadcrumb path icons are not bold but have normal font weight.

Netscape path icons have normal font weight

Editability in Style Editor
In the Style Editor, it is possible to modify the following attributes of the tree view control:

Group Style IE 5 and
above

Netscape
4.7

Font Color of Breadcrumb Path
Icon

X X

Font Weight of Breadcrumb
Path Icon

X X

Text Decoration of Active Entry X X

Breadcrumb Styles

Breadcrumb Padding X

For common styles see section HTMLB Controls and Style Editor [Page 33].

Accessibility - 508 Support
● Keyboard: The breadcrumb control is inserted into the accessibility hierarchy by

default if it contains links.

● Default Description: Is provided by the HTMLB rendering engine.

● Application-specific Description: Set an additional description using the setTooltip
method if needed.

3.4.2.6.2 Button

Definition
Provides any type of functionality in your application at the touch of the button. Hints can be
displayed as the mouse cursor passes over the button, or as the mouse button is pressed but
not released.

● design

Defines the size and highlighting of the button.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 361

○ STANDARD

Displays the button with the standard background and text color.

○ SMALL

Displays the button with the standard background and text color and half of the
STANDARD size.

○ EMPHASIZED

Displays the button with the highlighted background and text color. You can also
refer to the emphasized button as default button. Therefore only one
emphasized button per form can be defined. If you use more then one
"EMPHASIZED" button, the last button defined becomes "EMPHASIZED".

● disabled

A boolean value that defines if the button is clickable. If the button is disabled it sends
no event when you press a mouse button on the button. A disabled button has a
different text color to show the user that it is disabled.

● encode

A Boolean value that defines how the text in the button is interpreted. HTML text
formatting commands (for example, <h1>, <i> etc.) can be used to change the display
of the text. If there are no formatting commands in the text string, the encode attribute
has no effect.

Example:
text = "<h1><i>Important</i></h1>"

encode = "false" Browser output:

the text string is rendered by interpreting the formatting commands.

encode = "true" Browser output:

the formatting commands are displayed and not interpreted.

● id

Identification name of the button.

● onClick

Defines the event handling method that will be processed when the user clicks on the
enabled button. If you do not define a 'onClick' event the button can be clicked but no
event is generated.

● onClientClick

Defines the JavaScript fragment that is executed when the user clicks on the button. If
both events ('onClick' and 'onClientClick') are specified, the 'onClientClick' event
handling method is activated first. By default the 'onClick' event handling method is
activated afterwards. In the JavaScript fragment you can cancel the activation of the
'onClick' event handling method with the command:

htmlbevent.cancelSubmit=true;

The 'onClientClick' event is useful to preprocess the form and only send the form to
client if the preprocessing was successful (e.g. date validation, valid number format
etc.) to save client/server interaction.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 362

A button click usually activates the client/server interaction. If an input field has
to be filled out for further processing, the JavaScript fragment can check the
necessary input on the client side and display a message if the necessary input
is missing, without server interaction.

To use JavaScript the JSP has to use the page tag (set page tag).

● text

Defines the string of text placed centered on the button. If no text should be displayed
in the button an empty string (null) can be used. The width of the button is automatically
adjusted to the length of the text.

● width

Defines the width of the button. The width of the button is automatically adjusted to the
length of the 'text'. To see an effect of the 'width' attribute, 'width' has to be set higher
as the width defined through the length of the 'text' string. The text string of the button
is always placed centered on the button. If an empty (null) 'text' string is set no 'text'
attribute is defined the width of the button is set according to the 'width' attribute.

● tooltip

Defines the hint of the button which is displayed as the mouse cursor passes over the
button, or as the mouse button is pressed but not released.

Attributes M Values Usage

design STANDARD (d)
SMALL
EMPHASIZED

Taglib
design="STANDARD"

Classlib
setDesign(ButtonDesign.STANDARD)

disabled FALSE (d)
TRUE

Taglib
disabled="FALSE"

Classlib
setDisabled(true)

encode FALSE (d)
TRUE

Taglib
not avaliable

Classlib
setEncode(true)

id * String (cs) Taglib
id="OrderConfirm"

Classlib
setId("OrderConfirm")

text String Taglib
text="Confirm"

Classlib
setText("Confirm")

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 363

width Unit Taglib
width="125px"

Classlib
setWidth("125px")

tooltip String Taglib
tooltip="Confirm order"

Classlib
setTooltip("Confirm order")

Events M Values Usage

onClick String (cs)

Taglib
onClick="ProcessConfirm"

Classlib
setOnClick("ProcessConfirm")

onClientClick String (cs)

Taglib
onClientClick="alert(‘Hi’);"

Classlib
setOnClientClick("alert(‘Hi’);")

Example
using the taglib

 <hbj:button
 id="OrderConfirm"
 text="Confirm"
 width="125px"
 tooltip="Click here to confirm order"
 onClick="ProcessConfirm"
 disabled="false"
 design="STANDARD"
 />

using the classlib
 Form form = (Form)this.getForm();
 Button button = new Button("button", "button");
 button.setText("Confirm");
 button.setWidth("125px");
 button.setTooltip("Click here to confirm order");
 button.setOnClick("ProcessConfirm");
 button.setDisabled(false);
 button.setDesign(ButtonDesign.STANDARD);
 form.addComponent(button);

Result

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 364

3.4.2.6.2.1 Usage & Type

Buttons are used for explicit functions that refer to a given object or serve for navigational
purposes.

Figure 1: Example of an iView containing groups with buttons and two buttons belonging to
the iView itself

Usage
Use buttons only for few and very important functions. A lot of buttons make a screen look
heavy and complex. Buttons have optical weight and visual dominance. Therefore, when in
doubt about whether to use a link or a button, go with a link.

For a detailed discussion of when to use buttons and when to use links, see Link
[Page 33].

Pressing the Enter key activates the default function (mostly, but not necessarily, identical to
the emphasized button's function).

Usage guidelines for the different button types and sizes are presented below.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 365

Labeling
Use title case for button labels. Use the ellipsis character ("...") on button labels to indicate
that the command needs further information to execute. Typically, the user is presented a
dialog to fill in missing information.

Title case means that the first letter of each word is capitalized, except for
certain small words, such as articles and short prepositions.

Choose the button's function description carefully; try to be as explicit as possible. For
complex interactions, use verb-noun combinations, e.g. "Search Database". If the context is
clear, i.e. if the action can only be applied to one object, it is sufficient to use a single verb as
the button's label ("Search"). For shufflers and comparable elements, you can also use a
simple "Go".

Positioning and Design Alternatives
For detailed button positioning rules see Button Positioning.

Buttons are similar in function to links. For a discussion of when to use buttons and when to
use links, see Link [Page 33].

Types
HTMLB offers three different button types (attribute design, values STANDARD, SMALL,
EMPHASIZED):

Figure 2: Standard, small, and emphasized button.

In the following, we list usage guidelines for these types.

Usage - Emphasized Buttons vs. Standard Button
For functions that complete a task, always use an emphasized button. In all other cases use a
standard button, or a small button (see below).

Rationale: Users need to realize that a certain function completes a task and know about -
possibly negative - consequences.

The emphasized button is always the leftmost button if it is a member of a button group.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 366

Usage - Standard Button vs. Small Button

● Use standard size buttons for frequently-used functions.

● Use small size buttons for seldom-used functions.

● Use small buttons in (exceptional) cases where space is scarce.

● Do not mix both sizes within groups of elements.

Design-relevant Attributes
All buttons are available in an enabled and disabled state (Boolean attribute disabled).

Usage - Disabled Buttons vs. Invisible Buttons
Disabled buttons indicate that a function is not available. Therefore, use disabled buttons for
functions that are temporarily disabled. For example, a certain system state, such as an error,
may prevent a user from executing a function.

Invisible buttons are buttons that are never available for the user, for example because he or
she does not have the permission to perform a certain action.

Positioning Buttons
Buttons are used for explicit functions that refer to a given object or serve for navigational
purposes. See Figure 1.

Positioning
Place buttons below the object they refer to. If space is scarce, place the buttons to the right
of the object (for several objects place them to the right of the bottom object).

How to make clear which object(s) a button refers to:

● Place the buttons inside, or close to the object.

Example: Place buttons inside group boxes, place buttons close to the fields they refer
to.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 367

Figure 3: Example of a button inside a group referring to a list box

● Left-align button and object.

Example: Left align buttons referring to a field with the field label:

Figure 4: Example of left-aligned buttons inside a group

● Place button(s) on the same level (area, group box) as the objects which are affected
by the action.

Example: Place buttons that refer to fields in a group box or area within that group box,
or area (figure 3 and 4).

● Show/hide objects: When an object is hidden, buttons are also hidden.

Example: If a table is hidden, the related buttons are also hidden.

Figure 5: Example of a left-aligned button group containing an emphasized button

● If an emphasized button (see Types) is a member of a button group, it is the leftmost
button in this group.

● Navigational buttons are placed at the bottom left of a screen (or screen area).

Overview of Positioning Rules
The following table summarizes the rules for button placement.

Object Example Placement

Single Object Field Right to the object

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 368

Figure 6: Button next to field

Several Objects Field Group Default case: left-aligned below the bottom object

If space is scarce: to the right of the bottom object
(see figure 4).

Area, tabstrip,
group box

Group Box At the bottom, left-aligned (see figure 3)

Table View (fixed
size)

Table based on
Table View
control or Portal
Data Viewer

Below the table, left-aligned with the table.

Figure 7: Button below a table

Special case:
Long table

Scrolling table Above and below the table, left-aligned

Alternative: Implement a special frame for buttons
above a table, which does not scroll.

Table 1: Rules for button placement

Usage guidelines for the different button types and sizes are presented in Button.

Further Information
Control API [Page 33], Browser Support & Accessibility (508) [Page 33]

Related Controls
Link [Page 33], Input Field [Page 33], Group [Page 33], Table View [Page 33]

3.4.2.6.2.2 Browser Support & 508

In Netscape 4.X buttons will be displayed as standard HTML buttons.

Figure 1: Netscape button

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 369

Editability in Style Editor
In the Style Editor, it is possible to modify the following attributes of the button control in
Internet Explorer 5 and above (Netscape 4.7 uses standard HTML buttons):

Group Style IE5 and above

Button Styles Text Padding

Text Decoration

Font Weight

Border Width and Style

X

X

X

X

Standard Buttons Standard Background Color

Standard Border Color

Standard Font Color

Standard Hover Color

Disabled Standard Background Color

Font Color of Disabled Standard

X

X

X

X

X

X

Emphasized
Buttons

Emphasized Background Color

Emphasized Border Color

Emphasized Font Color

Emphasized Hover Color

Disabled Emphasized Background Color

Disabled Emphasized Font Color

X

X

X

X

X

X

Standard-sized
Buttons

Height X

Small-sized Buttons Small Height X

Text Wrap White Space X

Table 1: Editable styles for the button control

For common styles see section HTMLB Controls and Style Editor in Customer Branding and
Style Editor.

Accessibility & 508 Support
● Keyboard

The button inserted into the accessibility hierarchy by default - including the button
state (for example, disabled) and type (for example, emphasized).

● Default Description

Is provided by the HTMLB rendering engine.

● Application-specific Description

Set an additional description using the setTooltip method if needed.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 370

An additional description is needed if users need more specific information or
instructions. In general, the description has to be extended if a button introduces an
interaction that cannot be recognized by a blind user. For example, the descriptions
needs to be extended if the button opens a new window.

3.4.2.6.3 Button Row

Definition
The button row control is a container, that displays several buttons in horizontal order. The
advantage of the button row control over multiple usage of the "button" control (which would
place the buttons also next to each other) is, that the button row control places the buttons
closer to each other and that the distance is constant, regardless of the style sheet settings.

When the button row control is not used in a gridlayout or formlayout, it is always rendered in
a new line.

● addButton

Adds a button to the button row control.

● id

Identification name of the button row.

Attributes M Values Usage

addButton Component

Taglib
no tag available

Classlib
addButton(Button button)

id * String (cs) Taglib
id="OrderConfirm"

Classlib
setId("OrderConfirm")

Example
using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 371

 <hbj:buttonRow
 <hbj:button id="OKButton"
 text="OK"
 width="125px"
 />
 <hbj:button id="CancelButton"
 text="Cancel"
 width="125px"
 />
 <hbj:button id="HelpButton"
 text="Help"
 width="125px"
 />
 </hbj:bottonRow>

using the classlib
 Form form = (Form)this.getForm();
 ButtonRow br = new ButtonRow();
 Button OKButton = new Button("OKButton", "OK");
 OKButton.setWidth("125px");
 OKButton.setOnClick("ProcessOK");
 Button CancelButton = new Button("CancelButton", "Cancel");
 CancelButton.setWidth("125px");
 CancelButton.setOnClick("ProcessCancel");
 Button HelpButton = new Button("HelpButton", "Help");
 HelpButton.setWidth("125px");
 HelpButton.setOnClick("ProcessHelp");

 br.addButton(OKButton);
 br.addButton(CancelButton);
 br.addButton(HelpButton);
 form.addComponent(br);

Result

3.4.2.6.4 Chart

Definition
A control to visualize data in annotated diagrams.

● axisMaxVal

Used to calculate the annotation and scaling of the chart. 'axisMaxVal' specifies the
maximum value the axis is annotated with. If 'axisMaxVal' is not specified or a value is
specified that is less than the maximum value provided by he model, 'axisMaxVal' is set
to the maximum value of the model.

● axisMinVal

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 372

Used to calculate the annotation and scaling of the chart. 'axisMinVal' specifies the
minimum value of the axis. If 'axisMinVal' is not specified or a value is specified that is
greater than the minimum value provided by he model, 'axisMinVal' is set to 0.

● chartType

Controls the style in which the data is displayed.

○ AREA

○ AREA3D

○ AREA_STACKED

○ AREA_STACKED_3D

○ BARS

○ BARS_3D

○ BARS_STACKED

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 373

○ BARS_STACKED_3D

○ BITMAP

○ COLUMNS

○ COLUMNS_3D

○ COLUMNS_STACKED

○ COLUMNS_STACKED_3D

○ LINES

○ LINES_3D

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 374

○ PIE

○ PIE_3D

○ PIE_EX

○ PIE_EX_3D

○ PIE_SPLIT

○ PYRAMID

○ TREND

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 375

● colorOrder

The various types of the chart control all use the same set of colors to visualize the
values of a data set, but explore the space of possible colors on different paths. The
following pictures show the three predefined color schemes and the chart types using
them.

○ STRAIGHT

This color scheme is used by the various area, column and bar chart graphs.

○ SNAKE

This color scheme is used by the pie chart graphs.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 376

○ REVERSE

This color scheme is used by the line chart graphs.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 377

● displayObjectValues

A boolean value that controls if the values is displayed with the object.

displayObjectValues=”false”

displayObjectValues=”true”

Not all 'ChartType' settings support the display of values. The example pictures in the
'chartType' attribute description show which types support the display of values.

● height

Defines the overall height of the chart. The height includes the 'title', 'titleValues' and
'legendPosition'.

● id

Identification name of the chart.

● legendPosition

Controls the position of the legend.

○ EAST

Places the legend on the right side of the chart.

○ NONE

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 378

The legend will be suppressed.

○ NORTH

Places the legend on top of the chart.

○ SOUTH

Places the legend under the chart.

○ WEST

Places the legend left of the chart.

● model

Defines the model which provides the chart with data. How to work with the
IChartModel.

● title

Specifies the headline of the chart.

● titleCategories

Specifies the axis title for the categories.

● titleValues

Specifies the axis title for the values.

● visible

A boolean value that defines if the chart is visible.

● voidValue

Defines a value that will not be drawn in the chart. Is a "voidValue" set, for example to
0, a line chart would stop on the previous value and start a new line with the next value.

● voidValueSet

Switches the "voidValue" function on and off.

● width

Defines the width of the chart. The width include 'titleCategories' and the
'legendPosition'.

Attributes M Values Usage

axisMaxVal Numeric

Taglib
axisMaxVal="2000"

Classlib
setAxisMaxVal(2000)

axisMinVal Numeric Taglib
axisMinVal="100"

Classlib
setAxisMinVal(100)

chartType AREA
AREA_3D
AREA_STACKED
AREA_STACKED_3D
BARS
BARS_3D (d)

Taglib
chartType="PIE"

Classlib
setChartType(ChartType.PIE)

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 379

BARS_STACKED
BARS_STACKED_3D
BITMAP
COLUMNS
COLUMNS_3D
COLUMNS_STACKED
COLUMNS_STACKED_3D
LINES
LINES_3D
PIE
PIE_3D
PIE_EX
PIE_EX_3D
PIE_SPLIT
PYRAMID
TREND

colorOrder DEFAULT (d)
STRAIGHT
REVERSE
SNAKE

Taglib
colorOrder="SNAKE"

Classlib
setColorOrder
(ChartColorOrder.SNAKE)

displayObjectValues FALSE (d)
TRUE

Taglib
displayObjectValues="TRUE"

Classlib
setDisplayObjectValues(true)

height Unit (200) Taglib
height="300"

Classlib
setHeight("300")

id * String (cs) Taglib
id="VacationPlanner"

Classlib
setId("VacationPlanner")

legendPosition EAST
NONE
NORTH
SOUTH
WEST

Taglib
legendPosition="SOUTH"

Classlib
setLegendPosition

(ChartLegendPosition.SOUTH)

model Component Taglib
model="myBean.model [Page 33]"

Classlib
setModel((IChartModel [Page 33])
model)

title String Taglib
title="Bill board chart"

Classlib
setTitle("Bill board chart")

titleCategories String Taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 380

titleCategories="Brand"

Classlib
setTitleCategories("Brand")

titleValues String Taglib
titleValues("Overview")

Classlib
setTitleValues("Overview")

visible FALSE
TRUE (d)

Taglib
visible="FALSE"

Classlib
setVisible(false)

voidValue Numeric – Double Taglib
no tag available

Classlib
setVoidValue(10.5)

voidValueSet FALSE
TRUE (d)

Taglib
no tag available

Classlib
setVoidValueSet(false)

width Unit (500) Taglib
width="400"

Classlib
setWidth("400")

Example
using the taglib

 <hbj:chart
 id="myChart1"
 model="myChartBean.model"
 visible="true"
 displayObjectValues="true"
 titleCategories="Company"
 titleValues="Turnover"
 title="Washers by Companies!"
 chartType="BARS_3D"
 legendPosition="EAST"
 colorOrder="STRAIGHT"
 />

using the classlib. For information about setting up the bean, see "IChartModel [Page
33]".

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 381

 Form form = (Form)this.getForm();
 Chart myChart = new Chart();
 myChart.setVisible(true);
 myChart.setDisplayObjectValues(true);
 myChart.setTitleCategories("Company");
 myChart.setTitleValues("Turnover");
 myChart.setTitle("Washers by Companies!");
 myChart.setChartType(ChartType.BARS_3D);
 myChart.setLegendPosition(ChartLegendPosition.EAST);
 myChart.setColorOrder(ChartColorOrder.STRAIGHT);

 MyVecBean myVecBean = new MyVecBean();
 IChartModel chartModel = myVecBean.getModel();
 myChart.setModel(chartModel);
 form.addComponent(myChart);

Result

3.4.2.6.4.1 Usage & Type

The chart control displays a chart; it offers a variety of different chart types.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 382

Figure 1: A stacked bar chart as an example of a chart control

Usage
A chart displays data that are relevant for the user in a graphical representation so that the
characteristics of the data and their relations are easy to capture for the user.

In cases where it is important for users to know the exact values behind the data, an alternate
view may present the data in a table as numbers or texts. A button should allow users to
toggle between the diagram and the table view.

Note: For thorough information on charts and their uses see Recommendations for Charts
and Graphics in the SAP Design Guild.

Positioning
A chart can be presented in an iView; in this case, it should comprise the main part of the
iView. A chart can be combined with other screen elements to allow for interaction with the
chart.

Legend
A legend explains the colors used in a chart. For the chart control the legend is generated
automatically. It can be placed to the right (preferable) or below the graph; other positions are
also possible, but should not be used. The position of the legend is set by the attribute
legendPosition using the values EAST, NORTH, SOUTH, WEST, or NONE for no legend.

Order of Screen Elements
If there are further interaction elements, obey the following order:

● A filter of shuffler can be placed above the chart, if data can be selected from several
sets or if the amount of data has to be reduced.

● Then follows the chart.

● Place legends or other text right to the image or below it, depending on the format of
the chart (see above)

● Place pushbuttons for chart-related functionality and status information (for example,
zoom factor) below the chart and left align them.

● If there exists an alternative table view, a button below the table allows to toggle
between diagram and table view.

Functionality
Typical functionality, which charts may offer, are:

● Switch between chart view and table view

● Zooming and panning (nor available for the chart control)

● Drill-down

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 383

Using Chart Types - Overview
The chart types are shown in the Control API description [Page 33]. The following table
overview presents usage hints for the available chart types.

Chart Type Typical Applications Variants, Remarks

Area Cumulated totals (numbers
or percentages) over time.

Percentage, Cumulative

Column/Bar Observations over time or
under different conditions;
data sets must be small.

Vertical (columns), horizontal
(bars); multiple columns/bars,
columns/bars centred at zero

Segmented Column/Bar Proportional relationships
over time.

May be scaled to 100%.

Line, Curve Trends, functional relations. Data point connected by lines
or higher order curves.

Pie Proportional relationships at
a point in time.

Segments may be pulled out
of the pie for emphasis
(exploded pie chart).

Table 1: Chart types and their applications and variants

Note that there are chart types that may better fit the intended purpose than the available
ones. For more information, consult Recommendations for Charts and Graphics in the SAP
Design Guild.

Design-relevant Attributes
Look and behavior of the chart control can be controlled by a number of attributes:

● Position and Visibility of Legend: Attribute legendPosition allows to hide or show and
position the legend (values NONE, EAST, NORTH, SOUTH, WEST).

● Color Order: Use attribute colorOrder to control the sequence of colors (values are
DEFAULT, STRAIGHT, REVERSE, and SNAKE).

● Height and Width: Attributes height and width allow to set the size of the chart.

● Display of Values and Titles: A number of attributes is at your disposal to control the
look and position of labels for values and categories. For more information see page
Control API for Chart.

For detailed information on attributes see the Control API description [Page 33].

Related Topics
Image [Page 33]

Table View [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 384

3.4.2.6.4.2 Browser Support & 508

No known compatibility issues - charts are like images and are displayed correctly with any
browser.

Editability in Style Editor
Customers cannot customize charts via the Style Editor. The tool offers no editable styles
related to charts placed as portal content.

Accessibility – 508 Support
Charts are like images; therefore, the same measures apply.

● Keyboard

Charts are not inserted into the accessibility hierarchy by default.

● Default Description

Is provided by the HTMLB rendering engine

● Application-specific Description

Set an additional description using the setTooltip method if needed. Do not use the
setAlt method that sets the alternate text (alt attribute).

3.4.2.6.5 Checkbox

Definition
A control, consisting of a graphic and associated text, that a user clicks to select or deselect
an option. A check mark in the checkBox graphic indicates that the option is selected.

The checkbox control can be for client side eventing. See the EventValidationComponent
[Page 33] description for more details.

● checked

A boolean value that that indicates if a checkBox is selected. "True" shows a check
mark in a checkBox and indicates that the checkBox is selected, "false" leaves the
checkBox empty and indicates that the checkBox is not selected.

● enabled - inherited from EventValidationComponent [Page 33].

A boolean value that defines if the checkBox is click able. If the checkBox is disabled
(enabled = false) it is not selectable. A disabled checkBox has a different background
color for the checkBox graphic and if the checkBox is checked the a different color for
the check mark.

● encode

A boolean value that defines how the checkBox text is interpreted. HTML text
formatting commands (for example, <h1>, <i> etc.) can be used to change the display

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 385

of the checkBox text. If there are no formatting commands in the checkBox text string,
the encode attribute has no effect.

Example:
text = "<h1><i>Important</i></h1>"

encode = "false" Browser output:

the text string is rendered by interpreting the formatting commands.

encode = "true" Browser output:

the formatting commands are displayed and not interpreted.

● id

Identification name of the checkBox.

● jsObjectNeeded - inherited from Component [Page 33].

A boolean value that defines if a JavaScript object has to be generated for the
checkbox component.

● labeled

Notify the component that a label has assigned to it. See the HTMLB JavaDoc for more
details on the LabeledComponent class.

● onClick

Defines the event handling method that will be processed when the user clicks on the
enabled checkBox. If you do not define a 'onClick' Event the checkBox can be clicked
but no event is generated.

● onClientClick

Defines the JavaScript fragment that is executed when the user clicks on the checkbox.
If both events ('onClick' and 'onClientClick') are specified, the 'onClientClick' event
handling method is activated first. By default the 'onClick' event handling method is
activated afterwards. In the JavaScript fragment you can cancel the activation of the
'onClick' event handling method with the command:

htmlbevent.cancelSubmit=true;

The 'onClientClick' event is useful to pre process the form and only send the form to
client if the preprocessing was successful (for example, date validation, valid number
format etc.) to save client/server interaction.

● text

Defines the string of text placed right of the check box graphic. If no text should be
displayed an empty string (null) can be used. See 'encode' for a formatting example
with embedded HTML commands.

● tooltip

Defines the hint of the checkBox which is displayed as the mouse cursor passes over
the checkBox, or as the mouse button is pressed but not released.

Attributes M Values Usage

checked TRUE Taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 386

FALSE (d) checked ="TRUE"

Classlib
setChecked (true)

enabled* TRUE (d)
FALSE

Taglib
disabled = "TRUE"

Classlib
setEnabled (false)

encode TRUE (d)
FALSE

Taglib
encode = "FALSE"

Classlib
setEncode (false)

id * String (cs) Taglib
id = "CheckCPU"

Classlib
setId ("CheckCPU")

jsObjectNeeded** TRUE
FALSE (d)

Taglib
jsObjectNeeded = "TRUE"

Classlib
setJsObjectNeeded(true)

labeled TRUE
FALSE (d)

Taglib
No tag available

Classlib
setLabeled (true)

text String Taglib
text = "CPU status"

Classlib
setText("CPU status")

tooltip String Taglib
tooltip = "Check CPU status"

Classlib
setTooltip("Check CPU status")

* Method is inherited from the EventValidationComponent [Page 33] component.
Therefore the attribute is different between the taglib and the classlib.

** Method is inherited from the Component component [Page 33].

See the JavaScript API [Page 33] description for details how to access the component in
JavaScript.

Events M Values Usage

onClick String (cs) Taglib
onClick = "process_checkbox"

Classlib
setOnClick("process_checkbox")

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 387

onClientClick String (cs) Taglib
onClientClick="alert('Click')"

Classlib
setOnClientClick("alert('Click')")

Example
using the taglib

 <hbj:checkbox
 id="CheckCPU"
 text="CPU status"
 tooltip="Check CPU status"
 disabled="false"
 checked="true"
 />

using the classlib
 Form form = (Form)this.getForm();
 Checkbox cb = new Checkbox("myCheckbox");
 cb.setText("CPU status");
 cb.setTooltip("Check CPU status");
 cb.setDisabled(false);
 cb.setChecked(true);
 form.addComponent(cb);

Result

3.4.2.6.5.1 Usage & Type

Checkboxes offer one or multiple choices to the user. The user can select none, one, or as
many options as desired in a group of checkboxes.

Figure 1: A checkbox group

Usage
Checkboxes are the appropriate elements when users can choose between multiple options.
They can appear as a single checkbox or grouped.

In a checkbox group the choices are not exclusive, that is, a user can check several options in
a group. If you need single-selection use radio buttons or a dropdown list box, instead.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 388

Checkbox Group
For groups of checkboxes use the checkbox group control if applicable. This control allows to
arrange checkboxes in one column, one row, or in a matrix-like fashion.

Note: It is not possible to determine the horizontal spacing within a checkbox group. If you
need a different spacing than that supplied by the checkbox group control, use single
checkboxes and a grid layout control if applicable.

Arrangement and Design Alternatives
Checkboxes offer one or multiple choices to the user. The user can select none, one, or as
many options as desired in a group of checkboxes.

Checkbox groups offer users a set of multiple options that may be arranged either horizontally
(2-3 checkboxes), vertically (not more than about 12 checkboxes), or in a matrix-like fashion.
Note that checkbox groups are appropriate for static and relative small numbers of options
only. Use the table view for larger and dynamic option sets.

For the alignment of checkboxes we distinguish the following cases:

● Checkboxes that refer to adjacent fields.

● Checkboxes that do not refer to elements but should be included in field groups.

● Checkboxes that can be arranged as an independent block of information

Case 1: Checkboxes that Refer to One or More Fields

Figure 1a-b: Checkbox that refers to one input field above it (left) or to two (City and Street,
right)

Alternatively, a single checkbox can be placed to the right of a reference field (figure 1c) if
space permits. If there is more than one reference field place the checkbox right to the bottom
reference field.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 389

Figure 1c: Checkbox that refers to an input field left of it (equivalent to figure 1a)

Case 2: Checkboxes that are Included in a Field Group
If checkboxes are included in a field group but do not refer to a certain field, place the
checkbox labels to the left and align the checkboxes themselves with the other input fields
(figure 2a).

Note: In this case you have to set the checkbox text to an empty text and use the label control
for the label.

Alternatively, you can add a label that is left-aligned with the other labels of the group and use
the checkbox text for additional information (figure 2b). In that case, only the first checkbox
should have a label that describes the whole group.

Figure 2a-b: Checkbox within a field group, either with label to the left (left), or with two labels

If space permits you can alternatively use a horizontal checkbox group that occupies one line
(typically for 2-3 checkboxes, figure 2c).

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 390

Figure 2c-d: Horizontal checkbox group within a field group (left); indented checkbox without
group label (right). Figure 2d shows wrong alignment because the checkbox does not refer to
the password field.

Note: Do not use an arrangement without a group label in this case (figure 2d) because it may
lead to misinterpretations. Such a layout suggests a dependency from the field above the
group to the user. Even though the layout in figure 2d is the same as in 1a, the usage is
incorrect because the checkbox does not refer to the password field. Therefore, use it only if
such a dependency does exist (case 1).

Case 3: Checkboxes that Form an Independent Information Block
If checkboxes are arranged in a checkbox group, they are left aligned with other labels and
arranged in a matrix-like fashion. Such groups have either to be included in a group control
(see figure 3a) or separated from the field group by white space (figure 3b).

Figure 3a-b: Checkbox group that forms an information unit of its own - either included in a
group (left) or separated by an empty line (right)

Instead of a matrix, you can use a horizontal arrangement if there are only few checkboxes. In
this case, set the columnCount attribute of the checkbox group control to a value that results
in one row only.

There are two possible arrangements for horizontal checkbox groups:

● The checkbox row can be introduced by a label to the left - in this case align the
checkboxes with other elements and use the label control for the label (figure 4a)

● The checkbox row does not have an introductory label (figure 4b)

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 391

Separate the horizontal checkbox group from preceding fields by an empty line.

Note: An "extreme" case of a horizontal checkbox group is a single checkbox.

Figure 4a-b: Example of a horizontal checkbox group, either with an introductory label to the
left (left), or without an introductory label (right).

For more than two to three checkboxes a vertical arrangement with or without label may be
more appropriate (see figure 5a and 5b).

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 392

Figure 5a-b: Example of a vertical checkbox group, either with an introductory label to the left
(left), or without (right).

Dependent Fields
In some cases, the state of input fields, dropdown list boxes, or other controls may depend on
the setting of a checkbox. Below we present a simple example where users may enter their
contact preferences (figure 6a). An unchecked checkbox describes the default case; it is set
the input field below it is read-only. A checked checkbox describes the less frequent case. If
the user checks the checkbox, the input elements are ready for input.

Figure 6: Checkboxes that controls the editability of the input field(s) below the checkbox

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 393

If there are more dependent elements indent the dependent group so that their labels are left
aligned with other input fields (top checkbox). If there is only one dependent field, usually a
field label is not needed (bottom checkbox).

Design-relevant Attributes
Checkboxes have the disabled and checked attributes. Set disabled to TRUE if a checkbox
cannot be checked or unchecked by a user temporarily. Set checked to TRUE to preset a
checkbox to the checked state. Use attribute text to set the descriptive label text for a
checkbox.

You can also set the column count for checkbox groups (attribute columnCount).

Related Controls
Radio Button [Page 33], Dropdown List Box [Page 33], List Box [Page 33], Label [Page 33],
Grid Layout [Page 33]

3.4.2.6.5.2 Browser Support & 508

The checkbox renders in every supported browser.

Editability in Style Editor
The checkbox itself renders as the standard browser control. Style Editor changes can be
made to the corresponding label.

Checkbox Groups
There is no editibility for checkbox groups in the style editor.

Accessibility – 508 Support
Checkboxes have to be used in combination with the label control, which points to the
assigned checkbox if they are used with a label to the left of the checkbox. This ensures that
screen readers are aware of the relationship between the both elements and can read the
correct label to the according checkbox.

● Keyboard

Checkboxes are inserted into the accessibility hierarchy by default.

● Default Description

Is provided by the HTMLB rendering engine.

● Application-specific Description

Set an additional description using the setTooltip method if needed.

● Label

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 394

Has to be connected to a label control for left-hand labels (use method setLabelFor
for identifying the corresponding checkbox or checkbox group).

3.4.2.6.6 Date Navigator

Definition
A control for advanced handling of all actions which require a date input and to visualize a
date.

● id

Identification name of the dateNavigator.

● model

Defines the model which provides the dateNavigator with data. How to work with the
DateNavigatorModel [Page 33].

● monthPerColumn

The dateNavigator can display several month. The months are arranged in matrix form.
This attribute defines the number of columns of the matrix.

● monthPerRow

The dateNavigator can display several month. The months are arranged in matrix form.
This attribute defines the number of rows of the matrix.

● onNavigate

The navigation fields are located left and right of the displayed month
. The << and >> fields can be used to select the previous and next

month. If a dateNavigator has more columns the previous month navigator is located at
the first column and the next month navigator at the last column.

The 'onNavigate' attribute defines the event handling method that will be processed
when the user clicks on the navigation fields.

● onDayClick

Defines the event handling method that will be processed when the user clicks on a
day.

● onWeekClick

Defines the event handling method that will be processed when the user clicks on a
week. The week is the first column of the dateNavigator grid.

● onMonthClick

Defines the event handling method that will be processed when the user clicks on the
header text string representing the month displayed.

Attributes M Values Usage

id * String (cs) Taglib
id = "VacationPlanner"

Classlib
setId ("VacationPlanner")

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 395

model [Page 33] * String Taglib
model="myBean.model [Page 33]"

Classlib
setModel ((DateNavigatorModel [Page 33]) model)

monthPerColumn Numeric (1) Taglib
monthPerColumn = "3"

Classlib
setMonthPerColumn (3)

monthPerRow Numeric (1) Taglib
monthPerRow = "4"

Classlib
setMonthPerRow (4)

Events M Values Usage

onNavigate String (cs)

Taglib
onNavigate = "ProcessNav"

Classlib
setOnNavigate ("ProcessNav")

onDayClick String (cs)

Taglib
onDayClick = "DaySel"

Classlib
setOnDayClick ("DaySel ")

onWeekClick String (cs)

Taglib
onWeekClick = "WeekSel"

Classlib
setOnWeekClick ("WeekSel ")

onMonthClick String (cs)

Taglib
onMonthClick = "MonSel"

Classlib
setOnMonthClick ("MonSel")

Example
using the taglib

 <hbj:dateNavigator
 id="myDateNavigator1"
 model="myBean.model"
 monthsPerColumn="2"
 monthsPerRow="3"
 onNavigate="myOnNavigate"
 onDayClick="myOnDayClick"
 onWeekClick="myOnWeekClick"
 onMonthClick="myOnMonthClick"
 />

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 396

using the classlib

 IPortalComponentRequest request =
 (IPortalComponentRequest) this.getRequest();
 IPortalComponentContext context = request.getComponentContext();
 IPortalComponentProfile profile = myContext.getProfile();
 IPageContext pagecontext =

 PageContextFactory.createPageContext(request);

 Form form = (Form)this.getForm();
 DateNavigator dn = new DateNavigator(pagecontext);
 dn.setId("myDateNavigator1");
 dn.setMonthsPerColumn(2);
 dn.setMonthsPerRow(3);
 dn.setOnNavigate("myOnNavigate");
 dn.setOnDayClick("myOnDayClick");
 dn.setOnWeekClick("myOnWeekClick");
 dn.setOnMonthClick("myOnMonthClick");
 MyBean myBean = new MyBean(pagecontext);
 dn.setModel(myBean.getModel());
 form.addComponent(dn);

Result

3.4.2.6.6.1 Usage & Type

Figure 1: Example of the date navigator displaying one month

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 397

Figure 2: Example of the date navigator displaying 12 months

Usage
The date navigator is a control for advanced handling of all actions, which require a date input
and to visualize a date. Thus, the main purpose of the date navigator control is to aid users in
inputting a date. It also ensures that the date is entered in an appropriate format. In such
cases, it is highly recommended that users also be allowed the option to manually input the
date as well.

Note: If the date must be entered in a particular format, an example should be given next to
the entry field.

The date navigator can also be used to visualize the Western calendar.

Design-relevant Attributes
The date navigator allows to set the number of months per row (monthsPerRow) and per
column (monthsPerColumn).

Related Controls
There are no related controls.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 398

3.4.2.6.6.2 Browser Support & 508

Netscape Navigator 4 cannot display certain visual aspects of the standard date navigator
control.

Figure 1: Example of the date navigator in
Netscape Navigator 4

Figure 2: Example of the standard date
navigator

Editability in Style Editor
In the Style Editor for release 5.0 the date navigator is called "calendar." In the Style Editor,
one can change the background colors, text attributes, padding and the type of cursor that
appears over clickable elements. Here is a list of the styles that can be changed:

Group Style IE5 and
above

Netscape 4.7

Day names Background Color for Days of the
Week

x x

Day Numbers Entry Width
Alignment of Entry Text
Decoration of Entry Text
Selection Background Color 1
Selection Background Color 2
Selection Background Color 3
Selection Background Color 4
Selection Background Color 5

x
x
x
x
x
x
x
x

x
x
x
x
x

Present Day Background Color
Border

x
x

x

Other Days of this
Month

Background Color x x

Days of Previous
or Next Month

Inactive Font Color x

Container Background Color of Container Body
Container Border
Padding of Container Content

x
x
x

x

Table 1: Editable styles for the date navigator control

Accessibility - 508 Support
Currently the date navigator has not been adapted to support screen readers. For more
information about accessibility, see the SAP Portals Accessibility Guidelines.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 399

3.4.2.6.7 Drag Source

Definition
DragSource is a container that contains controls that can be dragged. This component works
together with dropTarget [Page 33] component which defines the container where the
dragged item can be dropped off.

● columnKey

Defines the column of the dragSource when the dragSource is used in a custom
defined cellRenderer of a TableView or inside a Tree. The column key can be
recovered with the DropEvent object.

● dropTargetDesign

Defines the design of the marker which is used to indicated the dropTarget where the
'flavours' attribut matches. The marker is displayed when a dragSource component has
been clicked and dragging has started.

○ BORDERED

Displays a frame around the matching dropTarget.

○ UNDERLINED

Displays a base line under the matching dropTarget.

○ NONE

No indication of the matching dropTarget.

● flavours

Flavours are used to identify possible dropTargets. When this 'flavours' attribute
matched with the 'flavours' attribute of a dropTarget it is identified as possible drop of
target. Drag-and-Drop is only possible if the dragSource contains at least one flavour of
the dropTarget. A dragSource can have more than one flavour assigned to it. Use the
addFlavour method to add additional flavours.

● id

Identification name of the dragSource.

● scope

Defines if the drag-and-drop process can take place only inside the current form or in
the whole browser.

○ Browser

drag-and-drop process can take place in the whole browser.

○ Form

drag-and-drop process can take place in the current form.

For the Netscape browser only the scope FORM is supported.

● sourceContainerName

Defines the source container of the dragSource when the dragSource is used in a
custom defined cellRenderer of a TableView or inside a Tree. The
sourceContainerName can be recovered with the DropEvent object.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 400

● value

Sets the value of the dragSource. The value is transferred from the dragSource to the
dropTarget when dropping is complete. The value can be recovered with the
DropEvent object.

● width

Sets the width of the dragSource container.

Attributes M Values Usage

columnKey String (cs)

Taglib
No tag available

Classlib
setColumnKey("aKey")

dropTargetDesign BORDERED
UNDERLINE
NONE

Taglib
dropTargetDesign="NONE"

Classlib
setDropTargetDesign(DropTargetDesign.NONE)

flavours String (cs) Taglib
flavours="F1"

Classlib
setFlavours("F1")

id * String (cs) Taglib
id="drag"

Classlib
setId("drag")

scope BROWSER
FORM

Taglib
scope="BROWSER"

Classlib
setScope(Scope.Browser)

sourceContainerName String (cs) Taglib
No tag available

Classlib
setSourceContainerName("s1")

value String Taglib
value="R2D2"

Classlib
setValue("R2D2")

width Unit Taglib
No tag available

Classlib
setWidth("100")

Example
using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 401

 <hbj:dragSource
 id="dragid1"
 flavours="F1"
 value="R2D2"
 />

Result

3.4.2.6.8 Dropdown List Box

Definition
A control with a dropdown arrow that the user clicks to display a list of options. An item in the
dropdownListBox is called listBoxItem. The dropdownListBox supports client side eventing.
See the EventValidationComponent [Page 33] description for more details.

● design

Sets the design of the dropdownListBox.

● enabled - inherited from EventValidationComponent [Page 33].

A boolean value that defines if the dropdownListBox is click able. If the
dropdownListBox is disabled (enabled = false) it is not selectable. A disabled
dropdownListBox has a different color for the displayed listBoxItem.

● id

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 402

Identification name of the dropdownListBox.

● jsObjectNeeded - inherited from Component [Page 33].

A boolean value that defines if a JavaScript object has to be generated for the
dropdownListBox component.

● labeled

Notify the component that a label has assigned to it. See the HTMLB Javadoc for more
details on the LabeledComponent class.

● model

Defines the model which provides the dropdownListBox with data. How to work with the
IListModel [Page 33].

● nameOfKeyColumn

Specifies the name of the column that contains the key. This is used when you use an
underlying table in the model.

● nameOfValueColumn

Specifies the name of the column that contains the visible text. This is used when you
use an underlying table in the model.

● onClientSelect

Defines the JavaScript fragment that is executed when the user clicks on the
dropdownListbox. If both events ('onSelect' and 'onClientSelect') are specified, the
'onClientSelect' event handling method is activated first. By default the 'onSelect' event
handling method is activated afterwards. In the JavaScript fragment you can cancel the
activation of the 'onSelect' event handling method with the command

htmlbevent.cancelSubmit=true;

The 'onClientSelect' event is useful to pre process the form and only send the form to
client if the preprocessing was successful (for example, date validation, valid number
format etc.) to save client/server interaction.

A dropdownListbox click usually activates the client/server interaction. If an input
field has to be filled out for further processing, the JavaScript fragment can
check the necessary input on the client side and display a message if the
necessary input is missing, without server interaction.

To use JavaScript the JSP has to use the page tag (see page [Page 33] tag).

● onSelect

Defines the event handling method that will be processed when the user clicks on the
enabled dropdownListbox. If you do not define a onClick event the dropdownListbox
can be clicked but no event is generated.

● requiresValidation

A boolean value that defines if the selected value in the dropdownListBox has to be
validated before a server event is generated.

● selection

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 403

Specifies the key of the listBoxItem which is displayed in the dropdownListBox.

● tooltip

Defines the hint of the dropdownListBox which is displayed as the mouse cursor
passes over the dropdownListBox, or as the mouse button is pressed but not released.

● width

Defines the width of the dropdownListBox in pixel or percent.

Attributes M Values Usage

design STANDARD (d)
SMALL

Taglib
No tag available

Classlib
setDesign
(DropdownListBoxDesign.SMALL)

enabled* TRUE (d)
FALSE

Taglib
disabled="TRUE"

Classlib
setEnabled (false)

id * String (cs) Taglib
id = "listbox_te"

Classlib
setId ("listbox_te")

jsObjectNeeded** TRUE (d)
FALSE

Taglib
jsObjectNeeded = "TRUE"

Classlib
setJsObjectNeeded (true)

labeled TRUE
FALSE (d)

Taglib
No tag available

Classlib
setLabeled (true)

model [Page 33] String Taglib
model = "mybean.model [Page 33]"

Classlib
setModel((IListModel [Page 33]) model)

nameOfKeyColumn String Taglib
nameOfKeyColumn = "k1"

Classlib
setNameOfKeyColumn ("k1")

nameOfValueColumn String Taglib
nameOfValueColumn = "v1"

Classlib
setNameOfValueColumn ("v1")

requiresValidation TRUE
FALSE (d)

Taglib
No tag available

Classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 404

setRequiresValidation(true)

selection String Taglib
selection = "HD"

Classlib
setSelection("HD")

tooltip String Taglib
tooltip = "select an item"

Classlib
setTooltip ("select an item")

width Unit Taglib
width = "200"

Classlib
setWidth ("200")

* Method is inherited from the EventValidationComponent [Page 33] component. Therefor
the attribute is different between the taglib and the classlib.

** Method is inherited from the Component component [Page 33].

See the JavaScript API [Page 33] description for details how to access the component in
JavaScript.

Events M Values Usage

onClientSelect String (cs) Taglib
onClientSelect="alert('Click')"

Classlib
setOnClientSelect("alert('Click')")

onSelect
[Page 33]

 String (cs) Taglib
onSelect="proc_listbox"

Classlib
setOnSelect ("proc_listbox")

To entries in the dropdownListBox are created with the listBoxItem [Page 33] control.

Example
using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 405

 <hbj:dropdownListBox
 id="DDCitiesNearby"
 tooltip="Cities surounding SAP"
 selection="WD"
 nameOfKeyColumn="KeyCol"
 nameOfValueColumn="KeyVal"
 onSelect="ProcessCity"
 onClientSelect="PreprocessCity"
 >

 <hbj:listBoxItem key="HD" value="Heidelberg" />
 <hbj:listBoxItem key="HK" value="Hockenheim" />
 <hbj:listBoxItem key="WD" value="Walldorf" />
 <hbj:listBoxItem key="WL" value="Wiesloch" />
 </hbj:dropdownListBox>

using the classlib
 Form form = (Form)this.getForm();
 DropdownListBox ddl = new DropdownListBox("DDCitiesNearby");
 ddl.setWidth("300");
 ddl.addItem("HD","Heidelberg");
 ddl.addItem("HK","Hockenheim");
 ddl.addItem("WD","Walldorf");
 ddl.addItem("WL","Wiesloch");
 ddl.setOnSelect("ProcessCity");
 ddl.setOnClientSelect("PreprocessCity");
 ddl.setTooltip("Cities nearby");
 ddl.setSelection("WD");
 form.addComponent(ddl);

Result

3.4.2.6.8.1 Usage & Type
The dropdown list box is a field with an arrow icon on the right side. Clicking on this icon
drops down a list immediately below the field and shows the user which values can be
chosen. An entry in the list is called list box item. The dropdown list box is read-only.

Figure 1: A dropdown list box with six language items

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 406

See also List Box – Usage & Type [Page 33] for details when to use dropdown list box, list
box, item list and table view.

Usage
Use dropdown list boxes:

● To support the selection of a value from a limited quantity. The number of items should
not exceed 20.

● To switch between views on large amounts of data. Especially in iViews, this is a good
method to save space. With dropdown list boxes, more views are possible than, for
example, in a tabstrip, because the number of views is not limited by space. However,
the list should not be longer than about 12 items.

● In a shuffler for filtering a larger data set, in order to get simplified and reduced views of
the data. The shuffler mimics natural language statements for formulating the query,
but can also be used with query statements consisting of words only. The query
statement is typically assembled by combining static texts with dynamic elements like
dropdown lists, edit fields and selection elements.

Note: The dropdown list box control does not render a descriptive label automatically. Use the
label control to add a description.

The following table shows examples for the usage described above:

Selection
of a value

View
selection

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 407

Dropdown
list box
used in a
shuffler.

Table 1: Usage examples for the dropdown list box

Choosing the Appropriate Selection Control
A dropdown list box is similar in function to a list box - both offer a list of items where users
can select one item from, that is, both are single-selection lists.

See Forms - Using Different List Types for guidelines on choosing the appropriate selection
control.

Note: For very small item numbers (2-6) and if the users should immediately see all
alternatives, use

Design-relevant Attributes
The dropdown list box can be set to an enabled or disabled state. Set attribute disabled to
FALSE to enable a checkbox, set disabled to TRUE to disable it.

A disabled dropdown list box is not clickable, no item is selectable.

Figure 2: Disabled dropdown list box

The dropdown list box does not have a width attribute. Note, that this control takes the width
from the widest list box item.

Figure 3: Dropdown list box with a very wide item

Usage - Disabled State
Set the disabled state if the user is not allowed to change the value of a dropdown list box or
if a larger group of input elements including a dropdown list box is disabled.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 408

Example: A set of fields including a dropdown list box is disabled because the user
unchecked an option (see figure 4).

Figure 4: Disabled dropdown list box - the fields are disabled because the user checked the
Invoice option

Related Controls
Input Field [Page 33], Item List [Page 33], Label [Page 33], List Box [Page 33], Radio Button
[Page 33], Tree View [Page 33]

3.4.2.6.8.2 Browser Support & 508

Netscape 4.7
The disabled version of the dropdown list box is not available for Netscape 4.7.

Netscape 6.1 and 6.2
In Netscape Version 6.1 and 6.2, the dropdown list box looks slightly different than the
standard control.

Figure 1: Netscape 6.1/6.2 example of an
enabled dropdown list box

Figure 2: Netscape 6.1/6.2 example of a
disabled dropdown list box

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 409

Editability in Style Editor
In the Style Editor, the dropdown list box does not appear in the list of customizable elements
directly. No control-specific styles exist for this element, only common styles are used.

Accessibility - 508 Support
Dropdown list boxes have to be used in combination with the label element which points to
the assigned listbox. This ensures, that screen readers are aware of the relationship between
the both elements and can read the correct label to the according dropdown list box.

● Keyboard

The dropdown list box inserted into the accessibility hierarchy by default.

● Default Description

Is provided by the HTMLB rendering engine.

● Application-specific Description

Set an additional description using the setTooltip method if needed.

● Label

Has to be connected to a label control (use method setLabelFor for identifying the
corresponding dropdown list box).

3.4.2.6.9 Drop Target

Definition
Defines items on the page where dragged items can be dropped off. This component works
together with dropSource component which items can be dragged. Use the addFlavour
method to add additional flavours.

● flavours

Flavours are used to define which dragSources are allowed for this dropTarget. Drag-
and-Drop is only possible if the dragSource contains at least one flavour of the
dropTarget.

● id

Identification name of the drapTarget.

● onDrop

Specifies then event handling method that is called when the user drops of the dragged
object. If this method is not specified and not defined an exception is raised when the
object is dropped.

● value

Sets the value of the dropTarget. The value can be recovered with the DropEvent
object.

● width

Sets the width of the dragSource container.

Attributes M Values Usage

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 410

flavours String Taglib
flavours="F1"

Classlib
setFlavour (F1)

id * String (cs) Taglib
id="dropTarget"

Classlib
setId ("dropTarget")

value String Taglib
value="valueOfTarget"

Classlib
setValue ("valueOfTarget")

width Unit Taglib
No tag available

Classlib
setWidth ("100")

Events M Values Usage

onDrop String (cs)

Taglib
onDrop="onDropTarget"

Classlib
setOnDrop("onDropTarget")

Example
using the taglib

 <hbj:dropTarget
 id="dropTarget"
 flavours="F1"
 onDrop="onDropProcessTarget"
 value="aValue"
 />

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 411

Result

3.4.2.6.10 File Upload

Definition
This control to selects a file for upload. The control generates a input field and a "Browse"
button. The "Browse" button activates the file browser and allows selecting the file
interactively. To use the selected file in the fileUpload control you need another control, for
example, a button named "Start upload", to finally start the upload.

If you use a fileUpload control in the JSP you must set the encondingType
attribute of the form control to "multipart/form-data".

Example: <hbj:form encodingType="multipart/form-data" >

● id

Identification name of the fileUpload.

● accept

Defines the accepted MIME type.

● maxLength

Defines the maximum file size in byte allowed for the upload. By default there is no
limit.

● size

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 412

Defines the width of the fileUpload inputField in characters. The frame of the inputField
is adjusted accordingly considering the actual text font and the design attribute.

Attributes M Values Usage

id * String (cs) Taglib
id="chooseInputFile"

Classlib
setId ("chooseInputFile")

accept String Taglib
accept="text/rtf"

Classlib
setAccept ("text/rtf")

maxLength Numeric (-1) Taglib
maxlength="125000"

Classlib
setMaxlength ("125000")

size Numeric (20) Taglib
size="30"

Classlib
setSize ("30")

Example
using the taglib
 <hbj:form
 encodingType="multipart/form-data">
 <hbj:fileUpload
 id="myfileupload"
 maxLength="125000"
 size="50"
 />
 </hbj:form>

Result

In an application you usually have an additional control, usually a button, to start

the upload once the file has been selected with the "Browse..." button.

Here we show what the server program has to do when the user starts the
upload.

In our example we define a button with an "onClick" event and specified as
"onClick"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 413

event handling method "onLoadFile". The "onLoadFile" method does the upload
handling.

 public void onLoadFile(Event event) {
 FileUpload fu = (FileUpload)
 this.getComponentByName("myfileupload");

 // this is the temporary file
 if (fu != null) {
 // Output to the console to see size and UI.
 System.out.println(fu.getSize());
 System.out.println(fu.getUI());
 // Get file parameters and write it to the console
 IFileParam fileParam = fu.getFile();
 System.out.println(fileParam);
 // Get the temporary file name
 File f = fileParam.getFile();
 String fileName = fileParam.getFileName();
 // Get the selected file name and write ti to the console
 ivSelectedFileName = fu.getFile().getSelectedFileName();
 System.out.println("selected filename: " + ivSelectedFileName);
 }
 }

3.4.2.6.10.1 Usage & Type
File upload is a control that allows to access files on the client for uploading them to the
server.

Figure 1: Example of a file upload control in a dialog window

Usage
Use the file upload control in case you want to provide the capability to pass files to the
server.

Related Controls
Breadcrumb [Page 33], Button [Page 33]

3.4.2.6.10.2 Browser Support & 508
File upload is a very security sensitive control, since it allows to access the client's hard disk.
For this reason, the original browser control with no design modification is used. The Browse
button appears as a platform-specific standard button.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 414

Editability in Style Editor
No editability

Accessibility - 508 Support
Not accessible.

3.4.2.6.11 Group

Definition
A framed panel to visually group controls. See also 'tray'.

● design

The design of the group that refers to CSS. You can select

○ PRIMARYCOLOR

The panel of the group is filled with the same background as the title bar
(primary color).

○ SAPCOLOR

The title bar and the frame around the panel is in SAP blue and the panel has a
white background.

○ SECONDARYBOX

No frame around the panel. Title bar with background color (primary color),
panel has a white background.

○ SECONDARYBOXCOLOR

The panel is filled with a background color that is different from the title
background color (primary color). No frame around the panel.

○ SECONDARYCOLOR

The panel is filled with a background color that is same as the title background
color (secondary color).

● headerComponent

Set a component for the group header.

● id

Identification name of the group.

● title

Defines the string of text placed left aligned in the title bar. If no title should be
displayed an empty string (null) can be used. The width of the group is automatically
adjusted to the length of the text when the 'width' attribute is set smaller than the title
text width.

● tooltip

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 415

Defines the hint of the group which is displayed as the mouse cursor passes over the
group, or as the mouse button is pressed but not released.

● width

Defines the width of the group. The width of the group is automatically adjusted to the
length of the 'title'. To see an effect of the 'width' attribute 'width' has to be set higher as
the width defined through the length of the 'title' string. If an empty (null) 'title' string is
set no 'title' attribute is defined the width of the group is set according to the 'width'
attribute.

Attributes M Values Usage

design * PRIMARYCOLOR
SAPCOLOR
SECONDARYBOX
SECONDARYBOXCOLOR
SECONDARYCOLOR

Taglib
design="SAPCOLOR"

Classlib
setDesign(GroupDesign.SAPCOLOR)

headerComponent Component Taglib
No tag available

Classlib
setHeaderComponent(Component c)

id * String (cs) Taglib
id="Intro_Text"

Classlib
setId ("Intro_Text")

title String Taglib
title="Headlines"

Classlib
setTitle ("Headlines")

tooltip String Taglib
tooltip="latest news"

Classlib
setTooltip ("latest news")

width Unit (50%) Taglib
width="300"

Classlib
setWidth ("300")

groupBody
Defines the items in the group. The groupBody tag has to be placed in a group tag. A
groupBody can be filled with any control (checkbox, image, textView etc.).

groupHeader
Defines the header of the group. The groupHeader tag has to be placed in a group tag. A
groupHeader can be filled with any control (checkbox, image, textView etc.). The control in
the groupHeader is placed on the right side of the group title.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 416

Example
using the taglib
 <hbj:group
 id="HeadlineNewsGroup"
 design="SAPCOLOR"
 title="latest headlines"
 tooltip="all the news you need"
 width="50%"
 >
 <hbj:groupBody>
 <hbj:textView
 encode="false"
 text="The NASDAQ on an upswing
Good news for homeowners"
 />
 </hbj:groupBody>
 </hbj:group>

using the classlib
 Form form = (Form) this.getForm();
 Group group = new Group();
 group.setDesign(GroupDesign.SAPCOLOR);
 group.setTitle("latest headlines");
 group.setTooltip("all the news you need");
 group.setWidth("50%");

 TextView tv = new TextView("tv");
 tv.setEncode(false);
 tv.setText("The NASDAQ on an upswing
Good news for homeowners");
 group.addComponent(tv);
 form.addComponent(group);

Result

3.4.2.6.11.1 Usage & Type

A group control clusters a set of controls or information: it demonstrates which parts belong
together, and separates them from other parts of content.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 417

The primary and secondary group types, consisting only of a background color, can be used
to highlight a part of the content .

In full-page applications, the primary and secondary group types may be used to create an
area into which other controls can be placed.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 418

Usage
In full-page applications, use the group control to

● Group each coherent set of fields or information and separate one set from another.

● Define an area where text or controls can be placed

● Highlight a certain part of the application or information

Within an iView, there should normally be no need to highlight or separate different groups,
since an iView is per definition small and simple. However, there are certain cases where it
makes sense to use a group control to

● Highlight or separate a certain part of an iView to better demonstrate it is structure.

For example, to show whether a certain button relates to the whole application or only
to a part of it

● Highlight a certain portion of textual information within a large body of text.

General Usage Tips
Use groups only if other ways of separating information or field groups do not suffice. Group
boxes look similar to the tray container of iViews and may clutter the interface visually.
Preferably, use white space or vertical dividing lines to group elements, relying on the Gestalt
laws.

Sometimes you don't really need groups in your iView, but simply want to create
a better visual structure. Instead of misusing the group control, use the text view
control to give users a better overview of your content: Create a text label for
each part and add a blank line between parts to separate them.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 419

Try not to nest groups; separate subgroups within groups by lines or white space. If you need
to nest groups, consider nesting different group types (see below).

Positioning
Tabstrips [Page 33], table views [Page 33] and tree views [Page 33] are only allowed to be
included in a group control if they appear together with other elements (see Layout Hierarchy
for details). Placed as a single element, these controls do not need any further separation
from their surroundings, as they already have distinct borders and a dominant shape.

Types
Depending on the items the group will contain, you can choose one of the offered styles.
Currently, there are five group designs available, which are set using the attribute design.

Primary and Secondary Groups
The primary (design = PRIMARYCOLOR) and secondary groups (design =
SECONDARYCOLOR) allow to visualize groups through a simple, flat background color. Both
are suitable for textual content. Controls with a white background color, such as input fields
and checkboxes, stand out well on both group designs.

Use primary and secondary groups to:

● Define an area in a full-page application

Note: It is recommended to use the secondary (darker) group as an area background.
You may then place the primary group on top of it to highlight or group parts of the
area's content.

● Highlight a part of the content

● Group a set of coherent elements

Group Box
The group box design (design = SAPCOLOR) has a transparent body background. Because
of its border and header bar, it has a quite dominant appearance.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 420

Use the group box (figure 2) to group a set of coherent elements.

Do not nest any further groups inside a group box.

Avoid putting more than one or two of this group type adjacent to one another. They create a
grid-like visual effect, which makes it hard for users to determine, which border belongs to
which group.

Header Groups
Header group 1 is best suited for forms; its light body background color lets white input fields
stand out well.

Header group 2 has a white body background color, which makes it unsuitable for forms.
Textual content and lists work best with this group style.

Design-Relevant Attributes
The look of groups can be determined by three attributes: design selects the group type
(values PRIMARYCOLOR, SAPCOLOR, SECONDARYBOX, SECONDARYBOXCOLOR,
SECONDARYCOLOR), width sets the width of the group, and title sets the title text.

For details refer to page Control API for Group [Page 33].

Related Controls
Tabstrip [Page 33], Table View [Page 33], Tree View [Page 33], Text View [Page 33] (for
headers of subgroups)

3.4.2.6.11.2 Browser Support & 508

Netscape 4.7 doesn't render the padding correctly. Title and body text begin immediately at
the left edge of a group.

Exception: Body text padding in the group box with header is correct.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 421

Figure 1: Examples of how groups look in some Netscape versions.

Editability in Style Editor
In the Style Editor, it is possible to modify the following attributes of the group control:

Group Style IE 5 and
above

Netscape 4.7

Fonts Font Weight of Title x x

Background
Color

First Background Color
Second Background Color
Third Background Color

x
x
x

x
x
x

Borders Border Width, Style and Color x x

Layout Title Padding for Groups with Header
Strip
Body Padding
Title Padding for Groups without Header
Padding of Body Content

x
x
x
x

Background Height of Container Title
Background Color of Container Title
Background Color of Container Body

x
x
x

x
x

Table 1: Editable styles for the group control

Accessibility - 508 Support
● Keyboard

The group is not inserted into the accessibility hierarchy by default. Elements inside a
group have to be handled separately, depending on the respective controls included in
the group.

● Default Description

Is provided by the HTMLB rendering engine.

● Application-specific Description

Set an additional description using the setTooltip method if needed.

Elements inside a group have to be handled separately, depending on the controls
used.

Users with low vision can use the portal personalization link to select the portal's high contrast
design, which was developed to offer maximum contrast. It renders the screen without using

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 422

many colors or shades, which leaves us with little more than black and white. Though the
results may look highly unattractive to people with normal vision, sharp contrast is what users
with low vision need, in order to be able to read text at all.

As a developer, you needn't do anything to enable the high contrast scheme, but you should
have a feeling for what happens to your application when it is viewed in high contrast.

This is how groups look in high contrast. (Figure 2, left side). On the right hand side you can
see some possible variations of group designs, which can be achieved using the Style Editor.

Figure 2: Examples of groups in high contrast (left) and possible Style Editor variations
(right).

3.4.2.6.12 Hover Menu

Definition
A control to create a hover menu. A hover menu works like a pop up menu in a desktop
application. The hover menu can be activated on mouse click (pull down menu), on mouse
over (pop up menu, help context) or on right mouse button click (context menu). The screen
content under the hover menu is not destroyed. The hover menu disappears when you select
an item from the menu. Every hover menu entry can have a sub hover menu. You can define
a stand alone hover menu or associate a hover menu with following controls:

treeNode

textView

image

● firstLevelVisible

Boolean value that defines if the first leve of the hovermenu is displayed.

● id

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 423

Identification name of the hoverMenu.

● menuTrigger

Sets the trigger mechanism which will open the hover menu.

○ ONCLICK

Hover menu is displayed when the mouse pointer is on the item linked to the
hover menu and the left mouse button is clicked - like in a pop up menu. This
option is default for web browser Netscape 4.

○ ONCONTEXTMENU

Hover menu is displayed when the mouse pointer is on the item linked to the
hover menu and the right mouse button is clicked - like for a context menu.

○ ONLRCLICK

Hover menu is displayed when the mouse pointer is on the item linked to the
hover menu and the right or left mouse button is clicked.

○ ONMOUSEOVER

Hover menu is displayed when the mouse pointer is moved over the item linked
to the hover menu. This option is default for web browsers IE5 and up and
Netscape 6.

● onHoverMenuClick

Defines the event handling method that will be processed when the user clicks on an
item in the hover menu.

● parentItem

Sets the parent item for the hover menu.

● renderer

Sets the renderer for the hover menu .

● requiresForm

Boolean value that defines if a form is required for the hover menu. The hoverMenu
does not require a form and is not placed in one. The Javascript interface is rendered
with forms which influences the ID generation.

● standAlone

A boolean value.

standAlone=TRUE

Creates a hover menu that is not linked to another control (image, tree node or
text view). The first level of the hover menu is visible immediately without any
trigger actions.

standAlone=FALSE

Creates a hover menu that has to be linked to another control (image, tree node
or text view) in order to get displayed. The defined trigger method applies.

Attributes M Values Usage

firstLevelVisible FALSE
TRUE (d)

Taglib
No tag available

Classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 424

setFirstLevelVisible (false)

id * String (cs) Taglib
id="hover"

Classlib
Id is defined by the hovermenu object itself.

menutrigger ONCLICK (d for N4)
ONCONTEXTMENU
ONLRCLICK
ONMOUSEOVER (d)

Taglib
No tag available

Classlib
setMenuTrigger
(HoverMenuTrigger.ONCLICK)

parentitem Taglib
No tag available

Classlib
setParentitem (HoverMenuItem pItem)

renderer Taglib
No tag available

Classlib
setRenderer (HoverMenuRenderer rend)

requiresForm Taglib
requiresForm="FALSE"

Classlib
setRequiresForm (false)

standalone FALSE (d)
TRUE

Taglib
standAlone="FALSE"

Classlib
No method available.

Events M Values Usage

onHoverMenuClick * String (cs) Taglib
onHoverMenuClick="hoverEv"

Classlib
setOnHoverMenuClick("hoverEv")

hoverMenuItem
Defines the items in a hoverMenu.

● altTextForImage

Sets an alternative text for an image which is displayed as tooltip when the image is
found or as text instead of the image when the image can not be found. To set the
image to be displayed when the hover menu item is enabled use attribute 'imgSrc'.
When the hover menu item is disabled use attribute 'disabledImgSrc'.

● checkable

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 425

Sets the hover menu item as checkable. A checkable hover menu item displays a
check mark on the left side of the item when the hover menu item is checked.

● checked

A boolean value to check (=TRUE) or uncheck (=FALSE) the hover menu item.

● clientSideScript

Sets a Javascript program that is started when the hover menu item is clicked.

● disabledImgSrc

Sets the image which is displayed when the hover menu item is disabled.

● enabled

A boolean value to enable (=TRUE) or disable (=FALSE) the menu item. A disabled
menu item is displayed but fires no event when the item is selected (and an event
handling method has been defined for the menu item).

● id

A string which is passed on to the event handling routine when the event occurs. A id
string must be defined and must not be empty. Each hoverMenuItem must have an
unique id. The id is not displayed.

● imgSrc

Sets the image which is displayed when the hover menu item is enabled.

● hoverItemDevider

A boolean value that defines a divider for actual item. Depending on the style sheets
used the divider is displayed as separation line or an empty row. The divider is
displayed before the visible item.

 HoverMenu hover = new HoverMenu("hover");
 HoverMenuItem item1 = hover.addMenuItem("key1", "1st line");
 hover.addMenuItem(new HoverMenuItem("key2", "2nd line"));
 hover.addMenuItem(new HoverMenuItem("key3", "3rd line"));
 HoverMenuItem item2 = hover.addMenuItem("key4", "4th line");
 item2.setHoverItemDivider(true);

Result

● linkRef

A text string that defines the URL of a page/document that will be opened when the
user clicks on this item.

● linkTarget

Specifies the name of the frame where the document is to be opened. The following
values refer to w3c HTML-standard.

○ _blank

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 426

The web client should load the designated document in a new, unnamed
window.

○ _self

The web client should load the document in the same frame as the element that
refers to the target.

○ _parent

The web client should load the document into the immediate FRAMESET parent
of the current frame. This value is equivalent to _self if the current frame has no
parent.

○ _top

The web client should load the document into the full, original window (thus
canceling all other frames). This value is equivalent to _self if the current frame
has no parent.

● onItemClick

Defines the event handling method that will be processed when the user clicks on this
item.

● parentMenu

Sets the parent menu for the hover menu item.

● subMenu

Sets an existing hover menu as the sub hover menu of this item.

● text

A string that is displayed in the hover menu. A text string must be defined and must not
be empty.

Attributes M Values Usage

altTextForImage String Taglib
No tag available

Classlib
setAltTextForImage ("SAP Logo")

checkable FALSE (d)
TRUE

Taglib
No tag available

Classlib
setCheckable(true))

checked FALSE (d)
TRUE

Taglib
No tag available

Classlib
setChecked(true))

clientSideScript String Taglib
clientSideScript="alert('Click’)"

Classlib
setClientSideScript ("alert('Click’)")

disabledImgSrc String Taglib
No tag available

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 427

Classlib
setDisabledImgSrc ("disImg.gif")

enabled FALSE
TRUE (d)

Taglib
No tag available

Classlib
setEnabled (true)

id * String (cs) Taglib
id="entry1"

Classlib
setId ("entry1")

imgSrc String (cs) Taglib
No tag available

Classlib
setImgSrc ("Img.gif")

hoverItemDevider FALSE (d)
TRUE

Taglib
hoverItemDevider="TRUE"

Classlib
setHoverItemDevider (true)

linkRef String Taglib
linkRef="http://www.sap.com"

Classlib
setLinkReference ("http://www.sap.com ")

linkTarget _blank
_self
_parent
_top

Taglib
linkTarget="_blank"

Classlib
setLinkTarget ("_blank")

parentMenu Component Taglib
No tag available

Classlib
setParentMenu (HoverMenu parent)

submenu String (cs) Taglib
subMenu="sub4"

Classlib
setSubHoverMenu (HoverMenu sub)

text * String Taglib
text="First line"

Classlib
addMenuItem ("entry1", "First line")

Events M Values Usage

onItemClick * String (cs) Taglib
onItemClick="onEntry1Click"

Classlib
setOnItemClick("onEntry1Click ")

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 428

Example
using the taglib

 <hbj:hoverMenu
 id="hover"
 standAlone="false">
 <hbj:hoverMenuItem
 id="1"
 text="Location"
 onItemClick="itemClicked">
 <hbj:hoverMenu
 id="hoversub1">
 <hbj:hoverMenuItem
 id="111"
 text="Kruger National Park"
 />
 <hbj:hoverMenuItem
 id="112"
 text="Other African Regions"
 />
 </hbj:hoverMenu>
 </hbj:hoverMenuItem>
 <hbj:hoverMenuItem
 id="2"
 text="Size"
 />
 <hbj:hoverMenuItem
 id="3"
 text="Properties"
 hoverItemDevider="true"
 />
 <%
 hover.setMenuTrigger
 (com.sapportals.htmlb.enum.HoverMenuTrigger.ONLRCLICK);
 %>
 </hbj:hoverMenu>
 <hbj:image
 id="image_logo"
 alt="Image not available"
 hoverMenuId="hover"
 src="">
 <%
 IResource
 rs=componentRequest.getResource(IResource.IMAGE,
 "../mimes/rhino.gif");
 image_logo.setSrc
 (rs.getResourceInformation().getURL(componentRequest));
 %>
 <hbj:image>

using the classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 429

 Form form = (Form) this.getForm();
 HoverMenu hover = new HoverMenu("hover");
 hover.setMenuTrigger
 (com.sapportals.htmlb.enum.HoverMenuTrigger.ONLRCLICK);
 HoverMenuItem item1 = hover.addMenuItem("1", "Location");
 HoverMenu item1s = item1.addSubHoverMenu("sub1");

 HoverMenuItem item111 = item1s.addMenuItem
 ("111", "Kruger National Park");
 HoverMenuItem item112 = item1s.addMenuItem
 ("112", "Other African Regions");
 HoverMenuItem item2 = hover.addMenuItem("2", "Size");
 HoverMenuItem item3 = hover.addMenuItem("3", "Properties");
 item3.setHoverItemDivider(true);

 Image image =
 new Image(
 request.getPublicResourcePath() + "/../mimes/rhino.gif",
 "picture rhino.gif");
 image.setHoverMenu(hover);

 form.addComponent(hover);

Result (when the left or right mouse button has been clicked on the
image)

3.4.2.6.13 HTML Edit

Definition
A multiline region for displaying and editing text - similar to control textEdit. The difference to
textEdit is, that the text in the control is not restricted to a single font, size and style. The
htmlEdit control is a WYSIWYG editor that produces HTML documents. Formatting options
include:

● Bold, italic and underlined text.

● Bulleted and numbered lists.

● Text fonts, text size and text color can be selected.

● Links and images can be added.

This control is available for web browser Internet Explorer Version 5.x and higher.

● id

Identification name of the htmlEdit control.

● doAlign

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 430

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Alignment"
functions - left, center and right Alignment.

● doBackground

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Background"
function for text.

● doBold

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Bold-Characters"
functions.

● doCutCopyPaste

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Cut, Copy and
Paste" functions.

● doForeground

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Foreground"
function for text (text color).

● doImage

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Insert Image"
function.

● doInOutdent

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Increase
Indent/Decrease Indent" function.

● doItalic

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Italic-
Characters" function.

● doLink

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Insert Link to the
Web" function.

● doLinkKM

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Insert Link to the
Knowledge Management (KM) " function.

● doList

A boolean value that activates (=TRUE) or deactivates (=FALSE) the
"Bulleted/Numbered List" functions.

● doPreview

A boolean value that activates (=TRUE) or deactivates (=FALSE) the document
"Preview" function.

● doPrint

A boolean value that activates (=TRUE) or deactivates (=FALSE) the document "Print"
function.

● doStrikethrough

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Strikethrough"
function.

● doStyle

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 431

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Style" function.

● doSuperSubScript

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Super/Sub
script" function.

● doTextsize

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Textsize"
function.

● doUnderline

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Underline"
function.

● height

Defines the height of the htmlEdit control.

● imageHeight

Defines the height of the image to be inserted.

● imageSrc

Defines the name of the image to be inserted.

● imageTooltip

Defines the tooltip for the image.

● imageWidth

Defines the width of the image to be inserted.

● linkTarget

Defines the target of the link to be inserted. The following values refer to w3c HTML-
standard.

○ _blank

The web client should load the designated document in a new, unnamed
window.

○ _self

The web client should load the document in the same frame as the element that
refers to the target.

○ _parent

The web client should load the document into the immediate FRAMESET parent
of the current frame. This value is equivalent to _self if the current frame has no
parent.

○ _top

The web client should load the document into the full, original window (thus
canceling all other frames). This value is equivalent to _self if the current frame
has no parent.

● linkText

Defines the text of the link to be inserted.

● linkURL

Defines the URL (href=) of the link to be inserted.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 432

● oldId

Defines the oldId attribute for the htmlEdit control.

● oldText

Defines the previous content of the control. The previous content is the content before
you start an "insert image" or "insert link" function.

● onInsertImage

Defines the event handling method that will be processed when the user activates the
"Insert Image" function.

● onInsertLink

Defines the event handling method that will be processed when the user activates the
"Insert Link" function.

● text

Defines the string of text displayed. This text can be edited and/or new text can be
added.

● width

Defines the width of the htmlEdit control.

Attributes M Values Usage

id * String (cs)

Taglib
id="htmlEdit"

Classlib
setId ("htemlEdit")

doAlign FALSE (d)
TRUE

Taglib
doAlign="TRUE"

Classlib
setDoAlign(true)

doBackground FALSE (d)
TRUE

Taglib
No tag available

Classlib
setDoBackground(true)

doBold FALSE (d)
TRUE

Taglib
No tag available

Classlib
setDoBold(true)

doCutCopyPaste FALSE (d)
TRUE

Taglib
doCutCopyPaste"TRUE"

Classlib
setDoCutCopyPaste (true)

doForeground FALSE (d)
TRUE

Taglib
No tag available

Classlib
setDoForeground(true)

doImage FALSE (d) Taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 433

TRUE doImageLink="TRUE"

Classlib
setDoImage(true)

doInOutDent FALSE (d)
TRUE

Taglib
doInOutDent="TRUE"

Classlib
setDoInOutDent (true)

doItalic FALSE (d)
TRUE

Taglib
No tag available

Classlib
setDoItalic(true)

doLink FALSE (d)
TRUE

Taglib
No tag available

Classlib
setDoLink(true)

doLinkKM FALSE (d)
TRUE

Taglib
No tag available

Classlib
setDoLinkKM(true)

doList FALSE (d)
TRUE

Taglib
doList="TRUE"

Classlib
setDoList(true)

doPreview FALSE (d)
TRUE

Taglib
doPreview="TRUE"

Classlib
setDoPreview(true)

doPrint FALSE (d)
TRUE

Taglib
doAlign="TRUE"

Classlib
setDoAlign(true)

doStandardEdit FALSE (d)
TRUE

Taglib
doStandardEdit="TRUE"

Classlib
No method available

doStrikethrough FALSE (d)
TRUE

Taglib
No tag available

Classlib
setDoStrikethrough(true)

doStyle FALSE (d)
TRUE

Taglib
No tag available

Classlib
setDoStyle(true)

doSuperSubScript FALSE (d)
TRUE

Taglib
No tag available

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 434

Classlib
setDoSuperSubScript(true)

doTextsize FALSE (d)
TRUE

Taglib
No tag available

Classlib
setDoTextsizetrue)

doUnderline FALSE (d)
TRUE

Taglib
No tag available

Classlib
setDoUnderline(true)

height Unit Taglib
height="300px"

Classlib
setHeight("300px")

imageHeight Unit Taglib
No tag available

Classlib
setImageHeight("100px")

imageSrc String Taglib
No tag available

Classlib
setImageSrc("SAPLogo.gif")

imageTooltip String Taglib
No tag available

Classlib
setImageToolTip("SAP Logo")

imageWidth Unit Taglib
No tag available

Classlib
setImageWidth("100px")

linkTarget _blank
_self
_parent
_top

Taglib
No tag available

Classlib
setLinkTarget("_top")

linkText String Taglib
No tag available

Classlib
setLinkText("Go to SAP")

linkURL String Taglib
No tag available

Classlib
setLinkURL("http://www.sap.com")

oldId String Taglib
No tag available

Classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 435

setOldId("prevID")

oldText String Taglib
No tag available

Classlib
setOldText("Episode I")

text String Taglib
text="The Star Wars Saga"

Classlib
setText("The Star Wars Saga")

width Unit Taglib
width="400px"

Classlib
setWidth("400px")

Events M Values Usage

onInsertImage String (cs) Taglib
oninsertImage="onImage"

Classlib
setOninsertImage("onImage")

onInsertLink String (cs) Taglib
onInsertLink="onLink"

Classlib
setOnInsertLink="onLink"

Example
using the taglib
 <hbj:htmlEdit
 id="htmlEdit"
 text="The Star Wars Saga"
 height="200"
 width="300"
 doPrint="TRUE"
 doPreview="TRUE"
 doCutCopyPaste="TRUE"
 doList="TRUE"
 doAlign="TRUE"
 doInOutdent="TRUE"
 onInsertLink="onLink"
 onInsertImage="onImage"
 />

using the classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 436

 Form form = (Form) this.getForm();
 HtmlEdit he = new HtmlEdit("myNavigation");
 he.setText("The Star Wars Saga");
 he.setHeight("200");
 he.setWidth("300");
 he.setDoPrint(true);
 he.setDoPreview(true);
 he.setDoCutCopyPaste(true);
 he.setDoList(true);
 he.setDoAlign(true);
 he.setDoInOutdent(true);
 he.setOnInsertLink("onLink");
 he.setOnInsertImage("onImage");
 form.addComponent(he);

Result

3.4.2.6.14 Image

Definition
Displays a bitmap in GIF or JPEG format. The width and height of the image can be specified.

● alt

Defines an alternative text for the 'src' attribute. If the 'src' bitmap cannot be found or
opened (for example, unrecognized graphic format) the 'alt' text is displayed with an red
X in front of it and surrounded by a frame indicating the bitmap size.

If no 'tooltip' attribute is set for the image the alternative text is displayed as the mouse
cursor passes over the image, or as the mouse button is pressed but not released.

● height

Defines the height of the bitmap. If 'height' is omitted the height of the image is
determined by the bitmap itself.

● hoverMenuId

Defines which hover menu is displayed for this tree node. You can define different
trigger methods to display the hover menu. For more details, see hover menu.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 437

● id

Identification name of the image.

● imageMapId

Identification name of the imageMap control that is associated with the image. The
imageMap control allows you to define areas on the image that are clickable. The areas
can be associated with a link or an event. For more details on imageMap, see
imageMap control description.

● src

Name of bitmap (=source). The name of the bitmap is case sensitive. To have access
to MIME delivered with the portal see "accessing MIME". The images are usually
stored in the public resource path of the component in the subfolder /images. The
public resource path can be determined with the JSP command:
<% String PublicURL = componentRequest.getPublicResourcePath();
%>

You can also get the complete path to image include the subfolder /mimes with the
command:
<% String ImageURL = componentRequest.getPublicResourcePath() +
 "/../mimes/"; %>

We use the string variable ImageURL in following table to demonstrate the
setting of the src attribute.

Another possibility is to get the full URL of the image and set the src attribute in a
scriptlet.

<%

IResource rs = componentRequest.getResource(IResource.IMAGE,
 "../mimes/mypicture.gif");

image.setSrc(rs.getResourceInformation().getURL(componentRequest
));

%>

● tooltip

Defines the hint of the image which is displayed as the mouse cursor passes over the
image, or as the mouse button is pressed but not released.

● width

Defines the width of the bitmap. If 'width' is omitted the width of the image is
determined by the bitmap itself.

Attributes M Values Usage

alt * String Taglib
alt="Walldorf picture"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 438

 Classlib
setAlt ("Walldorf picture")

height Unit Taglib
height="150"

Classlib
setHeight="150"

hoverMenuId String Taglib
hoverMenuId="imgHover1"

Classlib
setHoverMenu (HoverMenu menu)

id * String (cs)

Taglib
id="Hometown"

Classlib
setId("Hometown")

imageMapId String (cs) Taglib
imageMapId="imageMap"

Classlib
setImageMap("imageMap")

src * String (cs) Taglib
src="<%=ImageURL+\"wdf.jpd\" %>"

Classlib
setSrc (ImageUrl + "wdf.jpg")

tooltip String Taglib
tooltip="center of ebiz"

Classlib
setTooltip ("center of ebiz")

width Unit Taglib
width="300"

Classlib
setWidth ("300")

Example
using the taglib

 <hbj:image
 id="Logo"
 tooltip="center of ebiz"
 width="70"
 height="35"
 alt="picture saplogo.gif"
 src="<%= ImageURL +\"saplogo.gif\" %>
 />

using the classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 439

 IPortalComponentRequest request =
 (IPortalComponentRequest) this.getRequest();

 Form form = (Form) this.getForm();
 Image image =
 new Image(
 request.getWebResourcePath() + "/../mimes/saplogo.gif",
 "picture saplogo.gif");
 image.setTooltip("center of ebiz");
 image.setWidth("70");
 image.setHeight("35");
 form.addComponent(image);

Result

3.4.2.6.14.1 Usage & Type

The image control displays a bitmap GIF or JPEG format. The width and height of the image
can be specified.

Figure 1: Example of an image in an iView. The image appears only after the user makes a
selection via the shuffler placed above the image.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 440

Figure 2: Example of an image with a row of image-related function buttons

Usage
The image control displays a bitmap in GIF or JPEG format. The width and height of the
image can be specified.

Photographs, graphics, charts and diagrams, maps, sketches, animated graphics and video
(movies) may be used in the portal. If used properly, they carry great amounts of information,
which would take up much more time and screen-space, if they were explained in words.

Although icons are also images, they are not allowed in iViews, except for
displaying status information. That is, there are no function icons on buttons or
tabs. For more information on status icons in the portal, see the SAP Reference
Lists in the SAP Design Guild.

Interacting with Images
● If graphics and data can be selected from several sets, or if the amount of data has to

be reduced, place a filter or shuffler above the image. (See figure 1, above)

● Place buttons for image-related functionality and status information (for example, zoom
factor) below the image and left align them. (See figure 2, above)

● Place buttons related to the whole iView in the lower left corner; these buttons may
reside in the same row as the table-related buttons.

● If there is an emphasized button, it is the leftmost button of the respective button group
(image-related or iView-related). There must not be more than one emphasized button
in an iView.

Legend
Always provide an appropriate legend. Place legends or other text below the image or to its
right, depending on the format of the image and the iView or page layout.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 441

Tips for Using Images
● Align graphics so that their main contents points towards the text, not away from it.

● Crop graphics to the relevant section; make them as small as possible and avoid
irrelevant and distracting elements.

Example: Do not show a US map if you want to illustrate data in Michigan - use a
Michigan map instead.

● Use high quality graphics.

Example: Do not draw graphics by yourself, involve graphic designers.

● Care for the correct format of images:

JPEG for photos and images with many colors and gradations.

GIF for images with flat-colored areas and bold lines, like diagrams or cartoon, and
images with (less than) 256 colors. Typically, screen dumps work better in GIF format.

Sharp-edged graphics work well as transparent GIF, on any background. Using
transparent GIF format for round, smooth forms and large-sized text, as used in many
logos, may cause problems if you don't know what color their background will be.

Types

Charts

Figure 3: A horizontal bar chart table; for exact comparisons, the values have been added to
the chart.

See Chart for details and Recommendations for Charts and Graphics in the SAP Design
Guild for thorough information on the usage of charts.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 442

Animated Graphics, Video, or Movie

Figure 4: Animation can explain procedures or be just fun to watch...

The image control currently supports only animated GIFs.

Sketches

Figure 5: A sketch may be effective for fast communication or serve as a preliminary version
of a diagram

Design-relevant Attributes
You can set the height (height) and width (width) of an image, also the tooltip text (tooltip),
which is displayed as the mouse cursor passes over the image, or as the mouse button is
pressed but not released.

Usage - Height and Width
Do not scale images in the browser by changing the values for height and width. This results
in poor image quality.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 443

Related Controls
Table View [Page 33]

3.4.2.6.14.2 Browser Support & 508

The image control is compatible with all browser types.

Editability in Style Editor
Customers can customize portal images used within the portal's outer frame and control-
rendering (iView function images, table buttons, etc.) quite easily via Style Editor. The tool
offers no editable styles related to images placed as portal content.

Accessibility - 508 Support
● Keyboard

Images are not inserted into the accessibility hierarchy by default.

● Default Description

Is provided by the HTMLB rendering engine

● Application-specific Description

Set an additional description using the setTooltip method if needed. Do not use the
setAlt method that sets the alternate text (alt attribute).

3.4.2.6.15 Input Field

Definition
An framed area that allows user input. The inputField can be displayed with default input. A
user can type new text or edit the existing text. The inputField control can be for client side
eventing. See the EventValidationComponent [Page 33] description for more details.

● BCD

Defines the value of the input field and the 'type' as data type Float (BCD = Binary
Coded Decimal). The value has to match the data type format. This attribute combines
the attributes 'type' and 'value'. See description of the 'type' attribute for more details
how the inputField handles types.

● date

Defines the value of the input field and the 'type' as data type Date. The value has to
match the data type format according to the locale setting. This attribute combines the
attributes 'type' and 'value'. See description of the 'type' attribute for more details how
the inputField handles types.

● design

Defines the size of the input field. The value for this attribute can be "STANDARD" or
"SMALL".

● enabled - inherited from EventValidationComponent [Page 33].

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 444

A boolean value that defines if the inputField allows input. A disabled (enabled = false)
inputField has a different background color.

● firstDayOfWeek - Deprecated

The "first day of the week" that is displayed in the datenavigator (when you use input
field "type=DATE" and "showHelp=true") is now controlled by the Java calendar class.
The "firstDayOfWeek" attribute has no more effect on the datenavigator.

● id

Identification name of the inputField.

● jsObjectNeeded - inherited from Component [Page 33].

A boolean value that defines if a JavaScript object has to be generated for the
inputField component.

● integer

Defines the value of the input field and the 'type' as data type Integer. The value has to
match the data type format. This attribute combines the attributes 'type' and 'value'.
See description of the 'type' attribute for more details how the inputField handles types.

● maxlength

Defines the maximum amount of characters allowed for the inputField. If the type
attribute is set for example, to date or time the 'maxlength' has to take care of the
characters delivered by this format and local settings.

● password

A boolean value that controls the echo of the inputField. If set to "true" the typed in
characters are echoed - displayed as asterisks (*). A common use for this attribute is to
inquire passwords.

● required

This attribute sets a different style sheet class for a required inputField (that is a
inputField that has to be filled out by the user). That gives you the opportunity do create
a complete different look for a required inputfield (for example, light blue background).
Use the 'label' control to indicate with a character that the inputField is required (for
example, an asterisk).

● showHelp

A boolean value that activates a help button when set to "true". 'showHelp' shows effect
only when 'type' is set to "date". The help button pops up the date navigator allowing
selection of the date by clicking on to the required day.

If you define a textView before the inputfield (to explain the meaning of the inputField)
and than an inputField with enabled showHelp it is recommended to place the textView
and the inputField in a grid or a tableView for better formatting.

If textView is not placed in a grid or tableView a line wrap between textView and
inputField will occur.

● size

Defines the width of the inputField in characters. The frame of the inputField is adjusted
accordingly considering the actual text font and the design attribute.

The inputField width can also be set by the attribute 'width'. If 'size' and 'width' are set
the 'width' attribute has priority and overwrites the 'size' setting.

● tooltip

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 445

Defines the hint of the inputField which is displayed as the mouse cursor passes over
the inputField, or as the mouse button is pressed but not released.

● time

Defines the value of the input field and the 'type' as data type Time. The value has to
match the data type format according to the locale setting. This attribute combines the
attributes 'type' and 'value'. See description of the 'type' attribute for more details how
the inputField handles types.

● type

If 'type' is set to date a help button to call the dateNavigator can be generated (see
'showHelp'). For all other types for the inputField, the frame of the inputField is
displayed in red, if the value does not match the type (for example, 'type' is set to
Integer and 'value' is "ABC").

● valid

A boolean value that controls the frame of the inputField.

invalid="true": InputField is displayed with a red frame.

invalid="false": InputField is displayed with the regular frame color

● value

Default string that is displayed in the inputField frame. The 'maxlength' attribute has no
effect on the 'value' attribute. The 'value' string is not truncated to 'maxlength'. By
default the value is handled as data type string. For other data types set the 'type'
attribute or use the BCD, Date, Integer or Time methods to set the value.

● visible

A boolean value that defines if the inputField is visible or invisible.

● width

Defines the width of the inputField in pixel or percent. This attribute allows better
adjustment of the inputField in a form.

The inputField width can also be set by the attribute 'width'. If 'size' and 'width' are set
the 'width' attribute has priority and overwrites the 'size' setting.

Attributes M Values Usage

BCD String Taglib
No tag available

Classlib
setBCD ("1.15")

date String Taglib
No tag available

Classlib
setDate ("3.12.2003")

design STANDARD (d)
SMALL

Taglib
design="SMALL"

Classlib
setDesign("SMALL")

enabled* FALSE
TRUE (d)

Taglib
disabled="TRUE"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 446

Classlib
setEnabled(false)

id * String (cs) Taglib
id="GetInput"

Classlib
setId("GetInput")

jsObjectNeeded** FALSE (d)
TRUE

Taglib
jsObjectNeeded="TRUE"

Classlib
setJsObjectNeeded(true)

integer Taglib
No tag available

Classlib
setInteger("10")

maxlength Taglib
maxlength="25"

Classlib
setMaxlength(25)

password FALSE (d)
TRUE

Taglib
password="TRUE"

Classlib
setPassword(true)

required FALSE (d)
TRUE

Taglib
required="TRUE"

Classlib
setRequired(true)

showHelp

takes effect only
if ‘type’ is set to
“date”.

 FALSE (d)
TRUE

Taglib
showHelp="TRUE"

Classlib
setShowHelp(true)

size Numeric (30) Taglib
size="35"

Classlib
setSize("35")

time String Taglib
No tag available

Classlib
setTime("00:14:01")

tooltip String Taglib
No tag available

Classlib
setTooltip("Order number")

type BCD
BOOLEAN
DATE

Taglib
type="INTEGER"

Classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 447

INTEGER
STRING
TIME

setType(DataType.INTEGER)

valid FALSE
TRUE (d)

Taglib
invalid="TRUE"

Classlib
setValid(false)

value String Taglib
value="Your name here"

Classlib
setValue("Your name here")

visible FALSE
TRUE (d)

Taglib
visible="false"

Classlib
setVisible(false)

width Unit Taglib
width="200"

Classlib
setWidth("200")

* Method is inherited from the EventValidationComponent [Page 33] component. Therefore
the attribute is different between the taglib and the classlib.

** Method is inherited from the Component [Page 33] component.

See the JavaScript API [Page 33] description for details how to access the component in
JavaScript.

Example
using the taglib
 <hbj:inputField
 id="InputName"
 type="string"
 maxlength="100"
 value="Your name here"
 />

using the classlib
 Form form = (Form) this.getForm();
 InputField input = new InputField("InputName");
 input.setType(DataType.STRING);
 input.setMaxlength(100);
 input.setValue("Your name here");
 form.addComponent(input);

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 448

Result

3.4.2.6.15.1 Usage & Type
Input fields are used for entering and displaying data in forms. The data can be of various
types, such as Date, Integer, or String.

Input fields can have different behaviors, such as password, read-only, or required, and
different states, such as normal and error.

Figure 1: Example of grouped input fields with and without required inputs

Usage
In most cases, input fields appear in combination with the label control and sometimes with
additional elements, such as descriptions or buttons.

Figure 2: Input field with label (left) and additional elements

Typically, the label is placed left to the input field, while the description follows the field. There
is one exception to this rule: You may use small labels if you place the labels above input
fields to achieve a more compact design (figure 3).

Figure 3: Use small labels for labels that are placed above their associated input fields

In addition, help texts can be placed right to the field below it.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 449

Help Texts
Help texts are special descriptions that are placed behind the input field or - if space is limited
- below the input field and left-aligned with it (figure 4). Do not use the label control for help
texts. Use the text view control, instead. Set the help text size to small (style Legend).

Figure 4: A small label used in conjunction with a small help text below the associated input
fields - do not use the label control for the help text (below the input field)

Width and Alignment
Often input fields are grouped to form a semantic block of input data, such as address data,
or bank data. In that case, input fields should indicate how many characters the user has to
enter. Therefore, it is not appropriate to set all fields within a group to the same size. That is
important because input fields are often used in combination with other input types, such as
checkboxes and radio buttons.

Figure 5: Example of grouped input fields with the width attribute set to appropriate values

Use the grid layout [Page 33] control for aligning fields and labels. Both fields and labels are
left-aligned within the grid. The number of characters of the longest label determines the
offset between the labels and the input fields.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 450

Types
Input fields come in two sizes: standard size and small size. They are set using the attribute
size to STANDARD (default) or SMALL.

Usage - Sizes
Usually, only the standard size is used. If the screen real estate is limited, the small size might
be appropriate. Do not mix small and standard input fields within one field group.

Figure 6: Standard input field (left) and small input field (right)

Design-relevant Attributes
A number of attributes allow to display several different states and behaviors of an input field,
such as read-only, error, password field and required field.

Read-only Input Field
Invalid Input Field
Password Input Field
Required Input Field *
Figure 7: Different states of input fields

These states and behaviors are set by assigning the value TRUE to the Boolean attributes
disabled, invalid, password, and required.

The data type of input fields, such as Integer, String, etc., is set using the attribute type. For
possible values and further attributes, see page Control API for Input Field.

In addition, there are specialized input fields, which may also be accompanied by a value
help. Below, we present the date field as example (this is currently the only type of value help
that is supported - see page Control API for Input Field [Page 33] for details).

Figure 8: Date input field with date picker

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 451

Usage - Required Fields
Some fields require that users enter a value before they can continue, for example, before
they can save data. Set required = TRUE for making an input field a required field; its
corresponding label has also to be set to required.

Usage - Read-only Fields
Read-only fields (disabled = TRUE) are input fields that do not allow users to enter data.

Use read-only fields for data that have previously been entered by the user, for example, on a
preceding page or during a previous session, or by the system, and that currently cannot be
changed by the user. Often, the data that the user is allowed to enter depend on the protected
data that are displayed in a read-only field.

Usage - Password Fields
Use password fields (password = TRUE) when users have to enter a password, for example,
in a login dialog.

Usage - Invalid Fields (Error State)
Set the error state for an input field (invalid = TRUE), whenever the system detects an input
error that the user committed. Depending on the system behavior, an additional error
message should appear immediately, or after a certain "stable" system state has been
reached, when the system performs a more thorough error check.

Related Controls
Label [Page 33], Checkbox [Page 33], Radio Button [Page 33], Grid Layout [Page 33], Flow
Layout [Page 33], Group [Page 33]

3.4.2.6.15.2 Browser Support & 508
Renders in every supported browser.

Editability in Style Editor
In the Style Editor, it is possible to modify the following attributes of the input field control:

Group Style IE 5 and higher Netscape 4.7

Field Styles Border Width, Style and Color
Padding

x
x

Standard-sized Field Font Size
Height

x
x

x

Small-sized Field Small Font Size x

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 452

Small Height x x

Invalid Field Border for Invalid Input x

Required Field Font Color of "Required"
Indicator

x x

Background Background Color of Editable
Fields
Background Color of Non-
Editable Fields

x

x

Table 1: Editable styles for the input field control

Accessibility - 508 Support
Input fields have to be used in combination with the label element which points to the
assigned input field. This ensures, that screenreaders are aware of the relationship between
the both elements and can read the correct label to the according field.

● Keyboard

The input field is inserted into the accessibility hierarchy by default.

● Default Description

Is provided by the HTMLB rendering engine.

● Application-specific Description

Set an additional description using the setTooltip method if needed.

● Label

Has to be connected to a label control (use method setLabelFor for identifying the
corresponding input field).

3.4.2.6.16 Isolated HTML Container

Definition
The IsolatedHtmlContainer control displays a HTML document represented by its URL, inside
an iFrame.

The IsolatedHtmlContainer cannot handle HTML documents which contain for
example, JavaScript that places the document in a self defined frame. These
HTML documents will use the entire web browser window, regardless of the
IsolatedHtmlContainer.

This control is available for web browser Internet Explorer and Netscape 6.0 and higher. In
Netscape 4.7 the HTML document will be rendered in a new browser window, similar to the
'target=_blank' argument in the "link" control.

● bordered

A boolean value that, if set to true, draws a border around the IsolatedHtmlContainer
control.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 453

● height

Specifies the height of the IsolatedHtmlContainer control.

● id

Identification name of the IsolatedHtmlContainer control.

● scrolling

Defines if the IsolatedHtmlContainer control has scroll bars.

○ AUTO

Displays scroll bars only if the HTML document exceeds the specified height
and width of the IsolatedHtmlContainer control.

○ YES

Displays the IsolatedHtmlContainer control always with scroll bars.

○ NO

Displays no scroll bars regardless of the size of the HTML document. The
portion of the HTML document that exceeds the specified height and width of
the IsolatedHtmlContainer control is clipped.

● srcUrl

Specifies the address of the page/document to be displayed in the
IsolatedHtmlContainer control.

● tooltip

Defines the hint of the link which is displayed as the mouse cursor passes over the
IsolatedHtmlContainer, or as the mouse button is pressed but not released.

● width

Specifies the width of the IsolatedHtmlContainer control.

Attributes M Values Usage

bordered FALSE (cs)
TRUE

Taglib
bordered="TRUE"

Classlib
setBordered(true)

height Unit Taglib
height="300"

Classlib
setHeight ("300")

id * String (cs) Taglib
id="isohtmlcont"

Classlib
setId("isohtmlcont")

scrolling AUTO
YES
NO

Taglib
scrolling="NO"

Classlib
setScrolling (Scrolling.NO)

srcUrl * String Taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 454

srcUrl="http://www.sap.com"

Classlib
setSrcUrl("http://www.sap.com")

tooltip String Taglib
tooltip="Center of ebiz"

Classlib
setTooltip("Center of ebiz")

width Unit Taglib
width="500"

Classlib
setWidth("500")

Example
using the taglib

 <hbj:isolatedHtmlContainer
 id="isohtmlCont"
 width="400"
 height="200"
 srcUrl="http://www.sap.com"
 scrolling="AUTO"
 bordered="true"
 tooltip="An isolated container"
 />

using the classlib
 Form form = (Form) this.getForm();
 IsolatedHtmlContaimer ihc = new IsolatedHtmlContainer("isohtmlCont");
 ihc.setWidth("400");
 ihc.setHeight("200");
 ihc.setSrcUrl("http://www.sap.com");
 ihc.setSrolling(Scrolling.AUTO);
 ihc.setBordered(true);
 ihc.setTooltip("An isolated container");
 form.addComponent(ihc);

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 455

Result

3.4.2.6.17 Item List

Definition
The item list can be displayed as bulleted or numbered (ordered) list. An element in an
itemList is called listItem.

● bulletUri

Sets the image that is displayed as bullet in the item list.

● id

Identification name of the itemList.

● ordered

A boolean value that defines if the list is displayed as bulleted (ordered="false") or
numbered list (ordered="true").

Attributes M Values Usage

bulletUri String (cs)

Taglib
No tag available

Classlib
setBulletUri(ImageUrl + "arrow.gif")

id * String (cs) Taglib
id="ImportantItems"

Classlib
setId("ImportantItems")

ordered FALSE (d)
TRUE

Taglib
ordered="TRUE"

Classlib
setOrdered(true)

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 456

listItem
Defines the items in the itemList. A listItem can be built with any control (checkbox, image,
textView etc.) and one listItem can contain more then one control.

Example
using the taglib

 <hbj:itemList
 id="ImportantItems"
 ordered="true"
 >
 <hbj:listItem>
 <hbj:textView
 text="Introduction"
 />
 </hbj:listItem>
 <hbj:listItem>
 <hbj:textView
 text="Definitions"
 />
 </hbj:listItem>
 <hbj:listItem>
 <hbj:textView
 text="Main Part"
 />
 </hbj:listItem>
 <hbj:listItem>
 <hbj:textView
 text="Conclusion"
 />
 </hbj:listItem>
 </hbj:itemList>

using the classlib
 ItemList iteml = new ItemList();
 iteml.setOrdered(true);
 iteml.addText("Introduction");
 iteml.addText("Definitions");
 iteml.addText("Main Part");
 iteml.addText("Conclusion");
 form.addComponent(iteml);

Result

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 457

3.4.2.6.17.1 Usage & Type
Use an ordered item list if you want to represent items in a certain predefined sequence, for
example, a ranking. Use an unordered list if there is no predefined item order.

Figure 1a-b: Ordered item list (left) and unordered item list (right)

See also List Box – Usage & Type [Page 33] for details when to use dropdown list box, list
box, item list and table view.

Usage
Use item lists whenever you want to present a list of items in an unobtrusive way, where
reading is the primary usage and where there is - apart from links - no interaction on the list
elements.

Lists have the following characteristics:

● List items are read-only.

● List items may contain links.

● Item lists do not scroll. Therefore make sure that all list items fit the iView!

● Item lists consist of one column only; for multiple columns include the lists in an HTML
table with one row and several columns (2-3) or use a table view.

● Lists may be ordered (numbers) or unordered (bullets).

● Lists may be nested; do not use more than 2-3 levels!

Description - Label or Heading
Item lists may have a label or heading. A descriptive label may be placed above or to the left
of the item list, a heading should typically be placed above the item list.

Use the label control for both labels and headings. Note that the label control allows to set
font attributes in order to emphasize headings.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 458

Figure 2: Item list with a heading

Types
There are two types of item lists, an unordered or bullet list, and an ordered or numbered list.
Both types are set using the Boolean attribute ordered: ordered = TRUE renders a numbered
list, ordered = FALSE a bullet list.

Usage - Types
Use an ordered item list if you want to present items in a certain predefined sequence, for
example, a ranking. Use an unordered list if there is no predefined item order.

Related Controls
Table View [Page 33], Text View [Page 33], Link [Page 33], Listbox [Page 33], Label [Page
33]

3.4.2.6.17.2 Browser Support & 508
Supported by all browsers.

Editability in Style Editor
The following characteristics are editable in the Style Editor:

● List Style Image (List Bullet)

● List Margin

In the Style Editor, it is possible to modify the following attributes of the item list control:

Style IE5 and above Netscape 4.7

URL to List Style Image x x

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 459

List Margin x

Table 1: Editable styles for the item list control

Accessibility - 508 Support
● Keyboard

The item list is not inserted into the accessibility hierarchy by default.

● Default Description

Not needed.

● Application-specific Description

Not needed.

3.4.2.6.18 Label

Definition
A multi line region for displaying text. Text in the component is restricted to a single font, size
and style unless set with HTML commands.

The label control works similar to textView [Page 33] control. In addition a label has an
associated component like an inputField or listBox. The label control can be for client side
eventing. See the EventValidationComponent [Page 33] description for more details.

● design

Defines the appearance of the label. The CSS controls how the different options are
rendered. The following description is based on the standard CSS delivered.

○ LABEL

Text size and attributes STANDARD

○ LABELSMALL

Text size -2 in comparison to STANDARD

● enabled - inherited from EventValidationComponent [Page 33].

A boolean value that enables (=true) or disables (=false) the label control. A disabled
label has a different text color to show the user that it is disabled.

● encode

A boolean value that defines how the label text is interpreted. HTML text formatting
commands (for example, <h1>, <i> etc.) can be used to change the display of the text.
If there are no formatting commands in the text string, the encode attribute has no
effect.

Example:
text="<h1><i>Important</i></h1>"

encode = "false" Browser output:

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 460

the text string is rendered by interpreting the formatting commands.

encode = "true" Browser output:

the formatting commands are displayed and not interpreted.

● hasDesignBar

Enables or disables a design bar around the label.

● id

Identification name of the label.

● jsObjectNeeded - inherited from Component [Page 33].

A boolean value that defines if a JavaScript object has to be generated for the
inputField component.

● labelFor

Identification name of the next component, which is associated with the label.

● required

A boolean value. If set to "true" a character (for example, an asterisk (*) in red color)
defined by the style sheet is placed at the end of the text string. This is a common
method to indicate that input is required. See also inputField.

● text

Defines the string of text displayed. See 'encode' for a formatting example with
embedded HTML commands.

● tooltip

Defines the hint of the label which is displayed as the mouse cursor passes over the
label, or as the mouse button is pressed but not released.

● valid

Defines the status of the associated input field.

● width

Defines the width of the label. The width shows only effect when the 'wrapping' attribute
is set to "true". Otherwise the width and layout follows the HTML commands in the text
string.

● wrapping

A boolean value. If set to "true" the text is word wrapped at the set 'width' or - if no
'width' is set - at the form width.

Attributes M Values Usage

design LABEL
LABELSMALL

Taglib
design="LABEL"

Classlib
setDesign (TextViewDesign.LABEL)

enabled FALSE
TRUE (d)

Taglib
enabled="FALSE"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 461

Classlib
setEnabled(false)

encode FALSE
TRUE (d)

Taglib
encode="FALSE"

Classlib
setEncode(false)

hasDesignBar FALSE (d)
TRUE

Taglib
No tag available

Classlib
setHasDesignBar(false)

id * String (cs) Taglib
id="Intro_text"

Classlib
setId("Intro_text")

jsObjectNeeded** FALSE (d)
TRUE

Taglib
jsObjectNeeded="TRUE"

Classlib
setJsObjectNeeded(true)

labelFor * String (cs) Taglib
labelFor="id_inputField"

Classlib
setLabelFor("id_inputField")

required FALSE (d)
TRUE

Taglib
required="TRUE"

Classlib
setRequired(true)

text String Taglib
text="Your name please"

Classlib
setText("Your name please")

tooltip String Taglib
tooltip="Name required"

Classlib
setTooltip("Name required")

valid FALSE
TRUE (d)

Taglib
No tag available

Classlib
setValid(false)

width Unit (100%) Taglib
width="300"

Classlib
setWidth("300")

wrapping FALSE (d)
TRUE

Taglib
wrapping="TRUE"

Classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 462

setWrapping(true)

* Method is inherited from the EventValidationComponent [Page 33] component.

** Method is inherited from the Component [Page 33] component.

See the JavaScript API [Page 33] description for details how to access the component in
JavaScript.

Example
using the taglib

 <hbj:label
 id="label_InputName"
 required="TRUE"
 text="ZIP Code"
 design="LABEL"
 labelFor="InputName"
 />

 <hbj:inputField
 id="InputName"
 type="string"
 maxlength="100"
 />

using the classlib
 Form form = (Form) this.getForm();
 InputField input = new InputField("InputName");
 input.setType(DataType.STRING);
 input.setMaxlength(100);
 Label label = new Label("label_InputName");
 label.setRequired(true);
 label.setText("ZIP Code");
 label.setDesign(TextViewDesign.LABEL);
 label.setLabelFor(input);
 form.addComponent(label);
 form.addComponent(input);

Result

3.4.2.6.18.1 Usage & Type
Labels are texts that describe associated input elements. The label control creates a firm
connection between the descriptive text and the respective element.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 463

Figure 1: Example of a label with its corresponding input element

Usage
Labels are simple text elements that can be used for descriptive texts. Labels can wrap and
spread over multiple lines. Use labels to describe input elements, such as, dropdown list
boxes [Page 33], input fields [Page 33], list boxes [Page 33], and item lists [Page 33].
Checkbox [Page 33] and radio button [Page 33] controls already include their own labels.

Required Fields
Set the label to required if the input field is required.

Positioning
Typically, labels are placed in front of the input element they describe (figure 1). In some
cases, labels may be placed above the corresponding input element (figure 2). See also the
special case for input fields below (figure 3).

Figure 2: Label above a text edit control

Size
The label control can be set to two sizes, standard and small. Use the sizes depending on the
context of the label, that is, use the standard size if the surrounding fields are standard size,
use small if the surrounding fields are small.

There is one exception to this rule: You may use small labels if you place the labels above
input fields to achieve a more compact design (figure 3).

Figure 3: Use small labels for labels that are placed above their associated input fields

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 464

Relation to Text View
Do not use the text view [Page 33] control as a label because only the label establishes a
connection between the description and the corresponding input element. This connection is
mandatory for achieving accessibility.

Help Texts
Help texts are special descriptions that are placed behind or, if space is limited, below and
left-aligned with input fields (figure 4). Do not use the label control for help texts. Use the text
view [Page 33] control, instead. Set the help text size to small (style Legend).

Figure 4: A small label used in conjunction with a small help text below the associated input
fields - do not use the label control for the help text (below the input field)

Design-relevant Attributes
The appearance of the label control can be determined through several attributes. The
attribute design allows to set the size of the label: design = LABEL sets the standard size,
design = LABELSMALL sets the small size. The attribute labelFor established the connection
to the associated input control. Further attributes set the width, wrapping behavior (Boolean
attribute wrapping), text, and tooltip text of the label. The Boolean attribute required must be
set to TRUE for labels that describe required fields

Related Controls
Dropdown List Box [Page 33], List Box [Page 33], Input Field [Page 33], Text Edit [Page 33],
Text View [Page 33], Item List [Page 33]

3.4.2.6.18.2 Browser Support & 508
The Label component renders in every supported browser.

Editability in Style Editor
The label control is editable in the Style Editor via "Text". Common styles used for labels
(changes affect other elements) are:

● Font Size

● Font Color

● Font Family

● Font Weight

● Font Style

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 465

For an overview of all common styles see section HTMLB Controls and Style Editor in
Customer Branding and Style Editor.

Accessibility - 508 Support
● Keyboard

The label is not inserted into the accessibility hierarchy by default.

● Default Description

Is provided by the HTMLB rendering engine.

● Application-specific Description

Typically, an additional description is not needed. Set a description using the setTooltip
method only if the label text is not sufficient for explaining the meaning, function, or
purpose of the corresponding control.

● Corresponding Input Elements

Checkbox, dropdown list box, input field, radio button, and text edit control.

3.4.2.6.19 Link

Definition
Defines a link to another page. The text of the link becomes an underline and is displayed in a
different color. An image can be defined as link as well - see the example for details. The link
control can be for client side eventing. See the EventValidationComponent [Page 33]
description for more details.

● enabled - inherited from EventValidationComponent [Page 33].

A boolean value that enables (=true) or disables (=false) the link control. A disabled link
has a different text color to show the user that it is disabled and sends no event when
clicked.

● fontSize

Sets the font size for the link.

● id

Identification name of the link.

● jsObjectNeeded - inherited from Component [Page 33].

A boolean value that defines if a JavaScript object has to be generated for the link
component.

● labeled

Enables or disables the notification when the control has a label assigned to it.

● linkDesign

Design definition of the link.

○ DRAGRELATE

In link color and underlined. On "MouseOver" color different, no underline

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 466

○ DRILLDOWN

In link color and underlined. On "MouseOver" link color brighter and underlined.
"Standard" link display.

○ FUNCTION

In link color and underlined. On "MouseOver" link color brighter and underlined.
"Standard" link display.

○ REPORTING

In link color, no underline. On "MouseOver" link color brighter and underlined.

○ RESULT

In text color, no underline. On "MouseOver" link color brighter and underlined.

● onClick

Defines the event handling method that will be processed when the user clicks on the
link. If 'onClick' is specified, the event handling routine is called.

● onClientClick

Defines the JavaScript fragment that is executed when the user clicks on the link. If
both events ('onClick' and 'onClientClick') are specified, the 'onClientClick' event
handling method is activated first. By default the 'onClick' event handling method is
activated afterwards. In the JavaScript fragment you can cancel the activation of the
'onClick' event handling method with the command

htmlbevent.cancelSubmit=true;

The 'onClientClick' event is useful to preprocess the form and only send the form to
client if the preprocessing was successful (for example, date validation, valid number
format etc.) to save client/server interaction.

● reference

Specifies the address of the page/document to be opened. If the 'onClick' attribute is
defined the event handling routine is started and the 'reference' string is handed to the
event handling routine. The referenced document is not opened - the event handling
routine has to do that.

If the 'onClick' attribute is not defined, the link is opening the referenced document.

● target

Specifies the name of the frame where the document is to be opened. The following
values refer to w3c HTML-standard.

○ _blank

The web client should load the designated document in a new, unnamed
window.

○ _self

The web client should load the document in the same frame as the element that
refers to the target.

○ _parent

The web client should load the document into the immediate FRAMESET parent
of the current frame. This value is equivalent to _self if the current frame has no
parent.

○ _top

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 467

The web client should load the document into the full, original window (thus
canceling all other frames). This value is equivalent to _self if the current frame
has no parent.

● text

A text string that is displayed underlined and in different color. If no 'text' attribute is
provided or a the 'text' attribute is set to an empty string, the link is not displayed.

● tooltip

Defines the hint of the link which is displayed as the mouse cursor passes over the link,
or as the mouse button is pressed but not released.

Attributes M Values Usage

enabled* FALSE
TRUE (d)

Taglib
No tag available

Classlib
setEnabled (true)

fontSize Taglib
No tag available

Classlib
setFontSize (LinkFontSize.fontsize)

id * String (cs) Taglib
id="importantItems"

Classlib
setId("importantItems")

jsObjectNeeded** FALSE (d)
TRUE

Taglib
No tag available

Classlib
setJsObjectNeeded (true)

labelled FALSE (d)
TRUE

Taglib
No tag available

Classlib
setLabeled (true)

linkDesign DRAGRELATE
DRILLDOWN (d)
FUNCTION
REPORTING
RESULT

Taglib
linkDesign="RESULT"

Classlib
setLinkDesign(LinkDesign.RESULT)

reference String Taglib
reference="http://www.sap.com"

Classlib
setReference("http://www.sap.com")

target _blank
_self (d)
_parent
_top

Taglib
target="_TOP"

Classlib
setTarget("_TOP")

text String Taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 468

text="To the beach"

Classlib
setText("To the beach")

tooltip String Taglib
tooltip="Enjoy and relax"

Classlib
setTooltip("Enjoy and relax")

* Method is inherited from the EventValidationComponent [Page 33] component. Therefor the
attribute is different between the taglib and the classlib.

** Method is inherited from the Component [Page 33] component.

See the JavaScript API [Page 33] description for details how to access the component in
JavaScript.

Events M Values Usage

onClick String (cs)

Taglib
onClick="ProcessLink"

Classlib
setOnClick("ProcessLink")

onClientClick String (cs)

Taglib
No tag available

Classlib
setOnClientClick("alert('Click')")

Example
Text as link using the taglib
 <hbj:link
 id="link1"
 text="Link to google"
 reference="http://www.google.com"
 target="_TOP"
 tooltip="this takes you to: http://www.google.com"
 onClick="LinkClick"
 />

Text as link using the classlib
 Form form = (Form) this.getForm();
 Link link = new Link("myLink");
 link.setTarget("_TOP");
 link.setReference("http://www.google.com");
 link.setTooltip("this takes you to: http://www.google.com");
 link.addText("Link to google");
 form.addComponent(link);

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 469

Result
Link to google

Image as link (and getting the resource path once - at the beginning of the JSP. This is
useful when the JSP uses several images) using the taglib
 <%-- Get resource url of component --%>
 <%
 String ImageURL=componentRequest.getPublicResourcePath()
 + "/../mimes/";
 %>
 <hbj:link
 id="link1"
 text=""
 reference="http://www.sap.com"
 target="_TOP"
 tooltip="this takes you to: http://www.sap.com"
 onClick="LinkClick"
 <hbj:image
 src="<%= ImageURL+\"sap.gif\" %>"
 alt="Image not available" />
 </hbj:link>

Result

Text and Image as link (and getting the resource path at the control) using the taglib
 <%@ page import="com.sapportals.portal.prt.resource.IResource" %>
 .
 .
 <hbj:link
 id="link1"
 text="Link to SAP"
 reference="http://www.sap.com"
 target="_TOP"
 tooltip="this takes you to: http://www.sap.com"
 onClick="LinkClick"
 >
 <hbj:image
 id="image_logo"
 alt="Image not available"
 src=""
 >
 <%
 IResource
 rs=componentRequest.getResource(IResource.IMAGE,
 "../mimes/sap.gif");
 image_logo.setSrc
 (rs.getResourceInformation().getURL(componentRequest));
 %>
 </hbj:image>
 </hbj:link>

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 470

Result

Link to google

3.4.2.6.19.1 Usage & Type

Fig
ure 1: Example of links in the content area

Usage
The link control is not the simple topic it may seem to be. Not all links should be handled
equally. There are hypertext links in the navigation area, header area, and content area as
well as on buttons and in tables and applications. All of these links can have different
appearances and behaviors.

For aesthetic and usability reasons, the links in the navigation area (not to be confused with
content area navigation links!) have a different appearance from those in the content area. It's
important that the user recognizes these links as pertaining to the overall navigational
structure and not just a way to drill-down to detail information or jump to a page in a different
context.

The HTMLB control called "link," which is described here, refers to hypertext links (referred to
here as "links") in the content area.

Positioning
Links may either appear

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 471

● as part of a larger text, (for example, an article about customer service might contain a
context link to the mySAP CRM homepage) or

● standalone (for example, a list of links to articles about CRM, a "More" link placed at
the end of a abstract to navigate to additional information, etc.)

Standalone links should be grouped together separately from buttons and vice versa. When
possible, functions and links should be grouped together and displayed in the same way
(either all as links or all as buttons), as in figure 1. A mixture of links and buttons in the same
grouping context should be avoided.

View switching links are most often displayed above the content to which they refer, as in
figure 2.

Capitalization
It is not necessary to make any special capitalization considerations for links that are part of a
larger context or that are automatically generated (such as contact names, document titles,
etc.). In the same way that buttons require title case capitalization (i.e. the first word always
capitalized, all significant words are capitalized, prepositions and articles are not capitalized),
so do function, navigation, toggle and view switching links.

Figure 2: Example of an iView where links have both title and sentence case depending on
the usage

Types
Although there is only one link type from a technical point of view, we must make a distinction
between the various kinds of links in the content area. This helps to establish usage rules for
links and to make a distinction between buttons and links.

Note: Based on what purpose the links serve, we can establish five different types of content
area links: view switch, toggle, drill-down, function, and navigation.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 472

Figure 3: Example of an iView with view switch links.

View Switch Links
View switch links are similar in function to toggle links, but are different in that they are always
visible. The view switch links are an alternative to the tabstrip control. The advantage that
view switch links have over the tabstrip is that they take up less space and can be used
vertically, if this makes more sense in the application (for example in mobile applications
where the format of the device allows more vertical than horizontal space). This type of link is
similar to the navigation link. As opposed to navigation links, view switch links all refer to the
same context and must be persistent in all the views. The currently selected view should not
be presented as a link, but as bold text (see figure 3 above). View switch links should be
separated from one another by a vertical line, like this one |.

Use title case (see Capitalization) for view switch links.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 473

Figure 4: Example of an iView with toggle, drill-down, function and navigation links.

Toggle Links
Toggle links are used when there are two alternative views of the current data. Toggle links
are always pairs of links, but only one is visible at a time. In figure 4 the toggle link reads,
"Show Entire Feedback Text." If the user were to click on that link, the alternative view would
show the feedback in its entirety and the text of the link would change to "Show Only
Feedback Preview."

Some common examples of toggle links are:

● Expand All / Collapse All.

● Show Chart View / Show Table View.

● Hide Help / Show Help.

Use title case (see Capitalization below) for toggle links.

Drill-Down Links
A drill-down link allows a user to see more detailed or specific information. For example, in
the overview of an address book, the contact names are drill-down links that allow the user to
access details on that person. In a mail inbox, the title of each message would automatically
be a link to the contents of the message.

Some common drill-down links are:

● Contact name

● Customer name

● Document title

● Message title

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 474

● Report title

● Revenue

These links are most often automatically generated and the developer should make no
attempt to influence the capitalization. (See figure 2.)

Function Links
A function link allows the user to carry out an action. Although in general buttons should be
reserved for functions (see Links vs. Buttons for more information), there may be cases where
a link would be preferable or where the distinction between a function and a link to another
view might be very blurry.

The user wants to subscribe to an object (for example, a folder), the link may
just be a link to a new screen where the user has to fill in some more information
and then can submit the information to the server. This whole act of subscribing,
however, could be thought of as carrying out a function and in some cases
might make more sense as a button than as a link, or vice versa depending on
the context.

Sometimes you may have a collection of items, for example a list of documents. There are
some actions that you can perform all at once on a number of documents whereas there are
other actions which make more sense when they are performed on each item one at a time. If
the action requires a new screen or additional information (details, feedback, edit, reply, etc.),
chances are that you can only perform the action on each item one at a time. In such cases, a
link is generally preferable to a button.

Taking the iView in figure 1 as an example, we can see that the user can select
a number of documents and approve or reject them all at once by using the
checkboxes and buttons. However, if the user were to want to see the details of
a number of documents, it makes more sense to have him choose a link next to
each document. Otherwise, the user would have a number of detail screens and
would likely be confused about which details belong to which document.

If your application has a list of items, and each one requires it is own function
(see figures 1 and 4 for examples), it is preferable to use links as opposed to
buttons for functions in this case. This is mainly due to aesthetics, but it is also a
usability factor. An application with a wall of buttons makes the application look
heavy and complicated.

Some common function links are:

● Details

● Feedback

● Add

● Subscribe

● Reply

● Edit

Use title case (see Capitalization) for function links.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 475

Navigation Links
Many times, there will be navigation within an iView or application which is independent of the
main navigation of the Portal. End users might not even perceive these links as "navigation"
per se. Navigation links allow users to move backwards or forwards though a data set or
process. Sometimes the difference between a drill-down link and a navigation link might be
difficult to assess, for example with a "more..." link.

Some common navigation links are:

● More...

● Next or Next >

● Back or < Back

● Backward "<" and forward ">>" as well as back to the beginning "<<" and forward to the
end ">>"arrows in text form (as in figure 4 above)

● Numbers to navigate to a set of entries (as in figure 4 above)

Use title case (see Capitalization) for navigation links.

Links vs. Buttons
In general, use links to indicate navigation to another HTML page or to a different view of the
current information as well as to link to further or more detailed information. Links commonly
appear within the context of the application (within trees, tables or text).

In general, use buttons to indicate that a function can be carried out (save, print, close, delete,
etc.) or that a process can be started (subscribe, etc.). Buttons generally appear at the bottom
left of a grouped area to indicate a function that can either be performed on selected items (if
checkboxes appear as well) or that apply to the whole screen. (See the section of these
guidelines called Buttons for further information.)

For more information about cases where links may be used to indicate a function, see
function links above.

Figure 5: Example of an iView where links and buttons are both used.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 476

States
The link control has four states: link (i.e. unvisited, normal state), hover, visited and active.

 Example of a link in its normal state

 Example of a link in the hover state

 Example of a link in the visited state

 Example of a link in the active state

Table 1: Examples of the different states the link control can have

Design-relevant Attributes
Attribute reference allows to assign an URL to the link, whereas attribute target allows to set a
link target. The latter follows the HTML conventions for specifying link targets. Attribute text
sets the link text, and attribute tooltip the tooltip text for the link.

For details see page Control API [Page 33] for Link.

Related Controls
Button [Page 33]

3.4.2.6.19.2 Browser Support & 508

Netscape does not recognize the hover state.

Editability in Style Editor
In the Style Editor it is possible to edit the following styles:

● Font Color for Unvisited ("link"), Active ("active"), Visited ("visited") and Mouseover
("hover").

● Text Decoration for Unvisited ("link"), Active ("active"), Visited ("visited") and
Mouseover ("hover")

For an overview of all common styles see section HTMLB Controls and Style Editor in
Customer Branding and Style Editor.

Accessibility - 508 Support
● Keyboard

The link is inserted into the accessibility hierarchy by default.

● Default Description

Is provided by the HTMLB rendering engine.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 477

● Application-specific Description

Set an additional description using the setTooltip method if needed.

An additional description is needed if users need more specific information or
instructions. In general, the description has to be extended if a link introduces an
interaction that cannot be recognized by a blind user. For example, the descriptions
needs to be extended if the link opens a new window.

3.4.2.6.20 List Box

Definition
A set of choices from which a user can select one items. If the number of text lines exceeds
the control size, a vertical scrollbar is activated. An item in the listBox is called listBoxItem.
ListBoxItems are explained above - after the dropdownListBox description. The listBox control
can be for client side eventing. See the EventValidationComponent [Page 33] description for
more details.

● enabled - inherited from EventValidationComponent [Page 33].

A boolean value that defines if the listBox is click able. If the listBox is disabled
(enabled = false) it is not selectable. A disabled listBox has a different color for the
displayed listBoxItem.

● id

Identification name of the listBox.

● jsObjectNeeded - inherited from Component [Page 33].

A boolean value that defines if a JavaScript object has to be generated for the listBox
component.

● labeled

Enables or disables the notification when the control has a label assigned to it.

● model

Defines the model which provides the listBox with data. How to work with the
IListModel [Page 33].

● nameOfKeyColumn

Specifies the name of the column that contains the key. This is used when you use an
underlying table in the model.

● nameOfValueColumn

Specifies the name of the column that contains the visible text. This is used when you
use an underlying table in the model.

● onClientSelect

Defines the JavaScript fragment that is executed when the user clicks on the
dropdownListbox. If both events ('onSelect' and 'onClientSelect') are specified, the
'onClientSelect' event handling method is activated first. By default the 'onSelect' event
handling method is activated afterwards. In the JavaScript fragment you can cancel the
activation of the 'onSelect' event handling method with the command

htmlbevent.cancelSubmit=true;

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 478

The 'onClientSelect' event is useful to pre process the form and only send the form to
client if the preprocessing was successful (for example, date validation, valid number
format etc.) to save client/server interaction.

A listbox click usually activates the client/server interaction. If an input field has
to be filled out for further processing, the JavaScript fragment can check the
necessary input on the client side and display a message if the necessary input
is missing, without server interaction.

To use JavaScript the JSP has to use the page tag (see page [Page 33] tag).

● onSelect

Defines the event handling method that will be processed when the user clicks on the
enabled listBox. If you do not define a 'onSelect' event the listBox can be clicked but no
event is generated.

● selection

Specifies the key of the listBoxItem which is displayed in the listBox.

● size

Sets the number of lines displayed for the listBox. If the number of text lines for listBox
is higher then the size attribute a vertical scrollbar is activated - the width of the listBox
is not changed, the text display window becomes smaller.

● tooltip

Defines the hint of the listBox which is displayed as the mouse cursor passes over the
listBox, or as the mouse button is pressed but not released.

● width

Defines the width of the listBox. Text lines are truncated if the length of the string
extends the width.

Attributes M Values Usage

enabled FALSE
TRUE (d)

Taglib
disabled="TRUE"

Classlib
setEnabled(false)

id * String (cs) Taglib
id="listbox_te"

Classlib
setId("listbox_te")

jsObjectNeeded FALSE (d)
TRUE

Taglib
jsObjectNeeded="TRUE"

Classlib
setJsObjectNeeded(true)

labeled FALSE (d)
TRUE

Taglib
jsObjectNeeded="TRUE"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 479

Classlib
setJsObjectNeeded(true)

model String (cs) Taglib
model="myBean.model [Page 33]"

Classlib
setModel((IListModel [Page 33]) model)

nameOfKeyColumn String (cs) Taglib
nameOfKeyColumn="k1"

Classlib
setNameOfKeyColumn("k1")

nameOfValueColumn String (cs) Taglib
nameOfValueColumn="v1"

Classlib
setNameOfValueColumn("v1")

selection String (cs) Taglib
selection="HD"

Classlib
setSelection("HD")

size Numeric (4) Taglib
size="10"

Classlib
setSize("10")

tooltip String Taglib
tooltip="select an item"

Classlib
setTooltip("select an item")

width Unit
(max. item
length)

Taglib
width="100"

Classlib
setWidth("100")

* Method is inherited from the EventValidationComponent [Page 33] component. Therefor the
attribute is different between the taglib and the classlib.

** Method is inherited from the Component [Page 33] component.

See the JavaScript API [Page 33] description for details how to access the component in
JavaScript.

Events M Values Usage

onClientSelect String (cs)

Taglib
onClientSelect="alert('Click’)"

Classlib
setOnClientSelect("alert('Click’)")

onSelect
[Page 33]

 String (cs) Taglib
onSelect="proc_listbox"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 480

 Classlib
setOnSelect("proc_listbox")

To define items in the list box without a model, see listBoxItem [Page 33].

Example
using the taglib
 <hbj:listBox
 id="LB_CitiesNearby"
 tooltip="Cities surounding SAP"
 selection="WD"
 disabled="false"
 nameOfKeyColumn="KeyCol"
 nameOfValueColumn="KeyVal"
 onSelect="ProcessCity"
 onClientSelect="PreprocessCity"
 >
 <hbj:listBoxItem
 key="HD"
 value="Heidelberg"
 selected="true"
 />
 <hbj:listBoxItem
 key="HK"
 value="Hockenheim"
 />
 <hbj:listBoxItem
 key="WD"
 value="Walldorf"
 selected="true"
 />
 <hbj:listBoxItem
 key="WL"
 value="Wiesloch"
 />
 </hbj:listBox>

using the classlib
 Form form = (Form) this.getForm();
 ListBox lb = new ListBox("LB_CitiesNearby");
 lb.setTooltip("Cities surounding SAP");
 lb.setWidth("300");
 lb.addItem("HD", "Heidelberg");
 lb.addItem("HK", "Hockenheim");
 lb.addItem("WD", "Walldorf");
 lb.addItem("WL", "Wiesloch");
 lb.setOnSelect("ProcessCity");
 lb.setOnClientSelect("PreprocessCity");
 lb.setTooltip("Cities nearby");
 lb.addSelection("WD");
 lb.addSelection("HD");
 form.addComponent(lb);

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 481

Result

3.4.2.6.20.1 Usage & Type
The list box is a box that displays a list of items where users can select one item from. If the
number of items exceeds the box size, a vertical scrollbar is activated. The list box is read-
only.

Figure 1: Example of the list box control.

Usage
A list box offers a set of choices from which a user can select one item. If the number of items
exceeds the control size, a vertical scrollbar is activated. An item in the list box is called list
box item. The list box is read-only.

Note: The list box control does not render a descriptive label automatically. Use the label
[Page 33] control to add a description. See there, how you can change text attributes if you
need to highlight the label, for example, make it bold (see figure 1).

Choosing the Appropriate Selection Control
A list box is similar in function to a dropdown list box - both offer a list of items where users
can select one item from, that is, both are single-selection lists.

Note: For very small item numbers (2-6) and if the users should see all alternatives, use radio
buttons [Page 33].

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 482

Design Options for Lists
HTMLB offers several controls for displaying and editing data sets and for selecting from data
sets.

● Checkbox: multiple selection from small data sets (static).

● Radio Button: single selection from small data sets (static).

● List Box: Single selection from small data sets (static).

● List Box: Single selection from small to medium data sets (dynamic or static)

● Item List: Display of small to medium data sets in one column - ordered or unordered
(static)

● Table View: Display and editing of data sets in a variety of display variants - in ore ore
more columns (dynamic), single- or multiple-selection possible

Note: The cases of checkbox and radio button groups are not discussed here; see Forms -
Using Checkboxes and Forms - Using Radio Buttons for details on the layout options for
these controls.

Dropdown List Box vs. List Box
The overview above showed that a list box is similar in function to a dropdown list box - both
offer a list of items where users can select one item from, that is, both are single-selection
lists. Here you find criteria for choosing between both controls. In addition, we provide hints
when a set of radio buttons is the appropriate choice.

Figure 1: Dropdown list box (left) vs. list box

When Use a List Box?
● If there is more space on the page.

● For larger item numbers.

● If users need to know the context of the current selection, that is, the item set or at least
part of it.

● If users need to carefully consider their choice.

● For users with low mouse abilities.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 483

When Use a Dropdown List Box?
● In table views.

● If space is limited - it occupies one line only.

● For smaller item numbers (up to 20 items).

● If users only need to know the current selection, not the whole set.

● In shufflers

When Use Radio Buttons?
For very small item numbers (2-6) and if the users should immediately see all available
alternatives, use radio buttons.

Use larger radio button sets only in special cases, where it is important that all options are
visible, where users are untrained, and/or where an application imitates a paper-form, such as
a Web-based questionnaire or ordering form.

Note: For multiple choices use checkboxes instead of radio buttons.

Item List vs. List Box
Both item lists and list boxes can be used for displaying a set of options. While list boxes can
also be used for selecting items we focus here on the display aspect. Item lists are static lists
with a "paper-like" appearance; they can be ordered or unordered. List boxes, however, have
a "form-like" appearance and also may contain more items than are visible.

If you consider to use a list box, you may check whether a table might also be a valid design
option. We also provide some hints for this option.

Figure 2: Item list (ordered, left) vs. list box

When Use an Item List?
● In paper-like applications, such as news, articles, etc.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 484

● If it is possible to display all items or if the page or application as a whole can be
scrolled.

● If the number of items is fixed

When Use a List Box?
● In form-like applications, typically together with other form elements, such as input

fields and selection elements.

● If a selection is needed.

● If space may not suffice to display the whole list.

● If the application or page cannot be scrolled in order to display more items.

● If bullets or numbers should not appear.

When May a Table View Be Used?
In the following, we list scenarios, where a table view may be used instead of a list box. Note
that this an option to consider, not a recommendation. The only exception is multiple-
selection, which is available for the table view only.

Typically, you would use the table view in the transparent design for this application. Also
note that a table view introduces "visual overhead", such as the title, column headers, and
scroll buttons.

● In form-like applications where the data form a separate information unit that cannot be
mixed with fields.

● Where a multiple-column display is needed.

● Where scroll buttons are preferred over scrollbars (page-wise scrolling).

● Where multiple-selection is needed (this is currently not possible with list boxes)

Note: Static multiple-selection can also be implemented using a checkbox group.

Design-Relevant Attributes
You can set the number of displayed lines of a list box (size), its width (width), and whether it
is enabled or disabled (Boolean attribute disabled).

See Control API for List Box [Page 33] for details.

Related Controls
Dropdown List Box [Page 33], Item List [Page 33], Radio Button [Page 33], Table View [Page
33], Tree View [Page 33]

3.4.2.6.20.2 Browser Support & 508

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 485

Renders in every supported browser.

Editability in Style Editor
The list box itself renders as the standard browser control. Style Editor changes can be made
to the corresponding label.

Accessibility - 508 Support
List boxes have to be used in combination with the label element which points to the assigned
list box. This ensures, that screenreaders are aware of the relationship between the both
elements and can read the correct label to the according list box.

● Keyboard

The listbox inserted into the accessibility hierarchy by default.

● Default Description

Is provided by the HTMLB rendering engine.

● Application-specific Description

Set an additional description using the setTooltip method if needed.

● Label

Has to be connected to a label control (use method setLabelFor for identifying the
corresponding list box).

3.4.2.6.21 List Box Item

Purpose
Defines the items in a dropdownListBox or listBox instead of the model.

● key

A string which is passed on to the event handling routine when the event occurs. A key
string must be defined and must not be empty. Every listBoxItem must have an unique
key.

● selected

A boolean value.

○ selected="false": no effect

○ selected:="true"

dropdownListBox:

The item is displayed in the dropdownListBox. It overrules the "selection"
attribute of the dropdownListBox. If several listBoxItems are selected the
last defined listBoxItem is displayed in the dropdownListBox.

listBox:

selected="true": The item is displayed as selected in the listBox.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 486

● value

Defines the text string displayed in the dropdownListBox or listBox. A 'value' string has
be defined and must not be empty.

Attributes M Values Usage

key * String (cs) Taglib
key="WD"

Classlib
addItem ("WD","Walldorf")

selected TRUE
FALSE (d)

Taglib
selected = "TRUE"

Classlib
setSelection ("WD")

value String Taglib
value="Walldorf"

Classlib
see attribute “key”

Example
Dropdown List Box [Page 33]

List Box [Page 33]

3.4.2.6.22 Menu Bar

Definition
A control to create a menu bar. The menu bar is combined with a hover menu to create a pull
down command structure like in a desktop application.

● addMenuItem

Method to add items to the menu bar.

● id

Identification name of the menu bar.

● menuTrigger

Sets the trigger mechanism which will open the hover menu.

○ ONCLICK

Hover menu is displayed when the mouse pointer is on the item linked to the
hover menu and the left mouse button is clicked - like in a pop up menu. This
option is default for web browser Netscape 4.

○ ONCONTEXTMENU

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 487

Hover menu is displayed when the mouse pointer is on the item linked to the
hover menu and the right mouse button is clicked - like for a context menu.

○ ONLRCLICK

Hover menu is displayed when the mouse pointer is on the item linked to the
hover menu and the right or left mouse button is clicked.

○ ONMOUSEOVER

Hover menu is displayed when the mouse pointer is moved over the item linked
to the hover menu. This option is default for web browsers IE5 and up and
Netscape 6.

● width

Defines the width of the menu bar. The width of the button is automatically adjusted to
the length and amount of the 'menuItem'. To see an effect of the 'width' attribute, 'width'
has to be set higher as the width defined through the amount and length of the
'menuItem'.

Attributes M Values Usage

addMenuItem STANDARD (d)
SMALL
EMPHASIZED

Taglib
No tag available

Classlib
addMenuItem (MenuItem.menuItem)

id * String (cs) Taglib
No tag available

Classlib
setId ("myMenuBar")

menuTrigger ONCLICK
ONCONTEXTMENU
ONLRCLICK
ONMOUSEOVER

Taglib
No tag available

Classlib
setMenuTrigger (HoverMenuTrigger.ONCLICK)

width Unit (10) Taglib
No tag available

Classlib
setWidth ("125px")

MenuItem
Defines the items for the menu bar.

● enabled

A boolean value to enable (=TRUE) or disable (=FALSE) the menu item. A disabled
menu item is displayed but fires no event when the item is selected (and an event
handling method has been defined for the menu item).

● hoverMenu

Sets the hover menu for the menu item. The hover menu is opened when the action
defined by the menu trigger is performed on the menu item.

● id

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 488

Identification name of the menu item.

● text

A string that is displayed for the menu item. A text string must be defined and must not
be empty.

See also hoverMenu [Page 33].

Example
using the classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 489

 Form form = (Form) this.getForm();
 MenuBar menuBar = new MenuBar("myMenu");
 menuBar.setWidth("100%");
 menuBar.setDesign(MenuBarDesign.TRANSPARENT);
 MenuItem item = new MenuItem("item1", "File");
 HoverMenu menufile = this.buildHoverMenuFile();
 item.setHoverMenu(menufile);
 menuBar.addMenuItem(item);
 MenuItem item2 = new MenuItem("item2", "Edit");
 HoverMenu menuedit = this.buildHoverMenuEdit();
 item2.setHoverMenu(menuedit);
 menuBar.addMenuItem(item2);
 form.addComponent(menuBar);

 // Methods to define the FILE and EDIT hover menus (sub menus)
 public HoverMenu buildHoverMenuFile() {

 HoverMenu hover = new HoverMenu("hoverfile");

 HoverMenuItem file1 = hover.addMenuItem("file1", "New");
 HoverMenu menu = file1.addSubHoverMenu("filesub1");
 hover.setOnHoverMenuClick("onHoverClicked");
 menu.addMenuItem("file11", "Project");
 menu.addMenuItem("file12", "Folder");
 menu.addMenuItem("file13", "File");

 file1.setHoverItemDivider(true);
 hover.addMenuItem(new HoverMenuItem("file2", "Close"));
 hover.addMenuItem(new HoverMenuItem("file3", "Close All"));
 HoverMenuItem file4 = hover.addMenuItem("file4", "Save All");
 file4.setEnabled(false);
 file4.setHoverItemDivider(true);
 return hover;
 }

 public HoverMenu buildHoverMenuEdit() {
 HoverMenu hover = new HoverMenu("hoveredit");

 HoverMenuItem edit1 = hover.addMenuItem("edit1", "Undo");
 hover.addMenuItem(new HoverMenuItem("edit2", "Redo"));
 HoverMenuItem edit3 = hover.addMenuItem("edit3", "Preferences");

 edit3.setHoverItemDivider(true);
 HoverMenu editmenus3 = edit3.addSubHoverMenu("editsub3");
 HoverMenuItem edit31 = editmenus3.addMenuItem("edit31", "SAP");
 HoverMenu editmenus31 = edit31.addSubHoverMenu("editsub31");
 HoverMenuItem edit311 =
 editmenus31.addMenuItem("edit311", "Link to SAP");
 edit311.setOnItemClick("itemClicked");
 edit311.setLinkReference("http://www.sap.com");
 HoverMenuItem edit312 =
 editmenus31.addMenuItem("edit312", "Link to mySAP");
 edit312.setOnItemClick("itemClicked");
 edit312.setLinkReference("http://www.mysap.com");
 HoverMenuItem edit32 = editmenus3.addMenuItem("edit32", "About");

 return hover;
 }

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 490

Result
When page is loaded:

Expanded view of all sub options:

3.4.2.6.23 Message Bar

Definition
The message bar allows to display application messages at the beginning (top) or at the end
(bottom) of the form. The message can display an icon at the beginning of the messages that
indicates the nature of the message (info, error and so on). The message bar has to be added
to the form component. The form component has the methods to define if the message bar is
displayed at the beginning or at the end of the form.

● id

Identification name of the message bar.

● message

Defines the messageType and the messageText for the message bar.

● messageText

Defines the messageText for the message bar. A messageType has to be defined,
using method 'message' or 'messageType'. If no messageType is defined, the
messageText is not displayed.

● messageType

Nature of the message.

○ ERROR

Displays icon .

○ INFO

Displays icon .

○ LOADING

Displays the rotating icon .

○ NONE

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 491

Displays no icon.

○ STOP

Displays the ERROR icon.

○ VALIDATION

Displays ERROR icon .

○ WARNING

Displays icon .

Attributes M Values Usage

id * String (cs) Taglib
id="mBar"

Classlib
Defined with the messageBar object.

message String Taglib
No tag available

Classlib
setMessage(MessageType.type, String mess)

messageText String Taglib
messageText="Invalid date"

Classlib
setMessageText("Invalid date")

messageType ERROR
INFO
LOADING
NONE
STOP
VALIDATION
WARNING

Taglib
setMessage(MessageType.type, String mess)

Classlib
setMessage(MessageType.type, String mess)

Example
using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 492

 <hbj:form
 id="myFormId"
 method="post"
 target="_blank"
 encodingType="multipart/form-data"
 action="/htmlb/servlet/com.sap.htmlb.test.MyTestJsp1Test"
 >
 <hbj:messageBar
 id="mBar"
 messageType="ERROR"
 messageText="Fatal Error">
 <%
 myFormId.setMessageBar(mBar);
 %>
 </hbj:messageBar>
 </hbj:form>

using the classlib
 Form form = (Form) this.getForm();
 MessageBar mb = new MessageBar("messageBar");

 mb.setMessage(MessageType.ERROR, "Fatal Error");
 form.setMessageBar(mb);

 form.setMessageBarAtFormEnd(true);

 form.setMessageBarRequired(true);

Result

3.4.2.6.24 Nonisolated HTML Container

Definition
The NonIsolatedHtmlContainer will display a HTML-document, represented by an
inputStream, inside an HTML Business for Java application. The NonIsolatedHtmlContainer
provides a parser, which adjusts the HTML-document so it can be displayed without iFrames.
The application developer can also provide its own parser that is tailored for the application.

Documents which include Forms, Frames or Framesets can not be displayed in
a NonIsolatedHtmlContainer control. If the document contains one of these tags,
an error message will be displayed.

Limitations of the NonIsolatedHtmlContainer control:

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 493

● Relative URLs used in JavaScript will not be replaced by absolute URLs (like.
window.open('/test.htm')).

● Style sheets will be loaded but should not contain relative URL's.

● Style sheets can effect the entire portal page.

● Correct JavaScript execution can not be guaranteed.

● Documents must be in HTML format.

● Incorrect formatted documents can destroy the entire portal page.

● Absolute positioning of the document (for example, with JavaScript) is not supported

● The exact width of the document can not be set.

Because of other limitations that can apply make sure that HTML document is formatted
correctly and produces a correct page. If you run into one of the limitations you have to create
your own parser.

● bordered

A boolean value that, if set to true, draws a border around the
NonIsolatedHtmlContainer control.

● id

Identification name of the NonIsolatedHtmlContainer control.

● htmlParser

Sets a user defined HTML parser to parse the HtmlStream.

● htmlStream

Sets the HtmlStream of the NonIsolatedHtmlContainer control.

● srcUrl

Specifies the address of the page/document to be displayed in the
NonIsolatedHtmlContainer control.

● width

Specifies the width of the NonIsolatedHtmlContainer control.

Attributes M Values Usage

bordered FALSE (d)
TRUE

Taglib
bordered="TRUE"

Classlib
setBordered(true)

id * String (cs) Taglib
id="nonisoHTMLCon"

Classlib
setId ("nonisoHTMLCon")

htmlParser String (cs) Taglib
No tag available

Classlib
setHtmlParser(HtmlParser.htmlParser)

htmlStream * String (cs) Taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 494

htmlStream="myStream"

Classlib
setHtmlStream(java.io.InputStream htmlst)

srcUrl * String (cs) Taglib
srcUrl="http://www.sap.com"

Classlib
setSrcUrl("http://www.sap.com")

width Unit Taglib
width="500"

Classlib
setWidth("500")

Example
using the taglib
<hbj:nonIsolatedHtmlContainer
 id="nonIsohtmlCont"
 width="400"
 srcUrl="http://www.sap.com"
 htmlStream="myStream"
 bordered="true"
 />

using the classlib
 Form form = (Form) this.getForm();
 URL u = new URL("http://www.sap.com");

 in = u.openStream();
 NonIsolatedHtmlContainer niso = new NonIsolatedHtmlContainer(in);

 niso.setSrcURL(myUrl);

 niso.setBordered(true);
 form.addComponent(niso);

Result
SAP Web page is displayed

3.4.2.6.25 Progress Indicator

Definition
A progress indicator (or progress bar) bar indicates that one or more operations is under way
and shows users what proportion of the operation has been completed. The progress
indicator consists of a rectangular bar that fills as the operation progresses. Another

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 495

application for the progress indicator is to use it as a gauge to show the actual value, for
example a temperature.

● barColor

Defines the color of the bar which moves inside the progress indicator. Following bar
colors are available (specified color is based on the standard style sheet):

○ CRITICAL

Bar in progress bar has orange color.

○ NEGATIVE

Bar in progress bar has red color.

○ NEUTRAL

Bar in progress bar has blue color.

○ POSITIVE

Bar in progress bar has green color.

● displayValue

Defines the text that is displayed left aligned in the progress bar.

● id

Identification name of the progress indicator.

● percentValue

Defines the value in percent that the the bar inside the progress indicator should
display. The value specified must be greater than 0. If you do not set this attribute an
empty frame, with no progress bar inside, is displayed.

● showValue

A boolean value. If set to "true" the text defined with the 'displayValue' attribute is
displayed together with the progress bar. If set to 'false' only the progress bar is
displayed.

● tooltip

Defines the hint of the progress bar which is displayed as the mouse cursor passes
over the progress bar, or as the mouse button is pressed but not released.

● width

Defines the width of the progress bar.

Attributes M Values Usage

barColor CRITICAL
NEGATIVE
NEUTRAL
POSITIVE

Taglib
barColor="POSITIVE"

Classlib
setBarColor(ProgressIndicatorBarColor.POSITIVE)

displayValue String Taglib
displayValue="Positive"

Classlib
setDisplayValue("Positive")

id * String (cs) Taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 496

id="progressBar"

Classlib
Defined with progressBar object.

percentValue String

Numeric

Taglib
percentValue="20"

Classlib
setPercentValue(20)

showValue FALSE
TRUE (d)

Taglib
showValue="FALSE"

Classlib
setShowValue(false)

tooltip String Taglib
tooltip="pressure in valve 1"

Classlib
setTooltip("pressure in valve 1")

width Unit (100) Taglib
width="125px"

Classlib
setWidth("125px")

Example
using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 497

 <hbj:progressIndicator
 id="myProgressIndicator1"
 percentValue="75"
 displayValue="Critical"
 barColor="CRITICAL"
 width="300px"
 />
 <hbj:progressIndicator
 id="myProgressIndicator2"
 percentValue="10"
 displayValue="Negative"
 barColor="NEGATIVE"
 width="300px"
 />
 <hbj:progressIndicator
 id="myProgressIndicator3"
 percentValue="50"
 displayValue="Neutral"
 barColor="NEUTRAL"
 width="300px"
 />
 <hbj:progressIndicator
 id="myProgressIndicator4"
 percentValue="90"
 displayValue="Positive"
 barColor="POSITIVE"
 width="300px"
 />

using the classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 498

 Form form = (Form) this.getForm();
 ProgressBar pb1 = new ProgressBar();
 pb1.setPercentValue("75");
 pb1.setDisplayValue("Critical");
 pb1.setBarColor(ProgressIndicatorBarColor.CRITICAL);
 pb1.setWidth("300px");
 form.addComponent(pb1);
 ProgressBar pb2 = new ProgressBar();
 pb2.setPercentValue("10");
 pb2.setDisplayValue("Negative");
 pb2.setBarColor(ProgressIndicatorBarColor.NEGATIVE);
 pb2.setWidth("300px");
 form.addComponent(pb2);

 ProgressBar pb3 = new ProgressBar();
 pb3.setPercentValue("50");
 pb3.setDisplayValue("Neutral");
 pb3.setBarColor(ProgressIndicatorBarColor.NEUTRAL);
 pb3.setWidth("300px");
 form.addComponent(pb3);

 ProgressBar pb4 = new ProgressBar();
 pb4.setPercentValue("90");
 pb4.setDisplayValue("Positive");
 pb4.setBarColor(ProgressIndicatorBarColor.POSITIVE);
 pb4.setWidth("300px");
 form.addComponent(pb4);

Result

3.4.2.6.26 Radio Button

Definition
A button that a user clicks to set an option. Unlike checkboxes, radio buttons are mutually
exclusive - selecting one radio button menu item deselects all others in that group. That is
also the reason why you cannot define a radioButton by itself - it always has to be defined
within a radioButtonGroup. The radioButton control can be for client side eventing. See the
EventValidationComponent [Page 33] description for more details.

● enabled - inherited from the EventValidationComponent [Page 33].

A boolean value that defines if the radioButton is click able. If the radioButton is
disabled (enabled = false) it is not selectable. A disabled radioButton has a different
background color for the radioButton graphic and if the radioButton is checked the a
different color for the button mark.

● encode

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 499

A boolean value that defines how the radioButton text is interpreted. HTML text
formatting commands (for example, <h1>, <i> etc.) can be used to change the display
of the radioButton text. If there are no formatting commands in the radioButton text
string, the encode attribute has no effect.

Example:
text="<h1><i>Walldorf</i></h1>"

encode = "false" Browser output:

the text string is rendered by interpreting the formatting commands.

encode = "true" Browser output:

the formatting commands are displayed and not interpreted

● id

Identification name of the radioButton.

● jsObjectNeeded - inherited from Component [Page 33].

A boolean value that defines if a JavaScript object has to be generated for the
radioButton component.

● key

A string which is assigned to the radioButton when the form is sent to the server. A key
string must be defined and must not be empty.

● labeled

Enables or disables the notification when the control has a label assigned to it.

● selected

Sets the status of the radio button. Is selected set to "true", a filled circle is displayed
inside the radio button.

● text

Defines the string of text placed right of the radiobutton graphic. If no text should be
displayed an empty string (null) can be used. See 'encode' for a formatting example
with embedded HTML commands.

● tooltip

Defines the hint of the radioButton which is displayed as the mouse cursor passes over
the radioButton, or as the mouse button is pressed but not released.

Attributes M Values Usage

enabled* FALSE
TRUE (d)

Taglib
disabled="TRUE"

Classlib
setEnabled (false)

encode* FALSE
TRUE (d)

Taglib
encode="FALSE"

Classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 500

setEncode(false)
id * String Taglib

id="GenderInfo"

Classlib
setId("GenderInfo")

jsObjectNeeded FALSE (d)
TRUE

Taglib
jsObjectNeeded="TRUE"

Classlib
setJsObjectNeeded(true)

key String Taglib
key="rb_k1"

Classlib
setKey("rb_k1")

labeled FALSE (d)
TRUE

Taglib
No tag available

Classlib
setLabeled(true)

selected FALSE (d)
TRUE

Taglib
No tag available

Classlib
setSelected(true)

text String Taglib
text="female"

Classlib
setText("female")

tooltip String Taglib
tooltip="I am female"

Classlib
setTooltip("I am female")

* Method is inherited from the EventValidationComponent [Page 33] component. Therefore
the attribute is different between the taglib and the classlib.

** Method is inherited from the Component [Page 33] component.

See the JavaScript API [Page 33] description for details how to access the component in
JavaScript.

Example
A radioButton has to be used together with a radioButtonGroup [Page 33]. Refer to the
radioButtonGroup [Page 33] documentation for the example.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 501

3.4.2.6.26.1 Usage & Type
Radio buttons provide users with a single choice from a set of alternative options.

Figure 1: A radio button group

Usage
Radio buttons provide users with a single choice from a set of alternative options. They
always appear in a group of at least two radio buttons. Therefore, you should define radio
buttons only within the radio button group control, not as single elements.
A click on one choice selects the current choice and deselect the previous choice. Usually,
always one radio button is checked. The Internet introduced one exception to this rule. In
some cases, a radio button group can initially show up with no radio button checked.

Note: It is not possible to determine the horizontal spacing within a radio button group. If you
need a different spacing than that supplied by the radio button group control, use single radio
buttons and a grid layout [Page 33] control if applicable.

Arrangement and Design Alternatives
Radio button groups offer users a set of alternative choices that may be arranged either
horizontally (2-3 radio buttons), vertically (not more than about 12 radio buttons), or in a
matrix-like fashion. Note that radio button groups are appropriate for static and relative small
numbers of options only. Use the table view [Page 33] for larger and dynamic data sets.

Alignment
For the alignment of radio buttons we distinguish the following cases:

● Radio buttons that refer to adjacent fields.

● Radio buttons that do not refer to elements but should be included in field groups.

● Radio buttons that can be arranged as an independent block of information

In general, the first two cases are not as common as for checkboxes.

Case 1: Radio Buttons that Refer to One or More Fields
Align dependent radio buttons with the left border of other input elements (figure 1). Place the
radio button labels right to the radio button (this is done automatically for the radio button
control).

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 502

Figure 2: A pair of radio buttons that refers to the input field above it (profession)

If there are too many alternatives, consider using a dropdown list box instead of the radio
button group. As noted below, this arrangement should only be used if there is a dependency
from other fields above the radio button group.

Case 2: Radio Buttons that are Included in a Field Group
If radio buttons are included in a field group but do not refer to a certain field, do the following
(figure 3a-b):

● Place the description of the radio button group to the left of the group and align it with
the other field labels.

● Align the radio buttons with the other input fields.

● Use a label control for the group label

You can use a vertical radio button group, or if space permits a horizontal radio button group
that occupies only one line.

Figure 3a-b: Radio buttons within a field group with group label to the left (left shows vertical,
right shows horizontal arrangement)

In general, radio button groups within a field group should have a descriptive label for the
group and a label to the right of each radio button.

Rationale: A radio button group is functionally equivalent to a dropdown list box. The group
label corresponds to the label for the dropdown list box; the labels to the right of the radio
buttons correspond to the list box items

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 503

Wrong level of labels (male/female is are
subcategories).

Wrong alignment because the radio buttons
do not refer to the name fields.

Figure 3c-d: Radio buttons within a field group with two labels to the left of the radio buttons
(left) and to the right (right)

Do Not

● A layout without a label for the radio button group and with labels to the left (figure 3c)
is harder to understand because the labels are not on the same semantic level as the
surrounding field labels.

● Also do not use an arrangement without a group label in this case (figure 3d) because it
is equally hard to understand and may lead to misinterpretations. Such a layout
suggests a dependency from the field above the group to the user. Even though the
layout in figure 3d is the same as in 1a, the usage is incorrect because the radio
buttons do not refer to the "Last name" field. Therefore, use it only if such a
dependency does exist (case 1).

Case 3: Radio Buttons that Form an Independent Information Block
If radio buttons are arranged in a separate radio button group, arrange them in a matrix-like
fashion and left-align them with other elements on the page or in the application. Such groups
have either to be included in a group [Page 33] control (see figure 4a) or separated from the
field group by white space (figure 4b).

Figure 4a-b: Radio button group that forms an information unit of its own - either included in a
group (left) or separated by an empty line (right)

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 504

Instead of a matrix, you can use a horizontal arrangement if there are only few radio buttons.
In this case, set the columnCount attribute of the radio button group control to a value that
results in one row only.

There are two possible arrangements for horizontal radio button groups:

● The radio button row can be introduced by a label to the left or a header above - in this
case align the radio buttons with other elements and use the label control for the label
or header (figure 5a-b).

● The radio button row does not have an introductory label (figure 5c-d).

Separate the horizontal radio button group from preceding fields by an empty line.

Figure 5a-d: Horizontal radio button groups, either with an introductory label to the left (top
left), a heading (bottom left), or without an introductory label (right)

Do not use a single radio button because there are two problems with it: (1) Users cannot
deselect a single radio button; after it has been selected, it remains so. (2) Users see the
name of one option only; they often can only guess what the alternative option is.

Dependent Fields
In some cases, the state of an input field, dropdown list box, or other control may depend on
the setting of a radio button group. Below we present two simple examples, where users may
either enter their nationality (figure 6a), or their payment method (figure 6b). The first radio
button describes the default case; if it is set, the input fields below it are read-only. The
second radio button describes the less frequent case; if it is set, the dependent input fields
are ready for input. Alternatively, in the first example a dropdown list box could be used
instead of the input field if the alternatives are known and their number is not too large.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 505

Figure 6a-b: Vertical radio button group that controls the editability of one (left) or several
(right) input fields below the group

Do not use this layout for more than one dependent element. If there are more dependent
elements indent the dependent group so that the labels are left aligned with other input fields
(figure 6b).

Design Alternatives
Radio buttons are similar in function to dropdown list boxes [Page 33] and list boxes [Page
33] with respect to offering users a single choice. Use radio buttons for very small item
numbers (2-6) and if the users should immediately see all alternatives.

Design-relevant Attributes
Radio buttons have the disabled attribute. Set disabled to TRUE if users are not allowed to
change their state temporarily. Attribute text sets the descriptive label text for a radio button.

For radio button groups there are two relevant attributes: You can determine which radio
button is "on" in a group; set attribute selection to the id of the respective radio button. You
can also set the column count for radio button groups (attribute columnCount).

Related Controls
Dropdown List Box [Page 33], Checkbox [Page 33], List Box [Page 33], Label [Page 33], Grid
Layout [Page 33]

3.4.2.6.26.2 Browser Support & 508
The radio button renders in every supported browser.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 506

Editability in Style Editor
The radio button itself renders as the standard browser control. Style Editor changes can be
made to the corresponding label.

Radio Button Groups
There is no editability for radio button groups in the style editor.

Accessibility - 508 Support
If radio buttons are used with a label to the left, they have to be used in combination with the
label control which points to the assigned radio button. This ensures, that screen readers are
aware of the relationship between the both elements and can read the correct label to the
according radio button.

● Keyboard

Radio buttons are inserted into the accessibility hierarchy by default.

● Default Description

Is provided by the HTMLB rendering engine.

● Application-specific Description

Set an additional description using the setTooltip method if needed.

● Label

Has to be connected to a label control for left-hand labels (use method setLabelFor
for identifying the corresponding radio button or radio button group).

3.4.2.6.27 Radio Button Group

Definition
Places several radiobuttons in tabular form. Only one radiobutton can be on at any given
time.

● columnCount

Defines the amount of columns in which the radiobuttons are divided.

Example

If the columnCount is set to 3 and you define 7 radiobuttons the result is:

● currentItem

Defines the item which has the focus.

● id

Identification name of the radioButtonGroup.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 507

● onClick

Defines the event handling method that will be processed when the user clicks on one
radio button. If 'onClick' is specified, the event handling routine is called.

● selection

Specifies the key of the radioButton that is on in the radioButtonGroup.

● verticalAlign

Sets the vertical alignment of the radiobutton column and the text column.

Attributes M Values Usage

columncount Numeric (1) Taglib
columnCount="3"

Classlib
setColumnCount(3)

currentItem Numeric (1) Taglib
No tag available

Classlib
setCurrentItem(2)

id * String (cs) Taglib
id="Genderselect"

Classlib
setId("Genderselect")

selection String (cs) Taglib
selection="rb_k1"

Classlib
setSelection("rb_k1")

verticalAlign - Taglib
No tag available

Classlib
setVerticalAlign(CellVAlign radioBCol,
 CellVAlign textCol)

Events M Values Usage

onClick String (cs) Taglib
onClick="ProcessClick"

Classlib
setOnClick("ProcessClick")

Example
using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 508

 <hbj:radioButtonGroup
 id="Genderselect"
 columnCount="2"
 selection="rb_fem"

 <hbj:radioButton
 id="RBGenderFemale"
 text="female"
 key="rb_fem"
 tooltip="I am female"
 disabled="false"
 />
 <hbj:radioButton
 id="RBGenderMale"
 text="male"
 key="rb_male"
 tooltip="I am male"
 disabled="false"
 />
 </hbj:radioButtonGroup>

using the classlib
 Form form = (Form) this.getForm();
 RadioButtonGroup rbg = new RadioButtonGroup("Genderselect");
 rbg.setColumnCount(2);
 RadioButton r1 = rbg.addItem("rb_fem", "female");
 RadioButton r2 = rbg.addItem("rb_male", "male");
 r1.setTooltip("I am female");
 r2.setTooltip("I am male");
 r2.setSelected(true);
 // as alternative you can use
 // rbg.setSelection("rb_male");
 form.addComponent(rbg);

Result

3.4.2.6.28 Scroll Container

Definition
The ScrollContainer is an area defined by width and height that displays scrollbars when the
contents of the ScrollContainer extends the defined size.

● height

Specifies the height of the ScrollContainer control.

● id

Identification name of the ScrollContainer control.

● width

Specifies the width of the ScrollContainer control.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 509

Attributes M Values Usage

height Unit Taglib
height="300"

Classlib
setHeight("300")

id * String (cs) Taglib
id="scrCont"

Classlib
setId("scrCont")

width Unit Taglib
width="500"

Classlib
setWidth("500")

Example
using the taglib
 <hbj:scrollContainer id="scrCont"
 width="400"
 height="200"
 />

using the classlib
 Form form = (Form)this.getForm();
 ScrollContaimer scrCont = new ScrollContainer("scrCont");
 scrCont.setWidth("400");
 scrCont.setHeight("200");
 form.addComponent(scrCont);

Result

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 510

3.4.2.6.29 Table View

Definition
Arrangement of data - text, images, links, other tables etc. - into rows and columns.
TableView rows may be grouped into a head, foot and body section. The tableView supplies
also navigation buttons which allow browsing thru the table.

● cellDisabled

Enables or disables a control in the specified cell. Currently the inputField control is the
only control that can be disabled/enabled.

● cellHAlignment

Sets the horizontal alignment of the specified cell. Possible values are:

○ LEFT

Left justifies the content of the cell.

○ RIGHT

Right justifies the content of the cell.

○ CENTER

Centers the content of the cell.

○ CHAR

Aligns text around a specific character. Not supported by all web clients.

○ JUSTIFY

Sets text in the cell left and right aligned. Not supported by all web clients.

● cellHeaderVisible

A boolean value that controls the visibility of the header of the columns. If the value is
set to "FALSE" the header of the columns is not rendered.

● cellInvalid

This attribute can set the display of a control in the specified cell as "invalid" - to
indicate the user that the data in this field is not correct. Currently the inputField control
is the only control that can be "invalid".

● cellRenderer

Sets a cell renderer for the tableView control.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 511

● cellType

Sets the display type for the specified cell. The cell type can be following controls:

○ BUTTON

○ IMAGE

○ IMAGELINK

○ INPUT

○ LINK

○ TEXT

○ USER

○ User defined cell type.

● cellVAlignment

Sets the vertical alignment of the specified cell. Possible values are:

○ BASELINE

The content of the cell is aligned on the baseline line of the cell (or bottom when
no baseline exits).

○ BOTTOM

The content of the cell is aligned to the bottom line of the cell.

○ MIDDLE

The content of the cell is aligned to the middle of the cell height.

○ TOP

The content of the cell is aligned to the top line of the cell.

● colspanForCell

Sets the column span (width) of the specified cell.

● columnAt

Sets a TableColumn for the specified column.

● columnCount

Defines the amount of columns for the tableView.

● columnHAlignment

Sets the horizontal alignment of the specified column.

● columnInvisible

Sets a column with the specified key invisible.

● columnName

Sets the title of the specified column.

● columnType

Sets the display type for the specified column. The column type can be following
controls:

○ BUTTON

○ IMAGE

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 512

○ IMAGELINK

○ INPUT

○ LINK

○ TEXT

○ USER

○ User defined column type.

● columnVAlignment

Sets the vertical alignment of the specified column.

● design

Defines the look of the table

○ ALTERNATING

The rows of the table entries are colored alternating.

○ STANDARD

The background of tableView is uniformly colored.

○ TRANSPARENT

The tableView has no background.

● emptyTableText

Sets the text when the table model contains no data - is empty.

● fillUpEmptyRows

A boolean value. If set to "TRUE" the tableView has always the height set by the
'visibleRowCount' attribute, regardless of the available table entries. The not available
table entries will be filled up with empty lines and according the 'design' attribute.

If set to "FALSE" the tableView height is adjusted to the available table entries.

● footerRenderer

Sets a renderer for the table footer.

● footerVisible

A boolean value that controls the footer row. If set to "FALSE" the footer row including
the navigation buttons is invisible.

● headerCellRenderer

Sets a renderer for the table header. The 'headerCellRenderer' renders the header
column by column, so you have access to every column header.

● headerRenderer

Sets a renderer for the table header.

● headerText

Defines the headline of the tableView.

● headerVisible

A boolean value that controls the visibility of the header line. If the value is set to
"FALSE" the header is not rendered and the table view starts with the cell header row.
If the cell header row is invisible also, the table view starts with the data rows.

● id

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 513

Identification name of the tableView.

● keyColumn

Sets the specified column as key column.

● linkColumnKey

Sets the specified column as link

● model

Defines the model which provides the tableView with data. How to setup a
TableViewModel [Page 33].

● navigationMode

Controls the navigation buttons in the footer row.

○ BYPAGE

Four navigation buttons are displayed that allow browsing page up, page down,
first and last table entry

○ BYLINE

Two additional buttons are displayed allowing single row up and down.

● onCellClick

Defines the event handling method that will be processed when the user clicks on one
cell of the tableView. The 'onCellClick' event is set for an entire column. You can
specify the column by column index or column key. For details see how to setup and
work with the onCellClick [Page 33] event.

● onClientCellClick

Defines a Javascript fragment that is executed when the user clicks on one cell of the
tableView. The 'onClientCellClick' event is set for an entire column. You can specify the
column by column index or column key.

● onClientRowSelection

Defines a Javascript fragment that is executed when the user clicks on the radiobutton
button in the first column.

● onHeaderClick

Defines the event handling method that will be processed when the user clicks on the
header of the table. For details see how to setup and work with the onHeaderClick
[Page 33] event.

● onNavigate

Defines the event handling method that will be processed when the user clicks on the
navigation buttons. For details see how to setup and work with the onNavigate [Page
33] event.

● onRowSelection

Defines the event handling method that will be processed when the user clicks on the
radiobutton button in the first column. The radiobutton is visible when the
'selectionMode' is set to "SINGLESELECT". The method
com.sap.htmlb.event.TableSelectionEvent.getRowIndex() can be used to
retrieve the index of the row that initiated the event. For details see how to setup and
work with the onRowSelection [Page 33] event.

● rowCount

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 514

Defines the maximum record that is displayed together with the actual position (for
example, 3/16 - meaning: actual position 3, maximum records 16) on the right side of
the footer. If 'rowCount' is not specified the number of records in the model define the
value.

● rowRenderer

Sets a row renderer.

● rowSelectable

Defines if the checkbox or radiobutton (dependend on the 'selectionMode') of the
specified row, can be selected.

● rowspanForCell

Sets the row span for the specified cell.

● rowVAlignment

Sets the vertical alignment for a row.

● selectionMode

Defines how the table entries can be selected

○ MULTISELECT

A checkbox is displayed on every row at the first column of the table. According
to the nature of the checkbox multiple columns can be selected at a time.

○ NONE

No selection possible (no checkbox and no radiobutton).

○ SINGLESELECT

A radiobutton is displayed on every row at the first column of the table.
According to the nature of the radiobutton one column can be selected at a time.
Together with this attribute 'onRowSelection' attribute can be set so that an
event is fired, when the user clicks on the radiobutton.

● styleForCell

Sets the style for the specified cell. Style can be BADVALUE, GOODVALUE,
CRITICALVALUE to name a few.

● summary

Sets the summary.

● tableHAlignment

Sets the horizontal alignment for the entire tableView control.

● userTypeCellRenderer

Set a user defined cell renderer.

● visibleFirstRow

Defines the number of the table entry that is displayed in the first row of the tableView.
All subsequent entries are displayed accordingly.

● visibleRowCount

Defines the visible rows of the tableView. If 'fillUpEmptyRows' is set to "TRUE", all rows
specified with 'visibleRowCount' are displayed. The default for 'visibleRowCount' is the
number of table entries supplied by the model.

● width

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 515

Defines the width of tableView.

Attributes M Values Usage

cellDisabled FALSE (d)
TRUE

Taglib
No tag available

Classlib
setCellDisabled(int rowIndex,
 int colIndex,
 boolean state)

cellHAlignment CENTER
CHAR
JUSTIFY
LEFT
RIGHT

Taglib
No tag available

Classlib
setCellHAlignment(int rowIndex,
 int colIndex,
 CellHAlign.RIGHT)

cellHeaderVisible FALSE
TRUE (d)

Taglib
No tag available

Classlib
setCellHeaderVisible(true)

cellInvalid FALSE (d)
TRUE

Taglib
No tag available

Classlib
setCellInvalid(int rowIndex,
 int colIndex,
 Boolean state)

cellRenderer Component Taglib
No tag available

Classlib
setCellRenderer
 (ICellRenderer cr)

cellType BUTTON
IMAGE
IMAGELINK
INPUT
LINK
TEXT (d)
USER

Taglib
No tag available

Classlib
setCellType(int rowIndex,
 int colIndex,
 TableColumnType.LINK)

cellVAlignment BASELINE
BOTTOM
MIDDLE (d)
TOP

Taglib
No tag available

Classlib
setCellVAlignment(int rowIndex,
 int colIndex,
 CellVAlign.TOP)

colspanForCell Numeric (1) Taglib
No tag available

Classlib
setColspanForCell(int rowIndex,
 int colIndex,

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 516

 int colspan)

columnAt Numeric Taglib
No tag available

Classlib
setColumnAt(TableColumn col,
 int colIndex)

columnCount Numeric (1) Taglib
No tag available

Classlib
setColumnCount(10)

columnHAlignment CENTER
CHAR
JUSTIFY
LEFT
RIGHT

Taglib
No tag available

Classlib
setColumnHAlignment
 (int colIndex,
 CellHAlign.RIGHT)

columnInvisible String (cs) Taglib
No tag available

Classlib
setColumnInvisible("columnName")

columnName String (cs) Taglib
No tag available

Classlib
setColumnName("columnName", 2)

columnType BUTTON
IMAGE
IMAGELINK
INPUT
LINK
TEXT (d)
USER

Taglib
No tag available

Classlib
setColumnType
 (TableColumnType.LINK,
 int colIndex)

columnVAlignment BASELINE
BOTTOM
MIDDLE (d)
TOP

Taglib
No tag available

Classlib
setColumnVlignment(int colIndex,
 CellVAlign.TOP)

design STANDARD (d)
ALTERNATING
TRANSPARENT

Taglib
design="STANDARD"

Classlib
setDesign
 (TableViewDesign.STANDARD)

emptyTableText String Taglib
No tag available

Classlib
setEmptyTableText("No data")

fillUpEmptyRows FALSE
TRUE (d)

Taglib
fillUpEmptyRows="FALSE"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 517

Classlib
setFillUpEmptyRows(false)

footerRenderer Component Taglib
No tag available

Classlib
setFooterRenderer
 (IFooterRenderer fr)

footerVisible FALSE
TRUE (d)

Taglib
footerVisible="FALSE"

Classlib
setFooterVisible(false)

headerCellRenderer Component Taglib
No tag available

Classlib
setFooterRenderer
 (IFooterRenderer r)

headerRenderer Component Taglib
No tag available

Classlib
setHeaderRenderer
 (IHeaderRenderer r)

headerText String Taglib
headerText="SAP training"

Classlib
setHeaderText("SAP training")

headerVisible FALSE
TRUE (d)

Taglib
headerVisible="FALSE"

Classlib
setHeaderVisible(false)

id * String (cs) Taglib
id="tCenter"

Classlib
setId("tCenter")

keyColumn Numeric

(defined by model)

Taglib
No tag available

Classlib
setKeyColumn(3)

linkColumnKey Taglib
No tag available

Classlib
setLinkColumnKey("linkRef", 3)

model [Page 33] Component Taglib
model="myBean.model [Page 33]"

Classlib
setModel((TableViewModel [Page 33])

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 518

model)

navigationMode BYPAGE (d)
BYLINE

Taglib
navigationMode="BYLINE"

Classlib
setNavigationMode
 (TableNavigationMode.BYLINE)

rowCount Numeric

(defined by model)

Taglib
rowCount="5"

Classlib
setRowCount(5)

rowRenderer Component Taglib
No tag available

Classlib
setRowRenderer(IRowRenderer r)

rowSelectable FALSE
TRUE (d)

Taglib
No tag available

Classlib
setRowSelectable(3, false)

rowspanForCell Numeric Taglib
No tag available

Classlib
setRowSpanForCell(int rowIndex,
 int colIndex,
 int rSpan)

rowVAlignment BASELINE
BOTTOM
MIDDLE (d)
TOP

Taglib
No tag available

Classlib
setRowVAlignment
 (3,CellVAlign.TOP)

selectionMode MULTISELECT (d)
NONE
SINGLESELECT

Taglib
selectionMode="NONE"

Classlib
setSelectionMode
 (TableSelectionMode.NONE)

styleForCell BADVALUE_DARK
BADVALUE_ LIGHT
BADVALUE_ MEDIUM
CRITICALVALUE
 _DARK
CRITICALVALUE
 _LIGHT
CRITICALVALUE
 _MEDIUM
GOODVALUE
 _DARK
GOODVALUE
 _LIGHT
GOODVALUE
 _MEDIUM

Taglib
No tag available

Classlib
setStyleForCell (int rowIndex,
 int colIndex,
 TableCellStyle.NEGATIVE)

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 519

GROUP
 _HIGHLIGHTED
GROUP
 _HIGHLIGHTED
 _LIGHT
GROUP_LEVEL1
GROUP_LEVEL2
GROUP_LEVEL3
KEY_MEDIUM
MARKED
NEGATIVE
POSITIVE
STANDARD (d)
SUBTOTAL
SUBTOTAL_LIGHT
TOTAL

summary String Taglib
No tag available

Classlib
setSummary("Total")

tableHAlignment CENTER
CHAR
JUSTIFY
LEFT (d)
RIGHT

Taglib
No tag available

Classlib
setTableHAlignment

(CellHAlign.CENTER)

userTypeCellRenderer Component Taglib
No tag available

Classlib
setUserTypeCellRenderer
 (ICellRenderer r)

visibleFirstRow Numeric (1) Taglib
visibleFirstRow="5"

Classlib
setVisibleFirstRow(5)

visibleRowCount Numeric

(defined by model)

Taglib
visibleRowCount="20"

Classlib
setVisibleRowCount(20)

width Unit Taglib
width="500"

Classlib
setWidth("500")

Events M Values Usage

onCellClick [Page 33] String (cs) Taglib
No tag available

Classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 520

setOnCellClick(int colIndex, "Pr_Cell")
setOnCellClick("colkKey", "Pr_Cell")

onClientCellClick
[Page 33]

 String (cs) Taglib
No tag available

Classlib
setClientCellClick("alert('Click')")

onClientRowSelection
[Page 33]

 String (cs) Taglib
No tag available

Classlib
setClientRowSelection("alert('Click')")

onHeaderClick [Page
33]

 String (cs) Taglib
No tag available

Classlib
setOnHeaderClick("onHeaderClickMethod")

onNavigate [Page 33] String (cs) Taglib
onNavigate("onNavigateMethod")

Classlib
setOnNavigate("onNavigateMethod")

onRowSelection
[Page 33]

 String (cs) Taglib
No tag available

Classlib
setOnRowSelection("onRowSelMethod")

Example
using the taglib
 <hbj:tableView
 id="myTableView1"
 model="myTableViewBean.model"
 design="ALTERNATING"
 headerVisible="true"
 footerVisible="true"
 fillUpEmptyRows="true"
 navigationMode="BYLINE"
 selectionMode="MULTISELECT"
 headerText="TableView example 1"
 onNavigate="myOnNavigate"
 visibleFirstRow="1"
 visibleRowCount="5"
 rowCount="16"
 width="500 px"
 />

using the classlib (For information about setting up the bean, see DefaultTableViewModel
[Page 33])

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 521

 Form form = (Form) this.getForm();
 TableView tv = new TableView("myTableView1");
 MyTableViewBean myBean = new MyTableViewBean();
 tv.setModel(myBean.getModel());
 tv.setDesign(TableViewDesign.ALTERNATING);
 tv.setHeaderVisible(true);
 tv.setFooterVisible(true);
 tv.setFillUpEmptyRows(true);
 tv.setNavigationMode(TableNavigationMode.BYLINE);
 tv.setSelectionMode(TableSelectionMode.MULTISELECT);
 tv.setHeaderText("TableView example 1");
 tv.setOnNavigate("myOnNavigate");
 tv.setVisibleFirstRow(1);
 tv.setVisibleRowCount(5);
 tv.setRowCount(16);
 tv.setWidth("500 px");
 form.addComponent(tv);

Result

3.4.2.6.29.1 Events

The TableView component provides several events that can be processed on the client and
on the server.

3.4.2.6.29.1.1 onCellClick
The event is fired when the user clicks on one cell of a column. Every column (not cell) can
have its own event handling routine.

Example
using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 522

 public TableViewExample() {
 model = this.createNewTable(model);

 /* getting column name and define event handler for the column */
 TableColumn column = model.getColumn("1stColumn");
 /* Now define event handler name/method - the method
 has to be declared in the DynPage */
 column.setOnCellClick("1stColumn", "onFirstColumnClick");
 /* Do the same for the other 2 columns in the model */
 column = model.getColumn("2ndColumn");
 column.setOnCellClick("2ndColumn", "onSecondColumnClick");
 column = model.getColumn("3rdColumn");
 column.setOnCellClick("3rdColumn", "onThirdColumnClick");
 }

3.4.2.6.29.1.2 onHeaderClick
The event is fired when the user clicks on one of the columns in the header of the table.

Example
using the taglib

 /* Get the tableView component */
 TableView table = (TableView) this.getComponentByName("myTableView");

 /* Set the onHeaderClick event */
 table.setOnHeaderClick("onHeaderClick");
 ..

 /* the method onHeaderClick has to be declared in the DynPage.
 Otherwise an exception is thrown ("method not found") when the
 user clicks on the header of the tableView.

 Declaring onHeaderClick: */
 public void onHeaderClick(Event event) {
 System.out.println("Header click");
 }

3.4.2.6.29.1.3 onNavigate
The event is fired when the user clicks on one of the navigation buttons that are displayed in
the footer section of the tableView. The method getFirstVisibleRowAfter returns the
first visible row after the event. Therefore it is not necessary to investigate which navigation
button was pressed. This makes the onNavigate event handling routine very small.

Example
using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 523

 // CALLED IF THE NAVIGATION EVENT WAS SEND
 public void onNavigation(Event event) {
 if (event instanceof TableNavigationEvent) {
 // Get the navigation event
 TableNavigationEvent tne = (TableNavigationEvent) event;

 // Use getGirstVisibleRowAfter to receive the first visible row
 this.visibleRow = tne.getFirstVisibleRowAfter();
 if (myBean != null) {
 /* just for the first time, when there is no bean.
 Set the visible row in the model - the tableView
 shows the new result after the page is transmitted */
 myBean.setVisibleRow(new Integer(this.visibleRow).toString());
 }
 } else {
 // wrong event...
 }
 }

3.4.2.6.29.1.4 onRowSelection
The event is fired when the user clicks on the radio button in the first column. The radio button
is visible when the 'selectionMode' is set to "SINGLESELECT".

Example
using the taglib
import com.sap.htmlb.enum.TableSelectionMode;
..

/* Get the tableView component */
 TableView table = (TableView) this.getComponentByName("myTableView");

 /* Set the onHeaderClick event */
 table.setSelectionMode(TableSelectionMode.SINGLESELECT);
 table.setOnRowSelection("onRowSelClick");
 ..

 /* the method onRowSelClick has to be declared in the DynPage.
 Otherwise an exception is thrown ("method not found") when the
 user clicks on the radio button of the tableView.

 Declaring onHeaderClick: */
public void onRowSelClick(Event event) {
 System.out.println("Row selection click");
}

onClientRowSelection
The selected row can also be determined on the client by using the htmlbevent object.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 524

 For JS there are a few API calls available to get to the key.

JavaScript Example:
htmlbevent.obj.getClickedRowKey();

For more information see JavaScript API [Page 33].

3.4.2.6.29.2 Usage & Type

The table view allows to arrange data - text, images, links, other tables etc. - into rows and
columns, that is, in a tabular fashion. Table view rows may be grouped into a header, body
and footer section. The table view supplies navigation buttons for scrolling the table. In
addition, the table view offers mechanisms for single and multiple selection of rows.

Figure 1: Example of a table view with different column types and an erroneous input field

Usage
Table views are primarily used as data tables for displaying numeric or non-numeric tabular
data. Table views can be read-only or used for data entry. Depending on the usage of the
table view, different looks and behaviors can be chosen.

General Usage Tips
Tables are relatively complex screen elements that lead developers to squeezing in lots of
information. Keep tables small with respect to the number of columns and rows.

For long tables consider effective filtering methods like the shuffler: These tools effect that
only a few rows are displayed and that users need not scroll, or need to scroll only a little bit.

Also, consider alternative presentations, such as charts or graphs - they may reveal relevant
information faster.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 525

Look
The table view can be presented in three alternative looks:

● Grid and background - either with alternating row colors or with a uniformly colored
background.

● Transparent, that is, without grid and background.

Selection rules for the different table view presentations:

● Grid and uniform background

Use this look preferably for entry tables and for numeric display tables. Use the
uniformly colored background also for narrow to medium wide display tables.

● Stripe pattern background

Use the alternative stripe pattern preferably for data entry tables and for wide display
tables.

● Transparent background

Use this look preferably for non-numeric display tables, that is, for tables, which display
text and/or images.

Table Title and Table Parts
A table view consists of three main parts: a header row, the table view body, and a footer row.

● The table view header contains the table view's title. A table view should have a title if
the table is not described elsewhere (for example, by a group or tray title).

● The table view body contains the actual data.

● The table view footer is located in the bottom row; it contains the scroll buttons to the
left and an optional text. The footer text may, for example, offer paging information.

The header row as well as the footer row can be hidden. Note that hiding the footer also hides
the scroll buttons.

Row and Column Headers
Row and column headers describe data columns and rows. Typically, a table view has only
column headers; these describe the different attributes of items that are listed in rows. Row
headers can be used, for example, in matrix-like tables, which have both row and column
titles.

Cell Content
Table view cells can contain text, images or icons, links, buttons, input fields and dropdown
list boxes.

Like stand-alone input fields, input fields in tables can have different attributes, such as
required, read-only, or error state.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 526

Row Selection
The table view can be used in two selection modes, if needed:

● single-selection (radio buttons in the first table column)

● multiple-selection (checkboxes in the first table column)

These mode are set by assigning the values SINGLESELECT or MULTISELECT to the
attribute selectionMode.

In the default mode of the table view (selectionMode = NONE) users cannot select any rows.
Use this mode if there is no need for users to select rows/items. Use single-selection if users
shall only select one row, that is, one item, at a time. Use multiple-selection if users can select
several options or items in parallel.

Scrolling
The table view offers up to six buttons for scroll functions: First page, Page up, Line up, Line
down, Page down, and Last page. The scroll buttons are invisible if the footer is hidden.

Note: Scrollbars are currently not supported in table views.

Technical Info: The Line up/down buttons appear only if the selectionMode attribute has been
set to NONE or SINGLESELECT.

Table View Size
Recommendations for the table view size:

Vertical Size
Table views should vertically fit the window or iView they are placed into. As table views can
be scrolled through buttons, there should not be no need to use the window's scrollbars.

Make the height of the table view as large as possible with respect to the surrounding
container. The larger the table view, the less scrolling is needed (scrolling through buttons is
extremely cumbersome..).

Table views should have at least three visible lines - five lines are even better.

Horizontal Size
Table Views should also horizontally fit the window or iView they are placed into. Avoid
horizontal scrolling at any price.

Matrix Tables
Matrix tables should have at least 2x2 data cells.

Initial Size and Appearance
Empty tables are not displayed in iViews. In addition, no space is reserved for the table or for
a sentence, such as "No entries found".

Exception: Tables where users can immediately enter data should appear in the intended size
and with empty lines.

Note: Do not use the transparent design (see below) in this case.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 527

Placement of Buttons for Functions

Location
Place buttons acting on a table view as a whole below the table view and left-aligned with the
table. Place the emphasized button to the left if there is one.

Button Groups
Separate button groups by a spacer (non-breaking space).

Functions Referring to Table View Columns, Sorting

Buttons Referring to Columns
Some functions, for examples Sort, refer to certain columns. Place buttons with small icons
into the column headers to speed up interaction.

If there are alternative variants of a function (for example, different sort orders or
calculations), consider to display only one icon at a time in order to save space, instead of
displaying two or more icons in parallel.

Do not use more than three icons in a column header.

Links in Column Headers
If it is evident what a function does, you can also use a link in the column header text.

Functions Referring to Table View Rows
Functions referring to table rows typically refer to the item the data of which are displayed in a
row. These functions can either be presented as

● Buttons

● Icons

● Links

Use buttons for most functions. Use icons and links for the following exception cases:

● Icons

Web standards, such as Delete, Info, Help, or Shopping Basket.

● Links

Navigation functions, such as Details (place the link in the name or ID column),
additional information and so on.

As a general rule for selecting the correct control, care for the application context and the
respective "Web standards".

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 528

Table Cells: Links vs. Buttons
Note that links are not self-explaining. Therefore, use links only where their purpose is
evident. Add tooltips to links to support users.

See Links vs. Buttons [Page 33] for more information.

Filtering, Shufflers
Offer filters as much as possible. Filters help to reduce the amount of data displayed in a
table view. This helps users and improves performance.

Use shufflers for creating filter statements. See the respective section on shufflers in the
iView Guidelines.

Placement
Place the shuffler statement above the table view and left-align it.

Reason: A left-aligned shuffler is not hidden from view if the window size is altered.

Button
Use a button labeled Go to start the filtering process. Use events on dropdown list boxes for
simple cases only (one dropdown list box with label).

Types

Global Table View Look
The attribute design defines the global look of the table. It can have one of the following
values:

● ALTERNATING

The rows of the table entries are colored alternating.

● STANDARD

The background of Table View is uniformly colored.

● TRANSPARENT

The Table View has no background (grid).

Figure 2: Table View with grid and patterned background (left) vs. transparent table

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 529

Cell Style
Individual cells can be given different styles as shown in figure 3; most of them are used for
numeric values.

Figure 3: Example table showing different cell styles - click image for larger view

Note: The "GROUP_HIGHLIGHTED" colors should not be used in conjunction with the
"CRITICALVALUE" colors.

Cell Content Types
Typically, table cells contain numeric or alphanumeric text. However, there are more cell
types available:

● Text: Text cell - the text cannot be edited

● Image: Cell displays an icon or image

● Link: Cell contains a link (reference)

● Button: Cell contains a button

● Input: The cell can be edited

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 530

● User: The cell contains a dropdown list box

Figure 4: Example table showing different cell types

Design-relevant Attributes
The appearance and behavior of tables can be affected by various attributes.

● Header and Footer

The header text can be defined (headerText) and the header as well as the footer be
hidden (Boolean attributes headerVisible, footerVisible).

Note: The footer must be visible if the table has to be scrolled, that is, if the table
contains more lines than are visible.

● Size, Number of Lines, Initial Appearance

Another set of attributes determines the width of the table view (width), the number of
visible rows (visibleRowCount), the first visible row (firstVisibleRow), and the initial
appearance of empty rows (Boolean attribute fillUpEmptyRows).

● Selection Mode

Further attributes define how the table entries can be selected: single, multiple, or none
(attribute selectionMode, values SINGLESELECT, MULTISELECT, or NONE).

Note: The selection mode also influences the display of scroll buttons, provided the
footer is set to visible.

For details see page Control API for Table View.

Related Controls
Tree View [Page 33], Item List [Page 33], List Box [Page 33]

3.4.2.6.29.3 Browser Support & 508
Renders in all supported Browsers.

Editability in Style Editor
In the Style Editor, it is possible to modify the following attributes of the table view control:

Group Style IE5 and
above Netscape 4.7

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 531

Table Styles Background Color of Standard Table Cell
Background Color of Alternating Table Cell
Grid Color
Cell Height
Cell Padding
Background Color of Selected Cell
Background Color 1 of Grouping Cell
Background Color 2 of Grouping Cell
Background Color 3 of Grouping Cell

x
x
x
x
x
x
x
x
x

x
x

x
x
x
x

Table Icons Background Position
Height
Width
Padding
URL to "Top" Icon
URL to Inactive "Top" Icon
URL to "Page Up" Icon
URL to Inactive "Page Up" Icon
URL to "Up" Icon
URL to Inactive "Up" Icon
URL to "Down" Icon
URL to Inactive "Down" Icon
URL to "Page Down" Icon
URL to Inactive "Page Down" Icon
URL to "Bottom" Icon
URL to Inactive "Bottom" Icon

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x

Container Font Color of Container Title
Background Color of Container Body

x
x

x
x

Table 1: Editable styles for the table view control

Accessibility - 508 Support
● Keyboard

Table views are not inserted into the accessibility hierarchy by default.

● Default Description

Is provided by the HTMLB rendering engine for the title, the navigation buttons, and
certain elements inside the table.

● Application-specific Description

Set the table title using the SetHeaderText method. Set the summary text using the
setSummary method (should display a tooltip). Note that there is no setTooltip method
for table views, use setSummary, instead.

3.4.2.6.30 Tabstrip

Definition
A container that enables the user to switch between several panels -by clicking on the tab -
that appear to share the same space on the screen. The user can view a particular panel by

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 532

clicking its tab. Use tabStripItem to define the panel size and title. Use tabStripItemBody to
define the layout of the tabStripItem. Use tabStripItemHeader to change the settings of the
title (specified through tabStripItem).

● bodyHeight

Defines the height of panel. The tabs are added on top of panel. The height of the tabs
is defined by used text font.

● horizontalAlignment

Defines the horizontal alignment of the tapStripItems.

○ LEFT

Left justifies the content of the cell.

○ RIGHT

Right justifies the content of the cell.

○ CENTER

Centers the content of the cell.

○ CHAR

Aligns text around a specific character. Not supported by all web clients.

○ JUSTIFY

Sets text in the cell left and right aligned. Not supported by all web clients.

● id

Identification name of the tabStrip.

● selection

Defines which tab is the active/displayed panel.

● tooltip

Defines the hint of the tab which is displayed as the mouse cursor passes over the
panel of the tabStrip, or as the mouse button is pressed but not released.

● verticalAlignment

Defines the vertical alignment of the tapStripItems.

○ BASELINE

The content of the cell is aligned on the baseline line of the cell (or bottom when
no baseline exits).

○ BOTTOM

The content of the cell is aligned to the bottom line of the cell.

○ MIDDLE

The content of the cell is aligned to the middle of the cell height.

○ TOP

The content of the cell is aligned to the top line of the cell.

● width

Defines the overall width of the tabStrip control.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 533

Attributes M Values Usage

bodyHeight Unit (100) Taglib
bodyHeight="100"

Classlib
setBodyHeight("100")

horizontalAlignment CENTER (d)
CHAR
JUSTIFY
LEFT
RIGHT

Taglib
horizontalAlignment="LEFT"

Classlib
setHorizontalAlignment(CellHAlign.LEFT)

id * String (cs) Taglib
id="TabbedNotebook"

Classlib
setId("TabbedNotebook")

selection Numeric (1) Taglib
selection="3"

Classlib
setSelection(3)

tooltip String Taglib
tooltip="select a tab"

Classlib
setTooltip("select a tab")

verticalAlignment BASELINE
BOTTOM
MIDDLE
TOP (d)

Taglib
verticalAlignment="MIDDLE"

Classlib
setVerticalAlignment(CellVAlign.MIDDLE)

width Unit (400) Taglib
width="200"

Classlib
setWidth("200")

tabStripItem
Specifies the panel size and the tab of a tabStrip. Use tabStripItemBody to define the layout
of the tabStripItem. Use tabStripItemHeader to change the settings of the title later on. A
tabStripItem must have a unique 'id' and 'index' attribute and can call a specific event handler
that is activated when this tab is clicked.

● header

The tab can have text (set by the 'title' attribute) or any other control. 'header' specifies
the component. Common use would be to display icons in the tabs (instead of text).

● height

Defines the height of the tabStripItem.

● id

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 534

Identification name of the tabStripItem.

● index

Defines the index of the tabStripItem. The 'selection' attribute of the tabStrip refers to
the 'index'. The 'index' is mandatory and can be alphanumeric.

● onSelect

Defines the event handling method that will be processed when the user clicks on the
tab. The string for the event name is not case sensitive - the reference however has to
be spelled exactly the same way as the definition of the 'onSelect' event.

If you define a 'onSelect' event, you have to switch to the new selected tab in your
application, using the tabstrip method selection (see above). If you do not define a
'onSelect' event the tab can be clicked, the selected tab is displayed, but no event is
generated.

● title

Defines the text that is displayed in the tab itself.

● tooltip

Defines the hint of the tab which is displayed as the mouse cursor passes over the
panel of the tabStrip, or as the mouse button is pressed but not released.

● width

Defines the overall width of the tabStripItem.

Attributes M Values Usage

header Component

Taglib
No tag available

Classlib
setHeader(htmlb.Image("icon.gif",
 "Text title")

height Unit Taglib
height="80"

Classlib
setHeight("80")

id * String (cs) Taglib
id=" TabbedNotebook "

Classlib
setId("TabbedNotebook")

index * String (cs) Taglib
index="I3"

Classlib
setIndex("I3")

title String Taglib
title="Settings"

Classlib
setTitle="Settings"

tooltip String Taglib
tooltip="Desktop settings"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 535

Classlib
setTooltip("Desktop settings")

width Unit Taglib
width="200"

Classlib
setWidth("200")

Events M Values Usage

onSelect String (cs) Taglib
onSelect="proc_tab3"

Classlib
setOnSelect("proc_tab3")

tabStripItemBody
Specifies the layout of the tabStripItem.

tabStripItemHeader
The tabStripItem attributes 'title' and 'header' can be altered or set by tabStripItemHeader
(see following example definition of "tab 4").

Example
using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 536

 <hbj:tabStrip
 id="myTabStrip1"
 bodyHeight="100"
 width="200"
 horizontalAlignment="CENTER"
 verticalAlignment="TOP"
 selection="3"
 tooltip="Tooltip for myTabStrip1"
 >
 <hbj:tabStripItem
 id="myTabStripItem1"
 index="1"
 height="80"
 width="160"
 onSelect="myTabStripItem1OnSelect"
 title="Tab 1"
 tooltip="My Tooltip for Tab 1"
 >
 <hbj:tabStripItemBody>
 <hbj:textView
 text="TextView on Tab 1"
 />
 </hbj:tabStripItemBody>
 </hbj:tabStripItem>
 <hbj:tabStripItem
 id="myTabStripItem2"
 index="2"
 height="80"
 width="160"
 onSelect="myTabStripItem2OnSelect"
 title="Tab 2"
 tooltip="My Tooltip for Tab 2"
 >
 <hbj:tabStripItemBody>
 <hbj:textView
 text="TextView on Tab 2"
 />
 </hbj:tabStripItemBody>
 </hbj:tabStripItem>
 <hbj:tabStripItem
 id="myTabStripItem3"
 index="4"
 height="80"
 width="160"
 onSelect="myTabStripItem3OnSelect"
 tooltip="My Tooltip for Tab 3"
 >
 <hbj:tabStripItemBody>
 <%
 myTabStripItem3.setHeader(new
 com.sap.htmlb.Image
 ("/icons/bottom.gif",
 "Image not available")
);
 %>
 <hbj:textView
 text="TextView on Tab 3"
 />
 </hbj:tabStripItemBody>
 </hbj:tabStripItem>
 <hbj:tabStripItem
 id="myTabStripItem4"
 index="3"
 height="80"
 width="160"
 onSelect="myTabStripItem4OnSelect"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 537

using the classlib
 Form form = (Form) this.getForm();
 TabStrip ts = new TabStrip("myTabStrip");
 ts.setBodyHeight("100");
 ts.setWidth("200");
 ts.setHAlign(CellHAlign.CENTER);
 ts.setVAlign(CellVAlign.TOP);
 ts.setSelection(3);
 ts.setTooltip("Tooltip for myTabStrip1");

 TextView tvt1 = new TextView();
 tvt1.setText("TextView on Tab 1");
 TextView tvt2 = new TextView();
 tvt2.setText("TextView on Tab 2");
 TextView tvt3 = new TextView();
 tvt3.setText("TextView on Tab 3");
 TextView tvt4 = new TextView();
 tvt4.setText("TextView on Tab 4");

 TabStripItem tsi1 = ts.addTab(1, "Tab 1", tvt1);
 tsi1.setHeight("80");
 tsi1.setWidth("160");
 tsi1.setOnSelect("myTabStripItem1OnSelect");

 TabStripItem tsi2 = ts.addTab(2, "Tab 2", tvt2);
 tsi2.setHeight("80");
 tsi2.setWidth("160");
 tsi2.setOnSelect("myTabStripItem2OnSelect");
 tsi2.setTooltip("My Tooltip for Tab 2");

 TabStripItem tsi3 =
 ts.addTab(
 3,
 new Image(
 request.getPublicResourcePath() + "/../mimes/saplogo.gif",
 "Logo"),
 tvt3);
 tsi3.setHeight("80");
 tsi3.setWidth("160");
 tsi3.setOnSelect("myTabStripItem3OnSelect");
 tsi3.setTooltip("My Tooltip for Tab 3");

 TabStripItem tsi4 = ts.addTab(4, "Tab 4", tvt4);
 tsi4.setHeight("80");
 tsi4.setWidth("160");
 tsi4.setOnSelect("myTabStripItem4OnSelect");
 tsi4.setTooltip("My Tooltip for Tab 4");

 form.addComponent(ts);

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 538

Result

3.4.2.6.30.1 Usage & Type
The tabstrip is a container that allows the user to switch between several views by clicking the
tabs. The views appear to share the same space on the screen. The user can access a
particular view by clicking its tab.

Figure 1: Example of a tabstrip control with an individual tab and the tab card indicated

Usage

Advantages
● Users can see all the alternative views at once. Thus users have a stable context and

can navigate easily between the views.

● Tabstrips are also the ideal choice for presenting multiple views of information when
the views look very different from one another and a different form of presentation
would cause an unstable environment.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 539

Disadvantages
● Tabstrips consume a lot of space compared to other view switching alternatives (for

example, radio buttons or dropdown list box shufflers). For views and alternatives to
tabstrips that consume less space, see Related Controls.

● Another disadvantage of tabstrips is that the number of views is limited by the space for
the tabs.

Do
● Tabstrips may contain dynamic information so that users get a quick overview of

important data, events or changes within the views.

● The tab card may contain tables and group boxes.

Don't
● Avoid using long names in the tab labels and using too many tabs, as this will cause

the control to be very wide and may cause problems such as scrolling or excessively
wide iViews.

● Tabs may not contain icons.

● Tabstrips indicate to the user that views can be accessed in any order; if this is not the
case, then avoid using tabstrips.

● Although space is limited in the tab card, it should not be scrolled.

● Tabstrips may not be nested inside one another!

General Usage Tips
Use tabstrips for selecting views only if other alternatives lead to an unstable interface that
might confuse users: Tabstrips appear rather massive, and they take a lot of screen real
estate. Furthermore tabstrips should only be used for tasks without a prescribed order of
steps as they communicate freedom of choice of interaction sequence.

Design-relevant Attributes
The appearance and behavior of tabstrips can be affected by various attributes.

● Height and Width

Attribute bodyHeight sets the vertical size of the tabstrip panel, attribute width the
overall width of the tabstrip.

● Horizontal and Vertical Alignment of Tabs

Use attributes horizontalAlignment (values CENTER, CHAR, JUSTIFY, LEFT, RIGHT)
and verticalAlignment (values BASELINE, BOTTOM, MIDDLE, TOP) to align the tabs.

● Selected Tab

Attribute selection selects a tab.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 540

● Tooltip Text

Use attribute tooltip to set the tooltip text for a tabstrip as a whole.

In addition for each view (or tabstrip item) several attributes can be set individually:

● Height and Width

Attribute height sets the vertical size of the tabstrip view, attribute width its width.

● Tab Text

Attribute title sets the label for the tab.

● Tooltip Text

Use attribute tooltip to set the tooltip text for a tabstrip view.

For details see page Control API [Page 33] for Tabstrip.

Related Controls
Radio Button [Page 33], Dropdown List Box [Page 33]

3.4.2.6.30.2 Browser Support & 508

Some versions of Netscape Navigator cannot display certain visual nuances of the standard
tabstrip control.

Figure 1: Example of the standard tabstrip Figure 2: Example of the tabstrip in
Netscape Navigator 4

This tabstrip is much less sophisticated
visually than the standard tabstrip (figure 1) -
the tabs and the tab card have no border,
there is a space between the tabs, and the
height of the active tab is the same as the
height of the inactive tabs.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 541

Figure 3: Example of the tabstrip in
Netscape Navigator 6.1

This tabstrip is different from the standard
tabstrip (figure 1) in that there is a space
between the tabs. Additionally, the active tab
is the same height as the inactive tabs.

Figure 4: Example of the tabstrip in
Netscape Navigator 6.2

This tabstrip is different from the standard
tabstrip (figure 1) in that the tabs are all the
same height.

Tabstrip Items
Tabstrip items cannot be stored on the Web client. The application has to manage tabstrip
items. Therefore, changing the tabs always generates the event tabSelectionChange. It is
recommended to at least declare the method so that no exception will be thrown if the
application is opened in a Netscape Navigator 4 Web client.

Editability in Style Editor
In the Style Editor, it is possible to change all the background and border colors, as well as
the padding and all the text attributes. Here is a list of the styles you can influence:

Group Style IE5 and
above Netscape 4.7

Tabstrip Styles Background Color of Selected Tab
Background Color of Inactive Tab
Left Border of Inactive Tabs
Right Border of Inactive Tabs
Top Border of Inactive Tabs
Tab Padding
Tabstrip Border Color
Tab Height

x
x
x
x
x
x
x
x

x

x
x

Container Container Border
Top Border of Container
Right Border of Container
Left Border of Container

x
x
x
x

Table 1: Editable styles for the tabstrip control

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 542

Accessibility - 508 Support
● Keyboard

Each tab of a tabstrip is inserted into the accessibility hierarchy by default.

● Default Description

Is provided by the HTMLB rendering engine for each tab.

● Application-specific Description

Set an additional description using the setTooltip method for each tab if needed.

3.4.2.6.31 Text Edit

Definition
A multiline region for displaying and editing text. Text in the control is restricted to a single
font, size and style unless set with HTML commands. For sophisticated test editing see
control htmlEdit [Page 33].

The textEdit control has a frame. The size of the frame is defined by the 'rows' and 'cols'
attribute. A vertical scrollbar is displayed permanently. The scroll bar is enabled when the
number of lines exceeds the 'rows' attribute.

If the 'wrapping' attribute is not "OFF" the text is wrapped according to the 'cols' attribute - no
horizontal scrollbar. If 'wrapping' is set to "OFF" a horizontal scrollbar is activated if the text
line length exceeds the width set by the 'cols' attribute.

● cols

Defines width of the textEdit control in characters. If the text line exceeds the width
defined with the 'cols' attribute and the 'wrapping' attribute if "OFF" a horizontal
scrollbar is activated. The scrollbar is appended to the textEdit frame, so that the 'rows'
attribute stays unchanged.

If 'wrapping' is set to "HARD" or "SOFT" the text line is wrapped and no horizontal
scrollbar is activated.

Be aware that the definition of 'cols' by characters is only an approach and varies by
the used character font. A character font with unequal spacing shows different results.
A i character fits more often into the textEdit field than a m character.

● enabled

A boolean value that enables or disables the textEdit control. A disabled label has a
different text color to show the user that it is disabled.

● height

Set the height of the text edit control.

● id

Identification name of the textEdit.

● labeled

Enables or disables the notification when the control has a label assigned to it.

● rows

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 543

Defines the height of the textEdit control in lines. If the text lines exceed the 'rows'
attribute the vertical scrollbar becomes active.

● text

Defines the string of text displayed. This text can be edited and/or new text can be
added.

● tooltip

Defines the hint of the textEdit which is displayed as the mouse cursor passes over the
textEdit, or as the mouse button is pressed but not released.

● width

Set the width of the text edit control.

● wrapping

Controls the text flow. "HARD" and "SOFT" are passed on to the HTML-Output and
control how the carriage return is handled. Web clients handle text wrapping differently.
Therefor the following description cannot be guaranteed on all web clients.

○ HARD

Wraps the text at the width set by the 'cols' attribute. A carriage control is
transmitted at every line break.

No horizontal scrollbar is displayed.

○ SOFT

Wraps the text at the width set by the 'cols' attribute. No carriage control is
transmitted.

No horizontal scrollbar is displayed.

○ OFF

The text line is not wrapped. If the text line length exceeds the width set by the
'cols' attribute a horizontal scrollbar is displayed.

Attributes M Values Usage

cols Numeric (35) Taglib
cols="20"

Classlib
setCols("20")

enabled FALSE
TRUE (d)

Taglib
No tag available

Classlib
setEnabled(true)

height Unit Taglib
No tag available

Classlib
setHeight("300px")

id * String (cs) Taglib
id="Edit_text"

Classlib
setId("Edit_text")

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 544

labeled FALSE (d)
TRUE

Taglib
No tag available

Classlib
setLabeled(true)

rows Numeric (5) Taglib
rows="10"

Classlib
setRows(10)

text String Taglib
text="editable text"

Classlib
setText("editable text")

tooltip String Taglib
tooltip="PDK document"

Classlib
setTooltip("PDK document")

wrapping HARD (d)
SOFT
OFF

Taglib
wrapping="OFF"

Classlib
setWrapping(TextWrapping.SOFT)

Example
using the taglib
 <hbj:textEdit
 id="Edit_Text
 text="Text to change - or just add text"
 wrapping="SOFT"
 tooltip="Edit and/or add text"
 rows="10"
 cols="30"
 />

using the classlib
 Form form = (Form) this.getForm();
 TextEdit te = new TextEdit("Edit_Text");
 te.setText("Text to change - or just add text");
 te.setWrapping(TextWrapping.SOFT);
 te.setTooltip("Edit and/or add text");
 te.setRows(10);
 te.setCols(30);
 form.addComponent(te);

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 545

Result

3.4.2.6.31.1 Usage & Type
The text edit control provides an area for multiple-row text editing.

Figure 1: Example of text edit control in an iView

Figure 2: Example of text edit control in an iView

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 546

Usage
Use the text edit control to allow users to edit multiple line of text.

The text is restricted to a single font, size and style unless set with HTML commands. The
text edit control has a frame. The size of the frame is defined by the rows and cols attributes.
A vertical scrollbar is displayed permanently. The scrollbar is enabled when the number of
text lines exceeds the number of visible lines.

Alignment
There are two possible ways to align the text edit control:

● Below a group of fields with a descriptive label above the text edit control (figure 1)

● In line with other fields within a field group with a label to the left (figure 2)

Place the text edit below the field group if it is used as the main information, whereas the
fields above it provide only the context for the information in the text edit control.

Example: A problem description when sending a problem message to a service center.

Place the text edit field within the field group if the information is just one piece of information
among other information, and the text edit control is used as a freeform multiple-line input
field.

Example: A customer enters his or her preferences when registering for an online shop.

Design-relevant Attributes
The text edit control can be influenced through a number of attributes:

● The text and a tooltip text can bet set (attributes text and tooltip)

● The number of rows and columns can be set (attributes rows and cols)

● The wrapping behavior can be determined (attribute wrapping, values HARD, SOFT
and OFF)

For details see Control API [Page 33] for the text edit control.

Related Controls
Text View [Page 33]

3.4.2.6.31.2 Browser Support & 508

In Netscape 4.7 the border will be displayed in 3D; the background color is always white;
disabled looks like enabled.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 547

Editability in Style Editor
In the Style Editor, it is possible to modify the following attributes of the text edit control:

Group Style IE5 and above Netscape 4.7

Text Eit Styles Padding x

Container Container Border x

Table 1: Editable styles for the text edit control

Accessibility - 508 Support
Text edit controls have to be used in combination with the label element which points to the
assigned text edit control. This ensures, that screenreaders are aware of the relationship
between the both elements and can read the correct label to the according text edit control.

● Keyboard

Text edit controls are inserted into the accessibility hierarchy by default.

● Default Description

Is provided by the HTMLB rendering engine.

● Application-specific Description

Set an additional description using the setTooltip method if needed.

● Label

Has to be connected to a label control (use method setLabelFor for identifying the
corresponding text edit control).

3.4.2.6.32 Text View

Definition
A multiline region for displaying text. Text in the control is restricted to a single font, size and
style unless set with HTML commands.

● design

Defines the appearance of the text. Design can be set to "HEADER1", "EMPHASIZED",
"LABEL" and so on. The CSS controls how the different options get rendered. The
following description is based on the standard CSS delivered.

○
Bold text, text size STANDARD

○
Bold text, text size +4 in comparison to STANDARD

○

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 548

Bold text, text size +2 in comparison to STANDARD

○
Bold text, text size STANDARD

○
Text size and attributes STANDARD

○
Text size -2 in comparison to STANDARD

○
Italic text, text size STANDARD

○
No text attributes and standard text size

● encode

A boolean value that defines how the text is interpreted. HTML text formatting
commands (for example, <h1>, <i> etc.) can be used to change the display of the text.
If there are no formatting commands in the text string, the encode attribute has no
effect.

Example:
text="<h1><i>Important</i></h1>"

encode = "false" Browser output:

the text string is rendered by interpreting the formatting commands.

encode = "true" Browser output:

the formatting commands are displayed and not interpreted.

● hoverMenuId

Defines which hover menu is displayed for this tree node. You can define different
trigger methods to display the hover menu. For more details, see hover menu.

● id

Identification name of the text.

● labeled

Enables or disables the notification when the control has a label assigned to it.

● layout

Defines the alignment of the text.

○ BLOCK

Renders the textView with a <div> HTML tag.

○ NATIVE

Renders the textView with a HTML tag.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 549

○ PARAGRAPH

Renders the textView with a <p> HTML tag

● required

Deprecated - the control 'label' should be used instead to label required input fields.

A boolean value. If set to "true" an asterisks (*) in red color is placed at the end of the
text string. This is a common method to indicate that input is required. See also
inputField and label.

● text

Defines the string of text displayed. See 'encode' for a formatting example with
embedded HTML commands.

● tooltip

Defines the hint of the textView which is displayed as the mouse cursor passes over
the textView, or as the mouse button is pressed but not released.

● width

Defines the width of the textView. The width shows only effect when the 'wrapping'
attribute is set to "true". Otherwise the width and layout follows the HTML commands in
the text string.

● wrapping

A boolean value. If set to "true" the text is word wrapped at the set 'width' or - if no
'width' is set - at the form width.

Attributes M Values Usage

design EMPHASIZED
HEADER1
HEADER2
HEADER3
LABEL
LABELSMALL
LEGEND
REFERENCE
STANDARD
EMPHASIZED
HEADER1
HEADER2
HEADER3
LABEL
LABELSMALL
LEGEND
REFERENCE
STANDARD (d)

Taglib
design="HEADER1"

Classlib
setDesign(TextViewDesign.HEADER1)

encode FALSE
TRUE (d)

Taglib
enabled="FALSE"

Classlib
setEnabled(false)

hoverMenuId String (cs) Taglib
hoverMenuId="textHover1"

Classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 550

setHoverMenuId(textHover1)

id * String (cs) Taglib
id="Intro_text"

Classlib
setId("Intro_text")

labeled FALSE (d)
TRUE

Taglib
No tag available

Classlib
setLayout(TextViewLayout.BLOCK)

required
Deprecated

 FALSE (d)
TRUE

Taglib
required="TRUE"

Classlib
setRequired(true)

text String Taglib
text="PDK introduction"

Classlib
setText("PDK introduction")

tooltip String Taglib
tooltip="PDK document"

Classlib
setTooltip("PDK document")

width Unit (100%) Taglib
width="300"

Classlib
setWidth("300")

wrapping FALSE (d)
TRUE

Taglib
wrapping="TRUE"

Classlib
setWrapping(true)

Example
using the taglib
 <hbj:textView
 id="Text_ZIP"
 text="ZIP Code"
 design="EMPHASIZED"
 />

using the classlib
 Form form = (Form)this.getForm();
 TextView tv2 = new TextView("tv2");
 tv2.setText("ZIP Code");
 tv2.setDesign(TextViewDesign.EMPHASIZED);
 form.addComponent(tv2);

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 551

Result

3.4.2.6.32.1 Usage & Type

The text view control offers a multiline region for displaying text; several text attributes can be
defined.

Figure 1: Example of a text view control in an iView.

Usage
The text view control is used to display plain text. The text in the control is restricted to a
single font, size and style unless set with HTML commands. The text size can be set using
different styles (see "Types of Text Views")

Note: The text View control must not be used to create a label for input fields; use the label
[Page 33] control instead.

Also note that if you occupy a certain area on the screen for a text view control you should
reserve enough space for the translation to other languages. Text in other languages may use
up to 30% more space than needed in English.

Types
The text view control is available in several text styles, which are set by the attribute design
(values STANDARD, EMPHASIZED, REFERENCE, LEGEND, HEADER1, HEADER2,
HEADER3). The following description is based on the standard CSS delivered:

Text Style Use

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 552

Used to display body text.

Used to display emphasized text for example, phrases, single
terms; not to be used for complete text areas; text size
"Standard".

Style for Text Used as a Reference; text size "Standard".

 Used to display a legend or small-size help text; text size -2 in
comparison to "Standard".

Used to display a headline or page title; text size +4 in
comparison to "Standard"

Used to display a page subtitle; text size +2.

Used to display a subtitle; text size "Standard".

Table 1: Text styles and their use

Design-relevant Attributes
While the different text types are set using the attribute design (values STANDARD,
EMPHASIZED, REFERENCE, LEGEND, HEADER1, HEADER2, HEADER3), the
appearance of the different text types can be determined by a style sheet (CSS).

The text itself is set by the attribute text, an accompanying tooltip text by the attribute tooltip.

In addition, alignment (attribute layout, values BLOCK, NATIVE, PARAGRAPH), wrapping
behavior (Boolean attribute wrapping), and width (attribute width) can be defined for the text
view control.

For details see the Control API [Page 33] for Text View.

Related Controls
Text Edit [Page 33], Label [Page 33]

3.4.2.6.32.2 Browser Support & 508
Renders in every supported browser.

Editability in Style Editor
For the text view control, only common styles can be changed. As these styles are important
for the text view control, we list them here, too.

Style Group Style IE5 and
above Netscape 4.7

Text Styles Standard Font Family x x

Standard Text Standard Font Size
Standard Font Color
Standard Font Style
Standard Font Weight

x
x
x
x

x
x
x
x

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 553

Non-Standard
Text

Font Size for Small Text
Font Size for Large Text
Font Size for Extra Large Text
Font Style for Text Used as
Reference
Font Color for Headlines
Font Weight for Headlines
Font Weight for Emphasized Text

x
x
x
x
x
x
x

x
x
x
x
x
x
x

Table 1: Common styles for the text view control

Accessibility - 508 Support
● Keyboard

Text view controls are not inserted into the accessibility hierarchy by default.

● Default Description

Not needed

● Application-specific Description

Not needed

3.4.2.6.33 Tool Bar

Definition
A toolbar provides quick and convenient access to a set of frequently used commands or
options. A toolbar can contain buttons, input fields and dropdown list boxes. The toolbar offers
a separator. The separator is a vertical line with padding on both sides and is used to space
command groups.

The width of the toolbar is defined by the added controls (button, input field and so on). When
the toolbar control is not used in a gridlayout or formlayout, it is always rendered in a new line.

● addToolbarButton

Adds a button to the toolbar. The toolbar button is similar to the "button" control but has
less attributes. See ToolbarButton [Page 33] description for more details.

● addToolbarDropDownListBox

Adds a dropdown list box to the toolbar. See ToolbarDropDownListBox [Page 33]
description for more details.

● addToolbarInputField

Adds a input field to the toolbar. See ToolbarInputField [Page 33] description for more
details.

● addToolbarSeperator

Adds a vertical line with padding on both sides. The toolbar separator is used to space
command groups. See ToolbarSeparator [Page 33] description for more details.

● design

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 554

Sets the design of the toolbar. Possible values are:

○ EMPHASIZED

Displays a toolbar with darker background.

○ STANDARD

Displays a toolbar with lighter background.

● id

Identification name of the toolbar.

Attributes M Values Usage

addToolbarButton String (cs) Taglib
No tag available

Classlib
addToolbarButton("id", "text")

addToolbarDropDownListBox * String (cs) Taglib
No tag available

Classlib
addToolbarDropDownListBox("id")

addToolbarInputField String (cs) Taglib
No tag available

Classlib
addToolbarInputField("id")

addToolbarSeparator - Taglib
No tag available

Classlib
addToolbarSeparator()

design EMPHASIZED
STANDARD

Taglib
design="STANDARD"

Classlib
setDesign(ToolbarDesign.STANDARD)

id * String (cs) Taglib
id="tb1"

Classlib
Object id.

Example
using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 555

 <hbj:toolbar
 id="toolbar"
 design="EMPHASIZED">
 <hbj:toolbarButton
 id="OpenButton"
 text="Open"
 onClick="ProcessOpen"
 />
 <hbj:toolbarButton
 id="CloseButton"
 text="Close"
 onClick="ProcessClose"
 />
 <hbj:toolbarSeparator
 id="mySeparator"
 />
 <hbj:toolbarInputField
 id="Scale"
 value="100%"
 width="50px"
 />
 <hbj:toolbarSeparator
 id="mySeparator"
 />
 <hbj:toolbarDropDownListBox
 id="myDDL2">
 <hbj:listBoxItem
 key="k1"
 value="Arial"
 />
 <hbj:listBoxItem
 key="k2"
 value="Times Roman"
 />
 <hbj:listBoxItem
 key="k3"
 value="Verdana"
 selected="true"
 />
 </hbj:toolbarDropDownListBox>
 </hbj:toolbar>

using the classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 556

 Form form = (Form)this.getForm();
 Toolbar tb = new Toolbar("toolbar");
 tb.setDesign(ToolbarDesign.EMPHASIZED);
 ToolbarButton openButton = tb.addToolbarButton("OpenButton","Open");
 openButton.setOnClick("ProcessOpen");
 ToolbarButton closeButton = tb.addToolbarButton("CloseButton","Close");
 closeButton.setOnClick("ProcessClose");
 tb.addToolbarSeparator();
// Create input field
 ToolbarInputField input = new InputField("Scale");
 input.setType(DataType.STRING);
 input.setWidth("50px");
 input.setValue("100%");
 tb.addToolbarInputField("Scale");

 tb.addToolbarSeparator();
// Create dropdown list box
 ToolbarDropdownListBox ddl = new ToolbarDropdownListBox("Fonts");
 ddl.addItem("k1","Arial");
 ddl.addItem("k2","Times Roman");
 ddl.addItem("k3","Verdana");
 ddl.setSelection("k3");
 tb.addToolbarDropdownListBox("Fonts");

 form.addComponent(tb);

Result

3.4.2.6.33.1 Tool Bar Button
Provides any type of functionality in your application at the touch of the button. Hints can be
displayed as the mouse cursor passes over the button, or as the mouse button is pressed but
not released. The toolbar button has to be used together with the "toolbar [Page 33]" control.

● enabled

A boolean value that defines if the toolbar button is clickable. If the toolbar button is
disabled (enabled="FALSE") it sends no event when you press a mouse button on the
toolbar button. A disabled toolbar button has a different text color to show the user that
it is disabled.

● id

Identification name of the toolbar button.

● onClick

Defines the event handling method that will be processed when the user clicks on the
enabled button. If you do not define an 'onClick' event the button can be clicked but no
event is generated.

● onClientClick

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 557

Defines the JavaScript fragment that is executed when the user clicks on the button. If
both events ('onClick' and 'onClientClick') are specified, the 'onClientClick' event
handling method is activated first. By default the 'onClick' event handling method is
activated afterwards. In the JavaScript fragment you can cancel the activation of the
'onClick' event handling method with the command htmlbevent.cancelSubmit=true;

The 'onClientClick' event is useful to pre-process the form and only send the form to
client if the pre-processing was successful (for example, date validation, valid number
format and so on) to save client/server interaction.

A button click usually activates the client/server interaction. If an input field has
to be filled out for further processing, the JavaScript fragment can check the
necessary input on the client side and display a message if the necessary input
is missing, without server interaction.

To use JavaScript the JSP has to use the page tag (set page [Page 33] tag).

● text

Defines the string of text placed centered on the button. If no text should be displayed
in the button an empty string (null) can be used. The width of the button is automatically
adjusted to the length of the text.

● tooltip

Defines the hint of the button which is displayed as the mouse cursor passes over the
button, or as the mouse button is pressed but not released.

Attributes M Values Usage

enabled FALSE (d)
TRUE

Taglib
enabled="FALSE"

Classlib
setEnabled(false)

id * String (cs) Taglib
id="OrderConfirm"

Classlib
setId("OrderConfirm")

text String Taglib
text="Confirm"

Classlib
setText("Confirm")

tooltip String Taglib
tooltip="Confirm order"

Classlib
setTooltip("Confirm order")

Events M Values Usage

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 558

onClick String (cs) Taglib
onClick="ProcessConfirm"

Classlib
setOnClick("ProcessConfirm")

onClientClick String (cs) Taglib
onClientClick="alert('Confirm')"

Classlib
setOnClientClick("alert('Confirm')")

Example
using the taglib

 <hbj:toolbarButton id="OpenButton"
 text="Open"
 onClick="ProcessOpen"
 />

using the classlib
 ToolbarButton openButton = tb.addToolbarButton("OpenButton", "Open");
 openButton.setOnClick("ProcessOpen");

Result
The toolbar button has to be used in the toolbar control. See the "toolbar [Page 33]" control
description for the result.

3.4.2.6.33.2 Tool Bar Dropdown List Box
A control with a dropdown arrow that the user clicks to display a list of options. An item in the
toolbarDropdownListBox is called listBoxItem. The toolbarDropdownListBox has to be used
together with the "toolbar [Page 33]" control.

● enabled

A boolean value that defines if the toolbarDropdownListBox is clickable. If the
toolbarDropdownListBox is disabled (enabled="FALSE") it is not selectable. A disabled
toolbarDropdownListBox has a different color for the displayed listBoxItem.

● id

Identification name of the toolbarDropdownListBox.

● model

Defines the model which provides the toolbarDropdownListBox with data. How to work
with the IListModel [Page 33].

● nameOfKeyColumn

Specifies the name of the column that contains the key. This is used when you use an
underlying table in the model.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 559

● nameOfValueColumn

Specifies the name of the column that contains the visible text. This is used when you
use an underlying table in the model.

● onClientSelect

Defines the JavaScript fragment that is executed when the user clicks on the
toolbarDropdownListBox. If both events ('onSelect' and 'onClientSelect') are specified,
the 'onClientSelect' event handling method is activated first. By default the 'onSelect'
event handling method is activated afterwards. In the JavaScript fragment you can
cancel the activation of the 'onSelect' event handling method with the command

htmlbevent.cancelSubmit=true;

The 'onClientSelect' event is useful to preprocess the form and only send the form to
client if the preprocessing was successful (for example, date validation, valid number
format etc.) to save client/server interaction.

A toolbarDropdownListBox click usually activates the client/server interaction. If
an input field has to be filled out for further processing, the JavaScript fragment
can check the necessary input on the client side and display a message if the
necessary input is missing, without server interaction.

To use JavaScript the JSP has to use the page tag (see page [Page 33] tag).

● onSelect

Defines the event handling method that will be processed when the user clicks on the
enabled toolbarDropdownListBox. If you do not define a onClick event the
toolbarDropdownListBox can be clicked but no event is generated.

● selection

Specifies the key of the listBoxItem which is displayed in the toolbarDropdownListBox.

● width

Defines the width of the toolbarDropdownListBox in pixel or percent.

Attributes M Values Usage

enabled TRUE (d)
FALSE

Taglib
disabled="TRUE"

Classlib
setEnabled (false)

id * String (cs) Taglib
id = "listbox_te"

Classlib
setId ("listbox_te")

model [Page 33] String Taglib
model = "mybean.model [Page 33]"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 560

Classlib
setModel((IListModel [Page 33]) model)

nameOfKeyColumn String Taglib
nameOfKeyColumn = "k1"

Classlib
setNameOfKeyColumn ("k1")

nameOfValueColumn String Taglib
nameOfValueColumn = "v1"

Classlib
setNameOfValueColumn ("v1")

selection String Taglib
selection = "HD"

Classlib
setSelection("HD")

width Unit Taglib
width = "200"

Classlib
setWidth ("200")

Events M Values Usage

onClientSelect String (cs)

Taglib
onClientSelect="alert('Click')"

Classlib
setOnClientSelect("alert('Click')")

onSelect
[Page 33]

 String (cs) Taglib
onSelect="proc_listbox"

Classlib
setOnSelect ("proc_listbox")

listBoxItem
Defines the items in a toolbarDropdownListBox, toolbarDropdownListBox or listBox instead of
the model. See listBoxItem [Page 33] for more details.

Example
using the taglib
 <hbj:toolbarDropDownListBox id="myDDL2" >
 <hbj:listBoxItem key="k1" value="Arial" />
 <hbj:listBoxItem key="k2" value="Times Roman" />
 <hbj:listBoxItem key="k3" value="Verdana" selected="true" />
 </hbj:toolbarDropDownListBox>

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 561

using the classlib
 ToolbarDropdownListBox ddl = new ToolbarDropdownListBox("Fonts");
 ddl.addItem("k1","Arial");
 ddl.addItem("k2","Times Roman");
 ddl.addItem("k3","Verdana");
 ddl.setSelection("k3");

Result
The toolbar dropdown list box has to be used in the toolbar control. See the "toolbar [Page
33]" control description for the result.

3.4.2.6.33.3 Tool Bar Input Field
An framed area that allows user input in a toolbar. The toolbarInputField can be displayed
with default input. A user can type new text or edit the existing text.

● enabled

A boolean value that defines if the inputField allows input. A disabled inputField
(enabled = "FALSE") has a different background color.

● design

Defines the size of the input field. The value for this attribute can be "STANDARD" or
"SMALL".

● id

Identification name of the inputField.

● maxlength

Defines the maximum amount of characters allowed for the inputField. If the type
attribute is set for example, to date or time the 'maxlength' has to take care of the
characters delivered by this format and local settings.

● type

If 'type' is set to date a help button to call the dateNavigator can be generated (see
'showHelp'). Other than that this attribute has no further effect on the client side. It can
be used later on when the form gets processed.

Note: The type INTEGER is not null save and will therefore cause an exception when
the field is empty. We recommend to use type STRING instead.

● value

Default string that is displayed in the inputField frame. The 'maxlength' attribute has no
effect on the 'value' attribute. The 'value' string is not truncated to 'maxlength'.

● width

Defines the width of the inputField in pixel or percent. This attribute allows better
adjustment of the inputField in a form.

The inputField width can also be set by the attribute 'width'. If 'size' and 'width' are set
the 'width' attribute has priority and overwrites the 'size' setting.

Attributes M Values Usage

enabled FALSE
TRUE (d)

Taglib
enabled="TRUE"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 562

Classlib
setEnabled(false)

id * String (cs) Taglib
id="GetInput"

Classlib
setId("GetInput")

invalid FALSE (d)
TRUE

Taglib
invalid="TRUE"

Classlib
setInvalid(true)

maxlength Numeric (25) Taglib
maxlength="25"

Classlib
setMaxlength(25)

size Numeric (30) Taglib
size="35"

Classlib
setSize("35")

type BCD
BOOLEAN
DATE
INTEGER
STRING
TIME

Taglib
type="INTEGER"

Classlib
setType(DataType.INTEGER)

value String Taglib
value="Your name here"

Classlib
setValue("Your name here")

width Unit Taglib
width="200"

Classlib
setWidth("200")

Example
using the taglib
 <hbj:toolbarInputField id="Scale"
 value="100%"
 width="50px"
 />

using the classlib
 ToolbarInputField input = new ToolbarInputField("Scale");
 input.setType(DataType.STRING);
 input.setWidth("50px");
 input.setValue("100%");

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 563

Result
The toolbar input field has to be used in the toolbar control. See the "toolbar [Page 33]"
control description for the result.

3.4.2.6.33.4 Tool Bar Separator
A separator, usually a horizontal line, that is used to group controls in the toolbar.

● id

Identification name of the inputField.

● transparent

A boolean value that defines if the design of the toolbar separator. A transparent
toolbar separator (enabled = "TRUE") has a different background color.

Attributes M Values Usage

id * String (cs)

Taglib
id="sep1"

Classlib
setId ("sep1")

transparent FALSE (d)
TRUE

Taglib
No tag available

Classlib
setTransparent (true)

Example
using the taglib
 <hbj:toolbarSeparator id="aSeparator"
 />

using the classlib
 ToolbarSeparator sep = new ToolbarSeparator("aSeparator");
 set.setTransparent(true);

Result
The toolbar input field has to be used in the toolbar control. See the "toolbar [Page 33]"
control description for the result.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 564

3.4.2.6.34 Tray

Definition
Similar to group [Page 33] the tray allows grouping of controls. The 'tray' allows additional
functionality like collapsing/expanding - similar to the behavior of windows on your Microsoft
Windows desktop. The tray control can be for client side eventing. See the
EventValidationComponent [Page 33] description for more details.

Portal components (components that will run in the SAP Enterprise Portal) are placed in a
tray by the portal.

● design

The design of the tray can be:

○ BORDER

The tray has a title bar and the panel has a frame that defines the size.

○ BORDERLESS

The tray has only a title bar.

○ FORM

The tray has a title bar. The panel is filled with a background color. The color is
different from the title background color.

○ TEXT

The tray has a title bar. The panel is filled with the same background color as
the title bar.

● enabled - inherited from EventValidationComponent [Page 33].

A boolean value that enables (=true) or disables (=false) the tray control. A disabled
tray sends no event when clicked.

● id

Identification name of the tray.

● isCollapsed

A boolean value that if "true" shows only the title bar. As indicator that the tray is
collapsed, the collapsed symbol is displayed. When clicking on this symbol the
'onExpand' event is fired.

● jsObjectNeeded - inherited from Component [Page 33].

A boolean value that defines if a JavaScript object has to be generated for the tray
component.

● menu

Set a hover menu for the tray.

● onCollapse

Defines the event handling method that will be processed when the user clicks on the
collapse symbol .

If the attribute is set to a <%=null %> string or the attribute is omitted the symbol is
not displayed in the title bar.

● onEdit - Deprecated

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 565

Defines the event handling method that will be processed when the user clicks on the
collapse symbol .

If the attribute is set to a <%=null %> string or the attribute is omitted the symbol is
not displayed in the title bar.

● onExpand

Defines the event handling method that will be processed when the user clicks on the
expand symbol .

This symbol can be actives only when 'isCollapsed' is set to "true". If the attribute is set
to a <%=null %> string or the attribute is omitted the symbol is not displayed in the
title bar.

● onRemove - Deprecated

Defines the event handling method that will be processed when the user clicks on the
expand symbol .

If the attribute is set to a <%=null %> string or the attribute is omitted the symbol is
not displayed in the title bar.

● title

Defines the string of text placed left aligned in the title bar. If no title should be
displayed an empty string (null) can be used. The width of the tray is automatically
adjusted to the length of the text when the 'width' attribute is set smaller than the title
text width.

● tooltip

Defines the hint of the tray which is displayed as the mouse cursor passes over the
tray, or as the mouse button is pressed but not released.

● width

Defines the width of the tray. The width of the button is automatically adjusted to the
length of the 'title'. To see an effect of the 'width' attribute 'width' has to be set higher as
the width defined thru the length of the 'title' string. If an empty (null) 'title' string is set
no 'title' attribute is defined the width of the tray is set according to the 'width' attribute.

Attributes M Values Usage

design BORDER (d)
BORDERLESS
FORM
TEXT

Taglib
design="FORM"

Classlib
setDesign (TrayDesign.FORM)

enabled* FALSE
TRUE (d)

Taglib
No tag available

Classlib
setEnabled(true)

id * String (cs) Taglib
id="Intro_Text"

Classlib
Object id

isCollapsed FALSE (d)
TRUE

Taglib
isCollapsed="TRUE"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 566

Classlib
setCollapsed (true)

jsObjectNeeded** FALSE (d)
TRUE

Taglib
No tag available

Classlib
setJsObjectNeeded(true)

menu Component Taglib
No tag available

Classlib
setMenu(HoverMenu hm)

title String Taglib
title="Headlines"

Classlib
setTitle("Headlines")

tooltip String Taglib
tooltip="latest news"

Classlib
setTooltip("latest news")

width Unit (50%) Taglib
width="300"

Classlib
setWidth("300")

Events M Values Usage

onCollapse String (cs)

Taglib
onCollapse="ev_col"

Classlib
setOnCollapse("ev_col")

onEdit

Deprecated

 String (cs)

Taglib
onEdit="ev_ed"

Classlib
setOnEdit("ev_ed")

onExpand String (cs)

Taglib
onExpand="ev_ex"

Classlib
setOnExpand("ev_ex")

onRemove

Deprecated

 String (cs)

Taglib
onRemove="ev_re"

Classlib
setOnRemove("ev_re")

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 567

trayBody
Defines the items in the tray. A tray can be filled with any any control (checkbox, image,
textView and so on).

Example
using the taglib
 <hbj:tray
 id="HeadlineNews"
 design="BORDER"
 title="latest Headlines"
 tooltip="all the news you need"
 onEdit="ev_hd_edit"
 onRemove="ev_hd_rem"
 width="25%"
 >

 <hbj:trayBody>
 <hbj:textView
 encode="true"
 text="The NASDAQ on an upswing
Good news for homeowners"
 />
 </hbj:trayBody>
 </hbj:tray>

using the classlib
 Form form = (Form)this.getForm();
 Tray tray = new Tray("HeadlineNews");
 tray.setDesign(TrayDesign.BORDER);
 tray.setTitle("latest Headlines");
 tray.setTooltip("all the news you need");
 tray.setOnEdit("ev_hd_edit");
 tray.setOnRemove("ev_hd_rem");
 tray.setWidth("25%");

 TextView ttv2 = new TextView("ttv2");
 ttv2.setText("The NASDAQ on an upswing
Good news for homeowners");
 ttv2.setEncode(false);
 tray.addComponent(ttv2);
 form.addComponent(tray);

Result

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 568

3.4.2.6.35 Tree View

Definition
A representation of hierarchical data (for example, directory and file names) as a graphical
outline. Clicking expands or collapses elements of the outline. The item in a tree is called
treeNode. The nesting depth of treeNodes define the hierarchy level.

The tree has no width attribute. Place the tree in a grid layout control if a certain width is
required.

● id

Identification name of the tree.

● offsetForTreeNode

Defines the distance in pixel used by the control to indent the sub nodes.

● onTreeClick

Defines the event handling method that will be processed when the user clicks on the
tree. If 'onTreeClick' is specified, the event handling routine is called.

● rootNode

Defines the root node of tree. This attribute is used when the tree structure is defined in
a bean. The tree node in the bean is created with the command line:

TreeNode root = new TreeNode("root", "RootNode");

● rootNodeIsVisible

A Boolean value that indicates if the rootNodeIsVisible.

● title

Defines the headline of the tree.

● tooltip

Defines the hint of the tree which is displayed as the mouse cursor passes over the
tree, or as the mouse button is pressed but not released

Attributes M Values Usage

id * String (cs) Taglib
id="Tree1"

Classlib
setId ("Tree1")

offsetForTreeNode Value Taglib
offsetForTreeNode="20"

Classlib
setOffsetForTreeNode(20)

rootNode + String Taglib
rootNode="TreeNode"

Classlib
setRootNode("TreeNode")

rootNodeIsVisible FALSE
TRUE (d)

Taglib
rootNodeIsVisible="TRUE"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 569

Classlib
setRootNodeIsVisible(true)

title String Taglib
title="Family tree"

Classlib
setTitle("Family tree")

tooltip String Taglib
tooltip="The Addams family"

Classlib
setTooltip("The Addams family")

+ 'rootNode' is required when the treeNode definition is not made immediately after the tree
definition. In this case an error message - indicating that a tree without treeNodes is invalid -
is generated.

Events M Values Usage

onTreeClick String (cs) Taglib
No tag available

Classlib
setOnTreeClick("tree_click")

treeNode
Defines the items in the tree. The level of the tree is defined by the nesting depth. A treeNode
with sub nodes has an indicator. The indicator is a triangle that shows if the node is expanded
or collapsed .

● encode

A boolean value that defines how the text is interpreted. HTML text formatting
commands (for example, <h1>, <i> etc.) can be used to change the display of the text.
If there are no formatting commands in the text string, the encode attribute has no
effect.

Example:
text="<h1><i>Important</i></h1>"

encode = "false" Browser output:

the text string is rendered by interpreting the formatting commands.

encode = "true" Browser output:

the formatting commands are displayed and not interpreted.

● hoverMenuId

Defines which hover menu is displayed for this tree node. You can define different
trigger methods to display the hover menu. For more details, see hover menu.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 570

● id

Identification name of the tree.

● onNodeClick

Defines the event handling method that will be processed when the user clicks on the
text of the node.

● onNodeClose

Defines the event handling method that will be processed when the user clicks on the
node symbol. The node has to be initially defined in expanded mode (isOpen=true) in
order to create the event. The event will than always occur when the user clicks on the
symbol to expand the node. No event occurs when the tree node expands.

When the onNodeClose attribute is set, the tree node does not collapse on the web
client. The event is sent to the server and the application has to take care about the
further processing (for example, define the sub nodes of the tree node and set the tree
node collapsed (isOpen=false).

● onNodeExpand

Defines the event handling method that will be processed when the user clicks on the
node symbol. The node has to be collapsed initially (isOpen=false) in order to create
the event. The event will than always occur when the user clicks on the symbol to
expand the node. No event occurs when the tree node collapses.

When the onNodeExpand attribute is set, the tree node does not expand on the web
client. The event is sent to the server and the application has to take care about the
further processing (for example, define the sub nodes of the tree node and set the tree
node expanded (isOpen=true).

The attributes onNodeExpand and onNodeClose are useful for trees with a lot of
entries (transmission problems possible since the page could become pretty big)
or if you want to have full control over the tree nodes and build the sub nodes
dynamically. The server application has to take care about the modes of the
node itself. If you have set an onNodeExpand attribute initially, you have to take
care about following steps yourself when the event is fired:

■ Create the sub nodes.

■ Set the node status (isOpen=true).

■ Set the onNodeClose event to receive an event when the user closes the
tree node again.

This works vice versa if you have set an onNodeClose attribute initially.

● open

A Boolean value that indicates if the node is expanded or collapsed. This attribute only
has an effect when the node has at least one sub node. If a node is expanded all sub
nodes of the node are displayed. Symbols to indicate the node status:

Node expanded

Node collapsed

● text

Defines the string of text displayed for the treeNode. HTML commands for text
formatting (for example, for bold characters) can be used..

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 571

● tooltip

Defines the hint of the treeNode which is displayed as the mouse cursor passes over
the treeNode, or as the mouse button is pressed but not released.

Attributes M Values Usage

encode FALSE
TRUE (d)

Taglib
No tag available

Classlib
setEncode (false)

hoverMenuId String (cs) Taglib
hoverMenuId="helpHover1"

Classlib
setHoverMenu(HoverMenu helpHover1)

id * String (cs) Taglib
id="TreeNode"

Classlib
setId("TreeNode")

open FALSE
TRUE (d)

Taglib
isOpen="FALSE"

Classlib
setOpen(false)

showExpander FALSE
TRUE (d)

Taglib
No tag available

Classlib
setShowExpander (false)

text String Taglib
text="Gomez"

Classlib
setText("Gomez")

tooltip String Taglib
tooltip="1st Family member"

Classlib
setTooltip("1st Family member")

Events M Values Usage

onNodeClick String (cs) Taglib
No tag available

Classlib
setOnNodeClick("onNodeClick")

onNodeClose String (cs) Taglib
No tag available

Classlib
setOnNodeClose("onNodeClose")

onNodeExpand String (cs) Taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 572

No tag available

Classlib
setOnNodeExpand("onNodeExpand")

Example
using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 573

 <hbj:tree
 id="S_Tree"
 title="e-enviroment"
 tooltip="enviroment of my computer"
 >
 <hbj:treeNode
 id="e_root"
 text="Desk"
 isOpen="true"
 tooltip="My desk"
 >
 <hbj:treeNode
 id="e_comp"
 text="Computer"
 isOpen="true"
 >

 <hbj:treeNode
 id="e_comp_fl"
 text="Floppy"
 />
 <hbj:treeNode
 id="e_comp_hd"
 text="Harddisk"
 />
 <hbj:treeNode

 id="e_comp_dvd"
 text="DVD"
 />
 </hbj:treeNode>

 <hbj:treeNode
 id="e_net"
 text="Network"
 isOpen="true"
 tooltip="Company network"
 >
 <hbj:treeNode
 id="n_lan"
 text="LAN"
 tooltip="Local Area Network"
 />
 <hbj:treeNode
 id="n_wan"
 text="WAN"
 tooltip="Wide Area Network"
 />
 <hbj:treeNode
 id="n_infra"
 text="Infrared"
 tooltip="Infrared connection"
 />
 </hbj:treeNode>
 </hbj:treeNode>
 </hbj:tree>

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 574

using the classlib
 Form form = (Form) this.getForm();
 Tree tree = new Tree("S_Tree", "e-enviroment");
 tree.setTooltip("enviroment of my computer");

 TreeNode root = new TreeNode("e_root", "Desk");
 root.setOpen(true);
 root.setTooltip("My desk");

 // Tags at the second level -
 // the entries are defined with the event "onName"
 // which is fired when the event is clicked.
 TreeNode name1 = new TreeNode("e_comp", "Computer", root);
 name1.setOnNodeClick("onName");
 TreeNode name2 = new TreeNode("e_net", "Network", root);
 name2.setOnNodeClick("onName");
 TreeNode name11 = new TreeNode("e_comp_fl", "Floppy", name1);
 name11.setOnNodeClick("onName");
 TreeNode name12 = new TreeNode("e_comp_hd", "Harddisk", name1);
 name12.setOnNodeClick("onName");
 TreeNode name13 = new TreeNode("e_comp_dvd", "DVD", name1);
 name13.setOnNodeClick("onName");
 TreeNode name21 = new TreeNode("n_lan", "LAN", name2);
 name21.setOnNodeClick("onName");
 TreeNode name22 = new TreeNode("n_wan", "WAN", name2);
 name22.setOnNodeClick("onName");
 TreeNode name23 = new TreeNode("n_infra", "Infrared", name2);
 name23.setOnNodeClick("onName");

 tree.setRootNode(root);
 form.addComponent(tree);

Result

 Programming Tip
Usually the root node is visible and all sub nodes are displayed on the second level. If you
make the root node invisible all sub nodes are displayed on first level.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 575

Example
using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 576

 <hbj:tree
 id="S_Tree"
 title="e-enviroment"
 tooltip="enviroment of my computer"
 >
 <% S_Tree.setRootNodeIsVisible(false); %>

 <hbj:treeNode
 id="e_root"
 text="Desk"
 isOpen="true"
 tooltip="My desk"
 >
 <hbj:treeNode
 id="e_comp"
 text="Computer"
 isOpen="true"
 >
 <hbj:treeNode
 id="e_comp_fl"
 text="Floppy"
 />
 <hbj:treeNode
 id="e_comp_hd"
 text="Harddisk"
 />
 <hbj:treeNode
 id="e_comp_dvd"
 text="DVD"
 />
 </hbj:treeNode>

 <hbj:treeNode
 id="e_net"
 text="Network"
 isOpen="true"
 tooltip="Company network"
 >
 <hbj:treeNode
 id="n_lan"
 text="LAN"
 tooltip="Local Area Network"
 />
 <hbj:treeNode
 id="n_wan"
 text="WAN"
 tooltip="Wide Area Network"
 />
 <hbj:treeNode
 id="n_infra"
 text="Infrared"
 tooltip="Infrared connection"
 />
 </hbj:treeNode>

 </hbj:treeNode>
 </hbj:tree>

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 577

Result

3.4.2.6.35.1 Usage & Type
The tree view control is used to display hierarchical data or text. The hierarchy levels may be
expanded and collapsed. Every tree node contains a text and an arrow icon that expands and
collapses the node. If a node has no child elements in the hierarchy, there is no arrow icon.
The node text might also link to a function that displays the connected data.

The first four levels have different colors. From the 5th level on the color stays the same like
in the 4th level.

Figure 1: Example of a tree with three levels

Usage
Trees contain complex information and are cumbersome to use. If possible, do not use trees
and consider other alternatives, especially in iViews. Trees with hierarchies more than 2-3
levels deep should be avoided altogether!

How to Avoid Trees
If the number of tree elements is small, hierarchies can be flattened to lists, and the items
may follow some other ordering like by alphabet or relevance.

Consider using dropdown list boxes [Page 33], the shuffler (filter) or tabstrips [Page 33] in
combination with tables in order to select partial data sets. This leads to a far less complex
user interface than large trees that have to be scrolled or paged through.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 578

Design-relevant Attributes
The tree view control does not have a width attribute. To set the width, place the tree inside a
grid layout control.

Use attribute title to set a title for the tree.

For tree items, the item text and a corresponding tooltip text can be defined (attributes text
and tooltip).

Related Controls
Item List [Page 33], Dropdown List Box [Page 33], Table View [Page 33], Tabstrip [Page 33],
Grid Layout [Page 33] (for sizing)

3.4.2.6.35.2 Browser Support & 508
Netscape 4.7 cannot display certain visual nuances of the standard tree control. This tree has
no borders and the title height differs from the standard tree (figure 1).

Figure 1: Example of the Standard Tree Figure 2: Example of the Tree in Netscape

Navigator 4.7

The tree view is always opened completely in Netscape 4.7. It is not possible to expand and
collapse nodes locally. The application has to handle these operations (requires server round-
trip).

Editability in Style Editor
In the Style Editor, it is possible to modify the following attributes of the tree view control:

Group Style IE5 and
above Netscape 4.7

Level Background
Colors

Background Color of 1st Level
Background Color of 2nd Level
Background Color of 3rd Level
Background Color of 4th Level

x
x
x
x

x
x
x

Tree Icons URL to "Expand" Icon
URL to "Collapse" Icon

x
x

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 579

URL to "Node" Icon
Height of Tree Icon
Width of Tree Icon

x
x
x

x
x

Container Background Color of Container
Title
Font Color of Container Title
Height of Container Title
Container Border
Bottom Border of Container
Cell Padding

x
x
x
x
x
x

x
x

Table 1: Editable styles for the tree view control

Accessibility - 508 Support
● Keyboard

Each tree node is inserted into the accessibility hierarchy by default.

● Default Description

Is provided by the HTMLB rendering engine for each tree node.

● Application-specific Description

Set an additional description using the setTooltip method for each tree node if needed.

3.4.2.7 Non Visible Controls

Purpose
Non visible controls are also placed in a form, like visible controls, but generate no visible
output on the browser.

Non Visible Controls
Applet Container

 [Page 33]Bookmark

 [Page 33]Component

 [Page 33]Event Validation (Client Eventing)

 [Page 33]Image Map

 [Page 33]Timer [Page 33]

3.4.2.7.1 Applet Container

Definition
Provides a container to host an applet.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 580

● classObject

Specifies the class object of the applet has to be in the library.

● height

Defines the height of the applet.

● library

Specifies the library that contain the class object and all necessary libraries.

● name

Name of the applet. This attribute is passed on to the web client.

● version

Version of the applet. This attribute is passed on to the web client.

● width

Defines the width of applet.

Attributes M Values Usage

classObject * String (cs) Taglib
classObject="appletSample"

Classlib
setClassObject("appletSample")

height Unit Taglib
height="300"

Classlib
setHeight ("300")

library * String (cs) Taglib
library="lib.appletLib.jar"

Classlib
setLibrary("lib.appletLib.jar")

name String Taglib
name="Stock index"

Classlib
setName("Stock index")

version Taglib
No tag available

Classlib
setVersion(JavaVersion.MEDIUM)

width Unit Taglib
width="450"

Classlib
setWidth ("450")

Applet Parameter (AppletParameter)
Supplies parameter for the applet.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 581

● name

Name of the parameter.

● value

Value for the 'name' parameter.

Events M Values Usage

name String (cs) Taglib
name="backgroundColor"

Classlib
addParameter("backgroundColor", "red")

value String (cs) Taglib
value="red"

Classlib
addParameter("backgroundColor", "red")

Example
using the taglib

 <hbj:appletContainer
 height="300"
 width="400"
 library("lib.appletlib.jar")
 classObject("applet.SampleApplet")>
 <hbj:appletParameter
 name="backgroundColor"
 value="red"
 />
 </hbj:appletContainer>

using the classlib
 Form form = (Form) this.getForm();

 AppletContainer container = new AppletContainer();
 container.setClassObject("com.sap.htmlb.test.applet.SampleApplet");
 container.setLibrary("lib.appletlib.jar");
 container.setHeight("400");
 container.setWidth("400");
 container.addParameter("codebase", "/htmlb/applet");
 container.addParameter("backgroundColor", "red");

 form.addComponent(container);

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 582

3.4.2.7.2 Bookmark

Definition
A bookmark (also known as "named anchor") is an invisible tag, that marks a certain position
in the document.

● bookmark

Defines the bookmark. The specified name can used in the link component as
'reference' attribute to return to the bookmark. The 'reference' attribute has to specify a
sign before the bookmark name.

Example - Returning to a bookmark named "chapter1":

'reference' attribute of the link component has to be set to: #chapter1

Attributes M Values Usage

bookmark String (cs) Taglib
No tag available

Classlib
setBookmark ("chapter1")

3.4.2.7.3 Component

Definition
This is the base class for all components. We describe component because the
"jsObjectNeeded" method is necessary for the client side eventing.

● id

Identification name of the component.

● jsObjectNeeded

A boolean value that defines if a JavaScript object is defined for the component (=true)
or not (=false). A JavaScript object is necessary, that you can access the component in
your JavaScript program. By default the JavaScript object generation is disabled, to
reduce the generated HTML code.

● parent

Defines the parent container for the component.

Attributes M Values Usage

id String (cs) Taglib
No tag available

Classlib
setId("aComponent")

jsObjectNeeded FALSE (d)
TRUE

Taglib
jsObjectNeeded="TRUE"

Classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 583

setJsObjectNeeded(true)
parent Component Taglib

No tag available

Classlib
setParent(Container parent)

3.4.2.7.4 Event Validation (Client Eventing)

Definition
This non visible component is necessary for the client side eventing. Client side eventing is a
Portal service (See EPCF for more details) that allows event driven manipulations on the web
client without causing a server event. The eventValidationComponent inherits from the
Component [Page 33] component.

Typical client side event tasks are validation of input fields, for example, validating a date or
number format. For easier use of the client side event service in combination with HTMLB the
client side eventing functions have been integrated into the HTMLB API. All components that
support client side eventing (like button, checkBox and inputField) inherit from this
component.

● clientEvent

Defines the event trigger and the event handler for client side event handling. Following
event triggers are possible:

○ ON_BLUR

The blur event is fired, when a component, for example, an inputField, looses
the focus.

○ ON_CHANGE

The change event is fired, after the ON_BLUR event and if the value of the
component had been changed (for example, you changes the value of an
inputField).

○ ON_CLICK

The click event is fired, when a component that can be clicked, like a button or
checkbox, has been clicked.

○ ON_FOCUS

The focus event is fired, when a component, for example, an inputField, gets the
focus (for example, by clicking into the inputField).

○ ON_FORM_SUBMIT

The form submit event is fired, when the submit button has been clicked and
before the form is sent to the server. This event gives you the opportunity to
validate the form before it is sent to the server.

○ ON_KEYDOWN

The key down event is fired, when any key, including function keys, on the
keyboard is pressed. When you define an ON_KEYPRESS and an
ON_KEYDOWN event trigger, the ON_KEYDOWN event handler is called first.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 584

When this event handler is finished, the ON_KEYPRESS event handler is
called.

○ ON_KEYPRESS

The key press event is fired, when a ASCII key, no function key, on the
keyboard is pressed. When you define an ON_KEYPRESS and an
ON_KEYDOWN event trigger, the ON_KEYDOWN event handler is called first.
When this event handler is finished, the ON_KEYPRESS event handler is
called.

○ ON_KEYUP

The key up event is fired, when the pressed key is released again.

○ ON_TIMEOUT

The time out event is fired, when a time out occurs.

○ ON_VALIDATION

The validation event is fired, before the validation of the component is called.

The event trigger that can be used, depends on the component. For example, a
ON_TIMEOUT event is not possible for a button.

● enabled

A boolean value that defines if the component is enabled (= true) or disabled (= false).
A disabled component fires no event and usually has a different color.

● errorText

Defines the error message that is displayed if the validation is negative.

● requiresValidation

A boolean value that defines that the component has to be validated
(requiresValidation = true) before a server event is fired.

● serverEvent

Defines the event trigger and the event for event handling by the server. Events are for
example, BreadCrumbClickEvent, ButtonClickEvent and so on. Refer to the HTMLB
Javadoc description - Class "Event" for available HTMLB events.

● validator

Defines an application specific validator for a component. If you specify a null value as
validator argument, the validator is removed for the component. Validators are for
example, CancelButtonValidator, DataTypeValidator, LengthValidator and
RequiredValidator. Refer to the HTMLB Javadoc description - Class "Validator" for
more details.

Attributes M Values Usage

clientEvent String (cs) Taglib
No tag available

Classlib
setClientEvent(EventTrigger.ON_FOCUS,
 "onFocus")

enabled FALSE (d)
TRUE

Taglib
No tag available

Classlib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 585

setEnabled(true)

errorText String Taglib
No tag available

Classlib
setErrorText("invalid date")

requiresValidation FALSE (d)
TRUE

Taglib
No tag available

Classlib
setRequiresValidation(true)

serverEvent Taglib
No tag available

Classlib
setServerEvent (EventTrigger.ON_FOCUS,
 Event ev)

validator Taglib
No tag available

Classlib
setValidator (Validator validator)

The following example demonstrates the set up for client side eventing with an inputField
[Page 33] component. The "jsObjectNeeded" attribute is inherited from the Component [Page
33] component.

Example
using the taglib

 <hbj:inputField
 id="currencyDisplay"
 type="BCD"
 width="250px"
 value="100"
 jsObjectNeeded="true">
 currencyDisplay.setClientEvent(EventTrigger.ON_CHANGE,
 "calculateCurrencyToFrom()");
 </hbj:inputField>

using the classlib
 Form form = (Form) this.getForm();

 InputField inf2 = new InputField("currencyDisplay");
 inf2.setJsObjectNeeded(true);
 inf2.setClientEvent(EventTrigger.ON_CHANGE,
 "calculateCurrencyToFrom()");
 inf2.setBCD("100");
 inf2.setWidth("250px");

 form.addComponent(inf2);

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 586

3.4.2.7.5 Image Map

Definition
This control contains clickable areas which are associated with an image. The id of the
imageMap is associated with the image [Page 33] control (using the 'setImageMap' method).
The imageMap control contains imageAreas. The imageAreas contain links [Page 33] which
define the links or event handling methods that have to be processed when the imageArea
has been clicked.

● id

Identification name of the imageMap.

Attributes M Values Usage

id * String (cs) Taglib
id="imageMap"

Classlib
setId("imageMap")

Control API for Image Area (imageArea)
This control is used to define the clickable areas. The areas can be polygons, rectangles and
circles. The areas are defined in coordinates. The origin of the coordinates is the upper, left
corner of the image.

● areaType

Defines the shape of the area:

○ CIRCLE

Circular area. The circle is defined by the center and the radius of the circle.

Example (from top=100, from left=200, radius=30): 100,200,30

○ POLYGON

The polygon is defined by coordinates of the polygon points.

Example: Triangle (p1=100,100, p2=0,200, p3=200,200):
100,100,0,200,200,200,100,100

○ RECTANGLE

Rectangular area. The rectangle is defined by the upper left and lower right
corner.

Example (Upper Left= 100,100, Lower Right=300,200): 100,100,300,200

● coordinates

Defines the coordinates of the area according to the areaType. The coordinates are
separated by commas.

● link

Id of the link [Page 33] control that is associated with the imageArea. The link defines
the action (link or event) which is performed when the user clicks on this area.

● tooltip

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 587

Defines the hint of the imageArea which is displayed as the mouse cursor passes over
the imageArea, or as the mouse button is pressed but not released.

Attributes M Values Usage

areaType CIRCLE
POLYGON
RECTANGLE

Taglib
areaType="RECTANGLE"

Classlib
setAreaType(ImageAreaType.RECTANGLE)

(See hint below)
coordinates String Taglib

coordinates="0,0,100,100"

Classlib
setCoordinates("0,0,100,100")

(See hint below)
link String (cs) Taglib

link="idOfLink"

Classlib
setLink(Link link)

tooltip String Taglib
tooltip="a image map"

Classlib
setTooltip("a image map")

When you use the classlib, the areaType and the coordinates have to specified
already when the imageArea is created.

Example:
ImageArea circ_left = new ImageArea

(com.sap.htmlb.enum.ImageAreaType.CIRCLE,
 "12,165,12");

Example
using the taglib

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 588

 <hbj:link
 id="linkID"
 reference="http://www.sap.com"
 />
 <hbj:imageMap
 id="imageMap">
 <hbj:imageArea
 areaType="RECTANGLE"
 coordinates="0,0,39,30"
 link="linkID"
 tooltip="Click here to go to the SAP site"
 />
 </hbj:imageMap>
 <hbj:image
 id="image_logo"
 alt="Image"
 imageMapId="imageMap"
 tooltip="Click on upper/Left area bring you to the SAP site"
 src="">
 <%
 IResource
 rs=componentRequest.getResource(IResource.IMAGE,
 "mimes/EUFlag.gif");
 image_logo.setSrc(rs.getResourceInformation().
 getURL(componentRequest));
 %>
 </hbj:image>

using the classlib

 see imageMap example in the PDK

Result (from classlib example)

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 589

3.4.2.7.6 Timer

Definition
This control fires a server or client event after a preset time. The time is set in 1/1000
seconds. The timer control has no visible effect. The timer control can be for client side
eventing. See the EventValidationComponent description for more details.

● clientEvent

Defines the JavaScript fragment that is executed when the time out event occurs. If
both events ('serverEventName' and 'clientEvent') are specified, the 'clientEvent' event
handling method is activated and the serverEventName is omitted.

● enabled - inherited from EventValidationComponent [Page 33].

A boolean value that enables (=true) or disables (=false) the timer control. A disabled
timer sends no event when clicked.

● id

Identification name of the timer component.

● jsObjectNeeded - inherited from Component [Page 33].

A boolean value that defines if a JavaScript object has to be generated for the timer
component.

● serverEventName

A boolean value that activates (=TRUE) or deactivates (=FALSE) the "Insert
Image/Link" function.

● timeOut

Time span after which the event is fired. The time value is set in milli seconds.

Attributes M Values Usage

enabled* FALSE
TRUE (d)

Taglib
No tag available

Classlib
setEnabled(true)

id * String (cs) Taglib
id="timer"

Classlib
setId("timer")

jsObjectNeeded** FALSE (d)
TRUE

Taglib
No tag available

Classlib
setJsObjectNeeded(true)

timeout Value (0) Taglib
timeout="1000"

Classlib
setTimeOut(1000)

* Method is inherited from the EventValidationComponent [Page 33] component.

** Method is inherited from the Component [Page 33] component.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 590

Events M Values Usage

clientEvent with event type Taglib
No tag available

Classlib
setClientEvent(EventTrigger.ON_TIMEOUT,
 " alert('Timeout')")

clientEvent String (cs) Taglib
clientEvent="alert('Timeout')"

Classlib
setClientEvent("alert('Timeout')")

serverEventName String (cs) Taglib
serverEventName="onTimeout"

Classlib
setServerEventName("onTimeout")

Example
using the taglib
 <hbj:timer id="timeOut"
 serverEventName="myTimeoutEvent"
 timeOut="12000"
 />

using the classlib
 Form form = (Form)this.getForm();
 Timer timer = new Timer("timeOut");
 timer.setServerEventName("myTimeoutEvent");
 timer.setTimeOut(12000);
 form.addComponent(timer);

3.4.2.8 Models

Purpose
Models describe the data that is displayed by the component, like list box, table view and
chart. The model provides methods to add and read items.

3.4.2.8.1 DateNavigatorModel

public interface DateNavigatorModel

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 591

Constructor detail
public DateNavigatorModel()

Create DateNavigatorModel.

public DateNavigatorModel(IPageContext pc)

Create DateNavigatorModel with the page context. Whenever initial settings are made
to the DateNavigatorModel (for example, on first display of the datenavigator control
the year 1910 should be displayed as centered year and not the actual year) the
DateNavigatorModel has to be defined with the page context. Otherwise the initial
settings get lost.

The dateNavigator control is displayed according to the locale settings of the portal or the web
client. For more information about locale settings of the portal and the web client, see
documentation regarding Internationalization".

Base data model for the dateNavigator.

Method Description Argument Return value

getCalendar Returns the calendar instance
used by the
DateNavigatorModel.

() java.util.Calendar

getCenteredMonth Returns the month that is
displayed in the center
position of all the month
displayed.

() java.lang.Integer

getCenteredYear Returns the calendar year of
the month displayed in the
center position.

() java.lang.Integer

getLocale Returns the locale (country)
code. It takes the locale from
the IPageContext.

() java.util.Locale

getSelectedDays Returns the the DayRange
instance.

() DayRanges

getToday Returns the date that should
be rendered as the current
date.

() java.util.Date

isLocaleUnknown Returns a boolean value
indicating if the locale has
been set.

() Boolean

setCenteredMonth Sets the month that should be
displayed in the center
position of all the month
displayed.

(int centerMo) void

setCenteredYear Sets the calendar year of the
month displayed in the center
position.

(int centerYr) void

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 592

setLocale Sets the locale (country) code
that should be used for date
calculation and presentation.

(java.util.Locale l) void

setLocaleUnknown If set to true the locale setting
of the browser is used for
date calculation and
presentation.

(boolean locale) void

setSelectedDays Sets the DayRanges
instance.

(DayRanges selDay) void

setToday Sets the day that should be
displayed as the current date.

(java.util.Date today) void

class DayRanges
The DayRanges class specifies any number of days that should be displayed in the selected
state. Every day can have a tooltip.

The month values used in DayRanges correspond with java.util.Calendar.
According to that the months start with 0 (for January).

Method Description Argument Return value

add Adds a date to this
instance of
DayRanges.

(java.util.Date day) void

add Adds a date range to
this instance of
DayRanges.

(java.util.Date begin,
 java.util.Date end)

void

add Adds a date range to
this instance of
DayRanges that will be
displayed as selected.

(java.util.Date begin,
 java.util.Date end,
 int selection)

void

add Adds a date range with
a tooltip to this
instance of
DayRanges.

(java.util.Date begin,
java.util.Date end,
java.lang.String tooltip)

void

add Adds a date range with
a tooltip to this
instance of
DayRanges that will be
displayed as selected.

(java.util.Date begin,
 java.util.Date end,
 java.lang.String tooltip,
 int selection)

void

add Adds a date to this
instance of
DayRanges that will be
displayed as selected.

(java.util.Date day,
 int selection)

void

add Adds a date to this
instance of
DayRanges that will be
displayed as selected.

(java.util.Date day,
java.lang.String tooltip)

void

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 593

add Adds a date with a
tooltip to this instance
of DayRanges that will
be displayed as
selected.

(java.util.Date day,
 java.lang.String tooltip,
 int selection)

void

addMonth Adds all days of the
specified month to this
instance of
DayRanges

(int month, int year) void

addMonth Adds all days of the
specified month to this
instance of
DayRanges that will be
displayed as selected.

(int month,
 int year,
 int selection)

void

addMonth Adds all days of the
specified month with a
tooltip to this instance
of DayRanges.

(int month,
 int year,
 java.lang.String tooltip)

void

addMonth Adds all days of the
specified month with a
tooltip to this instance
of DayRanges that will
be displayed as
selected..

(int month,
 int year,
 java.lang.String tooltip,
 int selection)

void

addWeek Adds all days of the
specified week to this
instance of
DayRanges.

(int week, int year) void

addWeek Adds all days of the
specified week to this
instance of
DayRanges that will be
displayed as selected.

(int week,
 int year,
 int selection)

void

addWeek Adds all days of the
specified week with a
tooltip to this instance
of DayRanges.

(int week,
 int year,
 java.lang.String tooltip)

void

addWeek Adds all days of the
specified week with a
tooltip to this instance
of DayRanges that will
be displayed as
selected.

(int week,
 int year,
 java.lang.String tooltip,
 int selection)

void

deleteTimeInfo Deletes the time
information in the
specified calendar.

(java.util.Calendar cal) void

getCalendar Returns the Calendar
instance associated
with this DayRanges
instance.

() java.util.Calendar

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 594

getDate Returns a
java.util.Date construct
out of the specified
day, month and year.

(int day, int month, int year) java.util.Date

getSelectionMode Returns the selection
mode for the specified
date.

(java.util.Date date) int

getTooltip Returns the tooltip for
the specified date.

(java.util.Date date) java.lang.String

isInRange Returns a boolean
value indicating if the
specified date has
been added to this
instance of
DayRanges.

(java.util.Date date) boolean

isInRange Returns a boolean
value indicating if the
specified date has
been added to this
instance of
DayRanges.

(int day, int month, int year) boolean

isLocaleUnknown Returns a boolean
value indicating if the
locale has been set.

() boolean

normalizeDate Method to delete all
time info in a Date.
The given calendar is
used to safely convert
the given Date to a
Date with the same
day/month/year but
with all time fields
zeroed. The calendar
instance will not be
modified by this
method (for example,
the inherent time info
inside the calendar will
be preserved).

(java.util.Calendar cal,
 java.util.Date date)

java.util.Date

setLocale Sets the locale
(country) code that
should be used for
date calculation and
presentation.

(java.util.Locale l) void

setLocaleUnknown If set to true the
locale setting of the
browser is used for
date calculation and
presentation.

(boolean localeUnknown) void

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 595

Related Topics
Using beans and models [Page 33]

3.4.2.8.2 IChartModel

public interface IChartModel
Base data model for the chart control.

Implementing classes: JCOChartModel, VectorChartModel,
DefaultChartModel

IChartModel and DefaultChartModel

Method Description Argument Return value

firstRow Sets the pointer of the actual row to first row in
the model and returns the number of the first
row.

() int

getColor Returns the color value of the current row. () java.lang.String

getExtension Returns the extension value of the current row.

The extension is a text string that is displayed as
tooltip when you move the mouse cursor over the
chart element. It shows effect on bar and pie
charts, but no effect on line charts.

() java.lang.String

getFieldName Returns the field name of the actual row and the
specified column.

(int col) java.lang.String

getFieldValue Returns the field value of the actual row and the
specified column.

(int col) java.lang.String

getGroupId Returns the group id of the actual row. () java.lang.String

getNumColumns Returns the number of columns in the model. () int

getNumRows Returns the number of rows in the model. () int

getRow Returns the row position of the pointer (actual
row).

() int

getX Returns the X value of the actual row. () java.lang.String

getY Returns the Y value of the actual row. () java.lang.String

nextRow Sets the pointer to the next row in the model. If
the point has reached the end of the model the
method returns false.

() boolean

JCOChartModel (Methods in addition to the IChartModel/DefaultChartModel)

Method Description Argument

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 596

setDataSrc Sets a JCO data table into this model. (com.sap.mw.jco.JCO.
 Table DataSrc)

VectorChartModel (Methods in addition to the IChartModel/DefaultChartModel)

Method Description Argument

addItem Adds an entry with extension to the model.

The extension is a text string that is displayed as
tooltip when you move the mouse cursor over the
chart element. It shows effect on bar and pie charts,
but no effect on line charts.

If you use a pie chart to display the data, the X values
will be used.

(java.lang.String groupid,
 java.lang.String x,
 java.lang.String y,
 java.lang.String color,
 java.lang.String extension)

addItem Adds an entry with an URL and an alternate text to the
model.

The alternate text is a text string that is displayed as
tooltip when you move the mouse cursor over the
chart element.

URL and alternate text show effect on bar and pie
charts, but no effect on line charts.

If you use a pie chart to display the data, the X values
will be used.

(java.lang.String groupid,
 java.lang.String x,
 java.lang.String y,
 java.lang.String color,
 java.lang.String url,
 java.lang.String altText)

Example
Setting up the VectorChartModel

// create model
 VectorChartModel model = new VectorChartModel();
// add two items of the same group with color 20 and an extension

 model.addItem("gr1", "A", "7", "20", "Information to block A");

 model.addItem("gr1", "B", "4", "20", "Information to block B");
// add two items of the same group with color 10, an URL and an
// alternate text

 model.addItem("gr2","10","3","10","http://www.sap.de","Link to SAP");
 model.addItem("gr2","20","1","10","http://www.bmw.de","Link to BMW");

Setting up the JCOChartModel

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 597

// create a new JCO table
 JCO.Table table = new JCO.Table("DAX");

// add the info/header to the table. The header is defined by the
// column name, data type and length (see JCO table API for details).
 table.addInfo("GROUPID", JCO.TYPE_CHAR, 50);
 table.addInfo("X", JCO.TYPE_CHAR, 50);
 table.addInfo("Y", JCO.TYPE_CHAR, 50);
 table.addInfo("Z", JCO.TYPE_CHAR, 50);
 table.addInfo("COLOR", JCO.TYPE_CHAR, 50);
 table.addInfo("EXTENSION", JCO.TYPE_CHAR, 150);
// append a record to the table. setValue sets the value as string.
// The second parameter is the column. The numbers are according to
// the sequence of the definition of the header (see above).
 table.appendRow();
 table.setValue("07.2001", 0);
 table.setValue("SAP", 1);
 table.setValue("158", 2);
 table.setValue("20", 3);
 table.setValue("10", 4);
 table.setValue("href=\"http://www.sap-ag.de/\"", 5);

 ..
/ create a JCOChartModel and set the JCO table
 model = new JCOChartModel();
 ((JCOChartModel) model).setDataSrc(table);

Related Topics
Using beans and models [Page 33]

3.4.2.8.3 IListModel

Definition

public interface IListModel
Base data model for breadCrumb, dropdownListBox and listBox.

Structure
Method Description Argument Return value
addItem Add item (entry) to the list (java.lang.String key,

java.lang.String text)
void

addSelection Selects an item with the given
key.

Clicking on an selected item
does NOT fire an event.

(java.lang.String sel) void

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 598

getKeyByIndex Returns the key of an item with
specified index.

(int index) java.lang.String

getKeys Returns an iterator for all keys
in the list.

() java.util.Iterator

getMultiSelection Returns the keys of the
currently selected items. The
model must be a multi
selection model.

() lang.String[]

getNameofKeyColumn Returns the name of the
column containing the key
values if the list model is
associated with a table (for
example, JCOListModel).

() java.lang.String

getNameofTextColumn Gets the name of the column
containing the visible texts if
the list model is associated
with a table (for example,
JCOListModel).

() java.lang.String

getSingleSelection Gets the key of the currently
selected item if the model is a
single selection model.

() java.lang.String

getTextByIndex Returns the visible text of an
item with the specified index.

(int index) java.lang.String

getTextForKey Returns the text associated
with the key.

(java.lang.String key) java.lang.String

isSelected Returns the status (selected or
not selected) for an item with
the specified index.

(int index) boolean

isSelected Returns the status (selected or
not selected) for an item with
the specified index.

(java.lang.String key) boolean

isSingleSelection Returns the status of the model
(Singleselect or Multiselect).

() boolean

removeSelection Deselects an item with the
given key.

(java.lang.String sel) void

setNameOfKeyColumn Sets the name of the column
containing the key values if the
list model is associated with a
table (for example,
JCOListModel).

This method has now visible
effect.

(java.lang.String n) void

setNameOfTextColumn Sets the name of the column
containing the visible texts if
the list model is associated
with a table (for example,
JCOListModel).

This method has now visible

(java.lang.String n) void

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 599

effect.

setSelection Selects an item with the given
key. The selection from
previous selected items is
removed.

Clicking on an selected item
does NOT fire an event.

(java.lang.String key) void

setSingleSelection Defines the selection mode for
the model. Set to true one item
can be selected at one time,
set to false multiple entries can
be selected.

If the model is set to multiple
select mode, no event for the
control must be defined to
avoid events when multiple
selects are made. Multiple
selects can be made by
holding the <Shift> or
<Strg>/<Ctrl> key down and
click on the entries.

(boolean selection) void

size Returns the number of
items/entries in the list.

() int

Example
Setting the model

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 600

import com.sap.htmlb.BreadCrumb;
import com.sap.htmlb.IListModel;
import com.sap.htmlb.DefaultListModel;

public class BreadCrumbBean {
 private IListModel model;

 /* Constructor - set the basic item (Home) */

 public BreadCrumbBean() {

 /* create model */
 model = new DefaultListModel();
 /* add items to the model */
 model.addItem("start", "Start");
 model.addItem("level1", "1stVisitedPage");
 model.addItem("level2", "2ndVisitedPage");
 model.addItem("actlevel", "ActualLevel");
 /* pre select an item in the model */
 model.addSelection("level1");
 }

 /* get and set method for the model */

 public IListModel getModel() {

 return this.model;
 }

 public void setModel(IListModel bc) {

 model = bc;
 }

}

Getting selected items

The example assumes that a listBox in a JSP has the attribute 'onSelect' set, so that an event
is fired when the user clicks in the list. We define a method 'onSelect' in the DynPage to
handle the event. The method grabs the listBox id, retrieves the selected items and put the
string of the selected items in a StringBuffer.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 601

public void onSelect(Event event) throws PageException {
 /* Handles event from the listbox
 get the listbox by name. The listbox id in the JSP is "LB_Pick" */
 ListBox lb = (ListBox) this.getComponentByName("LB_Pick");

 /* retrieve the items with method "getMultiSelection */
 String[] selection = lb.getMultiSelection();
 StringBuffer sel = new StringBuffer();

 /* get number of items in selection with the "length" method
 - for loop to store it in StringBuffer */
 for (int i = 0; i < selection.length; i++) {
 sel.append(selection[i] + " ");
 }
}

Related Topics
Using beans and models [Page 33]

3.4.2.8.4 TableViewModel

public interface TableViewModel
All known implementing classes: DefaultTableViewModel, JCOTableViewModel

The TableViewModel interface specifies the methods the TableView will use to interrogate a
tabular data model. The tableView can be set up to display any data model which implements
the TableViewModel interface.

The TableView model uses vectors to supply the tableView with data. Visible columns are a
subset of the data in your model.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 602

The absolute position in the data source has to be calculated by the application.

Method Description Argument Return value

addColumn Adds a column with the
specified name to the
visible columns.

(java.lang.String colNam) TableColumn

addKeyColumn Adds a key column. (int columnIndex) void

getColumnAt Returns the column for the
specified index.

(int columnIndex) TableColumn

getColumnCount Returns the number of
columns in the model.

() int

getColumnName Returns the name of the
column for the specified
index.

(int columnIndex) java.lang.String

getColumns Returns a vector to the
visible columns.

() java.util.Vector

getKeyColumn Returns the key column. () IndexedLinkedList

getRowCount Returns the number of
rows in the model.

() int

getValueAt Returns the value of the
cell for the specified
column and row index.

(int rowInd, int colInd) AbstractDataType
[Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 603

getValueAt Returns the value of the
cell for the specified
column and row index.

(int rowInd,
 java.lang.String colKey)

AbstractDataType
[Page 33]

removeColumn Removes a visible
column. The data source
is not effected.

(java.lang.String
columnName)

void

setColumnName Sets the name of the
column for the specified
columnIndex to the
specified columnName.

(java.lang.String colNam,
 int columnIndex)

void

setKeyColumn Sets the key column for
the model.

(int columnIndex) void

setValueAt Sets the value for the
specified location.

(AbstractDataType aVal,
 int rowInd, int columnInd)

void

Example
 // Create a new table model with three columns and add data:
 private DefaultTableViewModel createNewTable
 (DefaultTableViewModel model) {
 Vector data = createData();
 Vector colName = new Vector();
 /* Define column names */
 colName.addElement("1stColumn");
 colName.addElement("2ndColumn");
 colName.addElement("3rdColumn");
 model = new DefaultTableViewModel(data, colName);
 return model;
 }
 private Vector createData() {
 Vector dataVec = new Vector();
 Vector retVector = new Vector();

 /* 1st entry */
 dataVec.addElement("Row 1, Column 1");
 dataVec.addElement("Row 1, Column 2");
 dataVec.addElement("Row 1, Column 3");
 retVector.addElement(dataVec);

 /* 2nd entry */
 dataVec = new Vector();
 dataVec.addElement("Row 2, Column 1");
 dataVec.addElement("Row 2, Column 2");
 dataVec.addElement("Row 2, Column 3");
 retVector.addElement(dataVec);

 /* more entries */
 .
 .
 return retVector;
 }

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 604

Additional documentation on tableView:
How to setup and work with the onCellClick event [Page 33]

How to setup and work with the onHeaderClick event [Page 33]

How to setup and work with the onNavigate event [Page 33]

How to setup and work with the onRowSelection event [Page 33]

Related Topics
Using beans and models [Page 33]

3.4.2.8.4.1 AbstractDataType

public class AbstractDataType
Base class for different supported data types

Method Description Argument Return value

dataTypes Returns an iterator of all known
DataTypes that can be handled.

() java.util.Iterator

getInstance Returns an instance a the
specified data type.

(DataType type) AbstractDataType

getType Returns the instance of the data
type enum class that identifies the
data type.

() DataType

isLocaleSpecific Determines if a data type is locale
specific, therefore valued need
formatting before output.

() boolean

isValid Checks if the user input is valid for
this type and returns false if it is
not valid.

If the user input was invalid,
method
datatype.getValueAsString() can
be used to return the value as
string without checks.

() Boolean

setValue Sets the value of the data type. (java.lang.Object v) void

setValue Sets the value of the data type. (java.lang.Object v,
 java.util.Locale l)

void

toString Returns the data type value
represented as string.

(IPageContext pc) java.lang.String

toString Returns the data type value (java.util.Locale l) java.lang.String

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 605

represented as string.

3.4.2.9 Beans

Purpose
The bean concept - reusable components that can be used in more than one software
package - plays an important role in the portal component development. Portal components
can use the beans to store and retrieve data. The JSP as well as the servlet have read and
write access to the bean so the bean can be used to transfer data between the JSP and the
servlet. In the portal a servlet can be a DynPage or an Abstract Portal Component.

Topics
Data Storing & Retrieving in the Portal [Page 33]

Usage & Scopes [Page 33]

Using a Bean with the Taglib [Page 33]

3.4.2.9.1 Data Storing & Retrieving in the Portal
The methods to store and retrieve data in the portal differ in the lifetime and accessibility.
Lifetime is hard to guarantee in the portal. Lifetime can be very short - one request - or last
the whole session. When using session keep in mind that the lifetime of a session is
controlled by "external" events, like low resources on the server or time-out of the session,
which will destroy the stored data in a session. The accessibility controls how "visible" the
stored data is - can it be accessed by all users of the same component or only one user.

Storing data in the portal is generally not persistent. If you need persistent storing is needed
we recommend a database.

In the Portal we have:

● IPortalComponentContext

The IPortalComponentContext defines a user specific view on a Portal Component.

● IPortalComponentSession

The IPortalComponentSession is the portal component's view on the servlet session.
All objects stored in the Portal Component Session will be stored exclusively for the
triple consisting of the Portal Component, the user id and the assigned scope. The
lifetime of the shared session that is maintained by the portal environment should be
determined by the portal setup only!

The IPortalComponentSession is a "sub session" of
request.getServletRequest().getSession(). It is unique per user and Portal Component.

● ServletRequest

ServletRequest is global for all Portal Components rendered in the same request
(equals one Portal Object Model (POM) tree).

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 606

Be aware that even Portal Components on the same page are rendered in EP in
different requests, because they are rendered in separate iFrames on the page!
So you can't use the Servlet Request to transfer data between Portal
Components! To use the ServletRequest makes only sense, if you combine two
portal components in one request using the portal object model.

● Node

Node is a unique element in the Portal Object Model (POM) tree.

● HTTP Session

HTTP Session is global for all Portal Components in the same HTTP Session. You can
exchange via HTTP Session data even on different pages.

The following table give you an overview of the different methods to store and retrieve data
and the accessibility, persistence and lifetime. The table uses the variables:

IPortalComponentRequest: request

IPortalComponentSession: session = request.getComponentSession()

IPortalComponentContext: context = request.getComponentContext()

IPortalComponentProfile: profile = context.getProfile()

The table headers use following abbreviations:

S = Session specific

C = Component specific

N = Node specific

U = User specific

P = Persistent

Storing in/Methods S C N U P Lifetime

IPortalComponentContext

get: context.getValue()

put: context.putValue()

Refresh of
component
context

IPortalComponentProfile
Deprecated

get: profile.getValue()

put: profile.putValue()

scope for beans: application

IPortalComponentProfile

get: pro.getPropertyAttribute("key","val")

put: prof.setProperty("key","val")

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 607

IPortalComponentSession

get: session.getValue()

put: session.putValue()
Option: Declaration of a scope
public static short SCOPE_UNIQUE = 0;

public static short SCOPE_CONTEXT = 1;

public static short SCOPE_COMPONENT = 2;

Default: SCOPE_UNIQUE

Scope for beans: session

*

Maximum
as long as
the HTTP
session

Servlet Request

get:
request.getServletRequest().getAttribute
()

put:
request.getServletRequest().setAttribute
()

scope for beans: request

 Request

Node

get: request.getNode().getValue()

put: request.getNode().putValue()

HTTP Session

get: session.getHttpSession().getValue()

put: session.getHttpSession().putValue()

 HTTP
session

* Only if scope is set to SCOPE_UNIQUE

3.4.2.9.2 Usage & Scopes
The bean concept - reusable components that can be used in more than one software
package - plays an important role in the portal component development. Portal components
can use the beans to store and retrieve data. The JSP as well as the servlet have read and
write access to the bean so the bean can be used to transfer data between the JSP and the
servlet. In the portal a servlet can be a DynPage or an Abstract Portal Component.

Declaration of a bean in the Servlet
In the servlet the bean is usually defined with a name, a constructor and set and get methods
to handle the data. Some HTMLB-Controls need specific models. In the following example we
take the IListModel which is used by the listBox, dropdownListBox and the breadCrumb
control (other controls using models would be the dateNavigator, chart, tableView and tree).
To have access to the model in the JSP, the get and set method in the servlet has to follow
the naming convention:

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 608

get+MethodName

The MethodName must start with a capital (upper case) letter.

Example
Declaration of the bean with a model
 public class ListBoxBean {
 private IListModel ListBoxmodel;
 // get model method
 public IListModel getMyListBoxmodel() {
 return this.ListBoxmodel;
 }
 .
 .
 }

Using the bean in the JSP with a listBox

 .
 .
 <%-- Declare Bean --%>
 <jsp:useBean id="myBean" scope="application" class="bean.ListBoxBean" />
 <%-- Use Bean in model attribute. We use the id myBean (from the
 useBean statement above) and the name of the get method without
 the get --%>

 <hbj:listBox
 id="LB_Pick"
 width="100"
 size="5"
 selection="1"
 model="myBean.myListBoxmodel"
 />
 .
 .

Declaration of a Bean in the JSP
The bean has to be declared at the beginning of the JSP.

 <%-- Declare Bean --%>
 <jsp:useBean id="myBean" scope="application" class="bean.ListBoxBean" />

Attributes

Attribute M Values Description Usage

class * String (cs) Defines the class name of the
bean.

class="bean.myBean"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 609

id * String (cs)

Id of the bean in the JSP. The
id references the bean in the
JSP.

id = "myBean"

scope * APPLICATION
SESSION
REQUEST
PAGE

Defines the scope in which
the bean can be accessed.

scope = "application"

Scope in detail
Except the scope option APPLICATION all the other scope options follow the JSP
specifications from Sun Microsystems. The option APPLICATION had to be modified to meet
the requirements for a portal. The standard recommendation of APPLICATION would allow
access to a the bean through out the whole portal (it would be located in the "Web
Application" shell if you look at the following overview chart). In the portal the sphere for
APPLICATION is defined as the portal component. This gives the portal component control
over the bean but the bean cannot be accessed by other users or other applications of the
same user.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 610

Overview

The overview chart shows the location of the bean in the portal according to the scope
attribute. The scope attribute also controls the access of servlet and JSP to the bean.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 611

Scope = Application

The bean is "inside" the portal component. JSP and servlet have read and write access to the
bean.

Accessing the bean

Get a value:
 Object value =

 request.getComponentContext().getProfile().getValue(String key);

Put/set a value:

 request.getComponentContext().getProfile().putValue

 (String key, Object value);

Scope = Session
The bean is "outside" the portal component. JSP and servlet have read and write access to
the bean.

Accessing the bean

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 612

HTTPServlet:

Get a value:
 Object value = request.getSession().getValue(String key);

Put/set a value:
 request.getSession().putValue(String key, Object value);

Portal:

Get a value:
 Object value = componentRequest.getComponentSession().getValue

 (String key);

Put/set a value:
 componentRequest.getComponentSession().putValue

 (String key, Object value);

Scope = Request

The bean is "outside" the portal component. JSP and servlet have read and write access to
the bean. Because of the location of the bean other portal components in the same request
can access the bean as well.

Be aware that even Portal Components on the same page are rendered in EP in
different requests, because they are rendered in separate iFrames on the page!
So you can't use in general the Servlet Request to transfer data between Portal
Components! To use the ServletRequest makes only sense, if you combine two
portal components in one request using the portal object model.

This scope requires a careful selection of the bean name.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 613

Portal Component 1: Uses bean "myBean" with getName and setName
methods.

Portal Component 2: Uses bean "myBean" with getNumber and setNumber
methods.

Portal Component 1 is loaded first, than Portal Component 2 is loaded.

Result:

This would cause access error message, when Portal Component 2 uses the
getNumber or setNumber; the bean "myBean" with getName and setName is in
charge, because Portal Component 1 has been loaded first.

Accessing the bean

HTTPServlet:

Get a value:
 Object value = request.getAttribute (String key);

Put/set a value:
 request.setAttribute (String key, Object value);

Portal:

Get a value:

 Object value = componentRequest.getServletRequest().getAttribute

 (String key);

Put/set a value:
 componentRequest.getServletRequest().setAttribute

 (String key, Object value);

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 614

Scope = Page

The bean is "inside" the portal component. Only the JSP has read and write access to the
bean.

Accessing the bean

Get a value:

 Object value = pagecontext.getValue (String key);

Put/set a value:
 pagecontext.putValue (String key, Object value);

3.4.2.9.3 Using a Bean with the Taglib
The bean has to be declared at the beginning of the JSP.

<jsp:useBean id="myBean" scope="application" class="bean.myBean"
/>

See Beans: Usage & Scopes [Page 33] for details about the attributes.

To specify the model for the control with the taglib without a scriptlet, a property section in the
bean must be defined. In addition the bean needs set and get methods to have access to the
bean. The get and set method for the bean has to follow the naming convention:

get+MethodName

The MethodName must start with a capital (upper case) letter.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 615

The following example shows the definition of the bean and than the specification in the JSP.
The get and set methods in the bean are called setModel and getModel. The JSP
accesses the bean with the bean id and the method model.

Example
Definition of the bean:

 package bean;

 import com.sap.htmlb.BreadCrumb;
 import com.sap.htmlb.IListModel;
 import com.sap.htmlb.DefaultListModel;

 public class BreadCrumbBean {

/* Property declaration */
 private IListModel model;

/* Constructor */
 public BreadCrumbBean() {
 model = new DefaultListModel();
 model.addItem("home","Home");
 }

/* Defining methods */
 public IListModel getMyDefaultListModel() {
 return this.model;
 }
 public void setMyDefaultListModel(IListModel bc) {
 model = bc;
 }
 }

Using the bean in the JSP

<%-- We introduce the bean to the JSP with the id "myBean". --%>
<%-- With the id we have access to the bean in the JSP. --%>
<%-- As class name we have to specify the package name --%>
<%-- plus the class name of the bean – --%>
<%-- that is "bean.BreadCrumbBean" --%>
 <jsp:useBean id="myBean" scope="application" class="bean.BreadCrumbBean"
 />
 <hbj:breadCrumb id="breadCrumb"
 tooltip="Click to move back to ..."
 onClick="goToPage"
 size="SMALL"
 behavior="DEFAULT"
<%-- model is specified with the id used in useBean (myBean) --%>
<%-- and the property model --%>
 model="myBean.myDefaultListModel"
 />

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 616

Special Naming Convention - model
The method name model invokes a special process. If you define getModel and setModel
methods in your bean you can refer in the JSP to your bean like that:

<jsp:useBean id="myBean" scope="application" class="bean.BreadCrumbBean"
/>
 <hbj:breadCrumb id="breadCrumb"
 tooltip="Click to move back to ..."
 onClick="goToPage"
 size="SMALL"
 behavior="DEFAULT"
<%-- model is specified with the id used in useBean (myBean) --%>
<%-- and the property model --%>
 model="myBean.model"
 />

Because of an internal convention that becomes effective when using the name model, the
scope of the useBean statement is omitted and the model will be looked up in every scope in
the following order:

page

request

session

application

In case you want to use different models that you transfer in different contexts (for example,
session and application) you have to use another name for the get and set methods.

This special case however is only in effect when you use the model tag as shown in the
example above (model="myBean.model"). If you refer to your model in a scriptlet, the
model is taken from the scope declared in the useBean statement only.

3.4.2.10 JavaScript API

Purpose
The JavaScript API allows access to HTMLB components in JavaScript programs. Every
component which is capable of client side eventing, has to set the "jsObjectNeeded" attribute
(inherited from the Component [Page 33] component) to TRUE so that the component can be
accessed with the JavaScript API. See also the EventValidationComponent [Page 33]
description for more details.

Example for InputField
Using the InputField component

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 617

 Form form = (Form)this.getForm();
 InputField inf2 = new InputField("currencyDisplay");
 // Enable JavaScript object generation for access in JavaScript
 inf2.setJsObjectNeeded(true);
 inf2.setClientEvent(EventTrigger.ON_CHANGE,
 calculateCurrencyToFrom()");
 inf2.setBCD("100");
 inf2.setWidth("250px");
 form.addComponent(inf2);

Getting the InputField object in JavaScript
 function calculateCurrencyFromTo(){
 var funcName = htmlb_formid+"_getHtmlbElementId";
 func = window[funcName];
 var inputfield = eval(func("currencyDisplay"));
 // Now we have the inputField, so we can access it, for example
 // set a new value
 if (inputfield)
 inputfield.setValue("100.23");
 }

Getting the InputField ID with Java

The IdD of a HTMLB component is generate by the HTMLB API. To get the Id of a component use:
 InputField inf2 = new InputField("currencyDisplay");
 String inputfieldID = pageContext.getParamIdForComponent(inf2);

The inputfieldID can now be used to access the component:
 <script> var inputfield = eval(inputfieldID);</script>

Components
The components that support client side eventing, like inputField and label, have a API for
JavaScript that allow access and modification of the component on the client side.

Label
● enabled

A boolean value that indicates if the component is enabled (=true) or disabled (=false).

● id

Identification code of the component.

Properties Methods

id setEnabled()

isEnabled setDisabled()

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 618

Button
● enabled

A boolean value that indicates if the component is enabled (=true) or disabled (=false).

● id

Identification code of the component.

Properties Methods

id setEnabled()

isEnabled setDisabled()

InputField
● enabled

A boolean value that indicates if the component is enabled (=true) or disabled (=false).

● id

Identification code of the component.

● value

Content of the inputField.

Properties Methods

id setEnabled()

isEnabled setDisabled()

 setValue(value)

 getValue()

CheckBox
● checked

A boolean value that indicates if the component is checked (=true) or disabled (=false).

● enabled

A boolean value that indicates if the component is enabled (=true) or disabled (=false).

● id

Identification code of the component.

Properties Methods

id setEnabled()

isEnabled setDisabled()

 setChecked(boolean)

 getChecked()

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 619

DropDownListBox & ListBox
● checked

A boolean value that indicates if the component is checked (=true) or disabled (=false).

● enabled

A boolean value that indicates if the component is enabled (=true) or disabled (=false).

● id

Identification code of the component.

● index

Index of selected entry of the list box, "top down", starting with 0.

● option

An entry in the list box.

● value

The key of an entry in the list box.

Properties Methods Comment

id setEnabled

isEnabled setDisabled

 setIndex(index) Set the selected entry by index number.

 getIndex()

 addOption(key, visibleText)

 removeOption(key)

 setValue(Key) Sets the selected entry by key.

 getValue() Get key of the currently selected entry.

RadioButton
To get the radio button object use:
 function calculateCurrencyFromTo(){
 var funcName = htmlb_formid+"_getHtmlbElementId";
 func = window[funcName];
 var rb = eval(func(htmlb_radiobuttonmodifier+"radiobutton"));
 .
 .
 }

● enabled

A boolean value that indicates if the component is enabled (=true) or disabled (=false).

● id

Identification code of the component.

Properties Methods

id setEnabled()

isEnabled setDisabled()

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 620

TableView
The htmlbevent object provides methods to get and set following information:

Method Description

htmlbevent.obj.getClickedColumn() Returns the column index of the column that has
been clicked.

htmlbevent.obj.getClickedRow() Returns the row index of the row that has been
clicked.

htmlbevent.obj.getClickedRowKey() Returns the row key of the row that has been
clicked.

htmlbevent.obj.getSelectedRow() Returns the index of the selected row (single
select mode).

htmlbevent.obj.getSelectedRows() Returns an array with the indices of all selected
rows (multiple select mode).

htmlbevent.obj.getSelectedRowKey() Returns the key of the selected row (single
select mode).

htmlbevent.obj.getSelectedRowKeys() Returns an array with the keys of all selected
rows (multiple select mode).

Example
myTable.setOnClientRowSelection("alert('You clicked on row with key
 '+htmlbevent.obj.getClickedRowKey());
 alert('Selected rowkeys are:
 '+htmlbevent.obj.getSelectedRowKeys())");

3.4.2.11 Examples
The HTMLB controls can be used in a DynPage or JSPDynPage in the portal as well as
servlets that run on any other servlet machine. This documentation however covers the usage
of HTMLB controls in the portal.

3.4.2.11.1 Building a JSPDynPage
This document describes the principles of a JSP DynPage and provides a basic
example with JSP and describes which methods have to be implemented. The next
step is the event handling of a JSP DynPage and the data exchange between the JSP
DynPage and the JSP.

To work with this document you need a basic understanding of Java Server Pages (JSP). Sun
provides JSP documentation. The Portal Runtime (PRT) has made modifications to the JSP
standard. For details see Java Server Pages (JSP) Support in the Portal Runtime (PRT).

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 621

The example has following steps:

Creating the JSPDynPage [Page 33]

JSPDynPage event handling [Page 33]

Data exchange between JSPDynPage and JSP [Page 33]

Data Exchange Using a Bean [Page 33] (used in the example).

Alternative: Data Exchange Using the Session Object [Page 33]

Alternative: Data Exchange Using the Context Object [Page 33]

Alternative: Data Exchange Using the Request Object [Page 33]

Concept of the JSP DynPage
JSP/Servlets offer basic event handling, you have to take care of the event handling yourself
(analysing the received form, getting the sender of the event etc.). In addition, the
programmer has to take care of the session identifier, which is a unique identifier that makes
sure that the datasets are user specific. The JSP DynPage provides enhanced event handling
and easy session management. In this example we use the HTML-Business for Java
(HTMLB) controls to create the Graphical User Interface (GUI). HTMLB is a Portal service.

Dataflow of a DynPage Component

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 622

3.4.2.11.1.1 Creating the JSPDynPage
First step to create a portal component is to define a class that works as loader class - it
inherits from the PageProcessorComponent. The created loader class (in the following
example named ExampleOneDyn) executes the method getPage() and returns a unique
value of the JSP DynPage we can use (in the following example named DynPageOne).
package com.mycompany.basicexample;

import com.sap.htmlb.page.DynPage;
import com.sap.portal.htmlb.page.PageProcessorComponent;

public class ExampleOneDyn extends PageProcessorComponent {

 public DynPage getPage() { // Has to be overridden
// Calls the DynPage and returns its value as DynPageOne
 return new DynPageOne(); }
}

The SAP EP Developer Plug-ins provide a JSP Dynpage wizard, that creates all
necessary classes, beans and JSP for a JSP Dynpage.

The class DynPageOne is extended from the DynPage class. Following methods have to be
overwritten:

● doInitialization

Called when the application is started. The call is made when the page is directly called
per URI without parameters and no event occurred.

Usually this method is used to initialize data and to set up models. Be aware of the fact
that the doInitialization event is also caused when another portal component on the
same page sends an event.

With the "Personalize" Dialog you can compose a page by grouping several
portal components together. We have created a page called myPage with two
portal components - A and B. When calling the page myPage the doInitialization
is called from portal component A and B followed by the call of the method
doProcessBeforeOutput. When an event occurs in the portal component B (for
example, by clicking on a button), the doInitialization method in portal
component A is called again, while in portal component B the method
doProcessAfterInput followed by the event handling method assigned for the
button and finally the doProcessBeforeOutput method.

To create solid portal components you must be aware of the fact and check in the
doInitialization method if the data has already been initialized or the models have been
created. Otherwise you portal component is always reset to the initial state if an event
in another portal component occurs.

The Enterprise Portal treats every portal component isolated. In this case an event in
one portal component does not cause the doInitialization event in the other portal
component on the same page. The PDK can emulate this behavior by setting the
ISOLATED flag in the page description XML file to true. The page description XML file
in the content folder of the page and defines the position of the portal component,
height and tray type.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 623

Example for an entry in the XML file:

<component name="AAA.default" title="AAA.default"
height="400" trayType="SAPTrayD3" Position="1"/>

Example for an entry in the XML file with isolation flag set so that PDK behaves
like the Enterprise Portal:
<component name="AAA.default" title="AAA.default"
isolated="true" height="400" trayType="SAPTrayD3"
Position="1"/>

If you use the Page Editor in the DevTools section of the PDK you can set the isolated
flag interactively.

● doProcessAfterInput

Called when the web client sends the form to the web server. Except on doInitialization
(see above) the call is performed every time an event occurs.

● doProcessBeforeOutput

Called before the form is sent to the web client. The call is performed every time even
on doInitialization.

In our example we only use the doProcessBeforeOutput method, the other methods stay
"empty".

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 624

package com.mycompany.basicexample;
import com.sap.htmlb.*;
import com.sap.htmlb.enum.*;
import com.sap.htmlb.page.PageException;
import com.sap.portal.htmlb.page.JSPDynPage;

public class DynPageOne extends JSPDynPage {

 /* Constructor */
 public DynPageOne() {
 this.setTitle("DynPageOne");
 }

 /* Used for user initialization. Called when the application is
 * started */
 public void doInitialization() {
 }

 /*
 * Used for handling the input.Generally called each time when an
 * event occurs on the client side.
 */
 public void doProcessAfterInput() throws PageException {
 }

 /* Used for handling the output. This method is always called.
 In our example the JSP makes a textView that displays
 "May the force be with you unknown user". */

 public void doProcessBeforeOutput() throws PageException {
 // set the JSP which builds the GUI
 this.setJspName("OutputText.jsp");
 }
}

JSP - OutputText.jsp - that is called by doProcessBeforeOutput
<%-- OutputText.jsp --%>
<%@ taglib uri= "tagLib" prefix="hbj" %>
<hbj:content
 id="myContext">
 <hbj:page
 title="An Easy Start">
 <hbj:form>
 <hbj:textView
 id="welcome_message"
 text="May the force be with you unknown user"
 design="HEADER1"
 />
 </hbj:form>
 </hbj:page>
</hbj:content>

Deployment descriptor: Necessary entries to execute this portal component:

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 625

<application>
 <application-config>
 <property
 name="SharingReference"
 value="htmlb"/>
 </application-config>
 <components>
 <component
 name="default">
 <component-config>
 <property
 name="ClassName"
 value="com.mycompany.basicexample.DynPageOne"/>
 <property
 name="SecurityZone"
 value="com.sap.pct.pdk/low_safety"/>
 </component-config>
 <component-profile>
 <property
 name="tagLib"
 value="/SERVICE/htmlb/taglib/htmlb.tld"/>
 </component-profile>
 </component>
 </components>
 <services/>
</application>

The entry for ClassName is case sensitive. The entry SharingReference makes sure, that the
necessary HTMLB libraries are found.

The strength of the JSP DynPage is the event handling. The JSP DynPage follows the
concept of Java controls (for example, Swing) - Java controls, like the HTMLB controls, can
have one or more events. You define the event by assigning a method name to the event.
The method is called whenever the event is raised (for example, when a button is clicked).
The event handling method is coded in the JSP DynPage. The JSP DynPage does the event
handling and calls the proper event handling method.

Next step in our example is to place a button to our user interface and define an event for it.

3.4.2.11.1.2 JSPDynPage Event Handling
Some HTML-Business for Java controls have an event attribute (for example, see button).
The button for example has an 'onClick' attribute that specifies the name of the method which
should handle the event. The event will occur when the appropriate user action takes place -
in this case clicks on the button. The name of the method specified with the 'onClick' attribute
has to be declared in the JSP DynPage.

HTML-Business for Java: Statement to specify the method name:

Button1.setOnClick("myClick");

JSP DynPage: Declaration of the method that processes the event:

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 626

public void myClick (Event event) { ..coding.. }

or
public void onMyClick (Event event) { ..coding.. }

Both declarations are valid. The decision to use the on... method declaration could be helpful
to make it obvious that this method handles an event.

With the on.. declaration method the first letter of the declared event name must
be a capital letter.

If both methods are implemented (myClick and onMyClick), only the method myClick, will be
called. The method onMyClick will be ignored.

Some HTML-Business for Java controls have a 'setOnClient' attribute. With this
attribute you specify a JavaScript fragment that handles the event on the Web
client side. The event is NOT transmitted to the Web server.

If an event occurs it is handled as follows (doInitialization is performed when the application
starts).

● doProcessAfterInput

Called when the web client sends the form to the web server.

● onMyClick

The event handling method we declared.

● doProcessBeforeOutput

Called before the form is sent to the web client.

Event Processing

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 627

3.4.2.11.1.3 Data Exchange between JSPDynPage and JSP
The storing methods we discuss in this section are volatile in the sense that the data is lost
when the session is over (or even before that). Generally you have to decide if the data you
provide in the JSP DynPage should be shared among other users and how long the data
must "live". For storing data permanently you can refer to the Profile documentation.

Storing data can be performed using:

● beans

A bean is defined with set and get methods. The bean can be accessed from the JSP
DynPage and the JSP as well as from other users (depending on the scope, see
"Usage of Beans").

● session

Data stored in the http session will be kept by the server as long as the user session is
alive.

● context

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 628

The lifetime of data stored in the context cannot be guaranteed. The context can be
released any time when the web server needs resources.

● request

Data stored in the request are kept for the request.

3.4.2.11.1.3.1 Data Exchange Using a Bean
A bean is used to get and set "dynamic" data. The JSP DynPage usually provides the bean
with data and the JSP reads the data. The functionality of the basic example is extended by
an input field that allows user input. The user input is stored in a bean and than displayed as
text by a JSP program.

Following steps are necessary

● create a bean

● initialize the bean

● introduce the bean to the JSP program OutputText.jsp

Declaring a bean in a JSP
The tag usebean [Page 33] declares a bean in a JSP.

● class

Class name of the bean.

● id

Identification name of the bean. The id is used to access the bean in scriptlets.

● scope

Defines the availability of the bean. Details see "How to use Beans [Page 33]".

Attributes M Values Usage – JSP Taglib

class * String (cs) class="com.sap.htmlb.beandemo.myBean"

id * String (cs) id="idOfMyBean"

scope * APPLICATION
SESSION
REQUEST
PAGE

scope="APPLICATION"

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 629

Bean for the JSPDynPage Example
package bean;
/*
 * A simple bean whose only purpose is to store a String.
 * It as a get and set method to store and recall the string.

 */
public class DynPageNameBean {
 public String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

The GUI is extended by an inputField and a button to allow the user to enter a string (for
example, user name) and submit the form by clicking the button or pressing Return/Enter on
the keyboard.

Following changes to OutputText.jsp are necessary:

● Adding a form to allow the definition of a default button.

● Introduce the bean to the JSP program (<jsp:usebean .../>).

● Changing the textView so that it displays the string retrieved from the bean.

● Adding a label telling the user to enter the user name. The label should start in a new
line and one line separated from the textView. That is why you find a

 before
the label

● Adding the inputField "user_name_input" - the JSP DynPage retrieves the data in the
input field using getComponentByName.

● Adding a send button which we also define as the default button. This enables the user
to send his input back to the server by either clicking on the button or by simply
pressing Enter/Return on the keyboard when he finished the input.

<%-- OutputText.jsp --%>
<%@ taglib uri= "tagLib" prefix="hbj" %>
<hbj:content
 id="myContext">
 <hbj:page
 title="An Easy Start">
 <hbj:form
 id="myFormId">
 <%-- Declaration of the bean. --%>
 <jsp:useBean
 id="UserNameBean"
 scope="application"
 class="bean.DynPageNameBean"
 />
 <hbj:textView
 id="welcome_message"
 design="HEADER1">
 <%
 welcome_message.setText
 ("May the force be with you "+UserNameBean.getName());

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 630

 %>

 </hbj:textView>

 <hbj:label
 id="label_input"
 text="Your name please"
 design="LABEL"
 required="TRUE"
 labelFor="user_name_input"
 />
 <%-- inputfield to allow userinput - the inputfield has the id --%>
 <%-- "user_name_input" which is used in the JSP DynPage to --%>
 <%-- access the input field and retrieve the input of the user --%>
 <hbj:inputField
 id="user_name_input"
 type="STRING"
 design="STANDARD"
 width="250"
 maxlength="30"
 />
 <hbj:button
 id="Send_Button"
 text="Send"
 tooltip="Sends my name"
 onClick="onSendButtonClicked"
 width="100"
 design="EMPHASIZED">
 <%
 myFormId.setDefaultButton(Send_Button);
 %>

 </hbj:button>
 </hbj:form>
 </hbj:page>
</hbj:content>

Result
Hint: The default string "unknown user" will be set in our JSP DynPage in the following
section.

Changes in the JSPDynPage
The JSP DynPage has to be adjusted as well. Following steps are necessary:

● Introducing the bean to the JSP DynPage (Import statement).

● In the doInitialization() method we set a default user name to "unknown user".

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 631

● Creating the event method onSendButtonClicked() for the button click in which the
status (variable state) is set to WELCOME_STATE so that the doProcessBeforeOutput
selects another JSP file.

● In doProcessAfterInput() method (which is called whenever an event occurs) we
request the inputField "user_name_input" from the JSP by using
getComponentByName to have access to the user input in the JSP DynPage. If the
inputField "user_name_input" is not empty the string is stored in the bean.

package com.mycompany.basicexample;
/** introduce the bean */
import bean.DynPageNameBean;
import com.sap.htmlb.*;
import com.sap.htmlb.enum.*;
import com.sap.htmlb.event.Event;
import com.sap.htmlb.page.DynPage;
import com.sap.htmlb.page.PageException;
import com.sap.portal.htmlb.page.JSPDynPage;
import com.sap.portal.htmlb.page.PageProcessorComponent;
import com.sap.portal.prt.component.IPortalComponentContext;
import com.sap.portal.prt.component.IPortalComponentProfile;
import com.sap.portal.prt.component.IPortalComponentRequest;

public class DynPageOne extends JSPDynPage {
 private final static int INITIAL_STATE = 0;
 private final static int WELCOME_STATE = 1;
 private int state = INITIAL_STATE;
 private String name;

 /**
 * Constructor
 */
 public DynPageOne() {
 this.setTitle("Become a Jedi");
 }

 /**
 * Used for user initialization. called when the application is
 * started
 */
 public void doInitialization() {
 // create the bean and set a default text value "unknown user
 IPortalComponentRequest request =
 (IPortalComponentRequest) this.getRequest();
 IPortalComponentContext myContext = request.getComponentContext();
 IPortalComponentProfile myProfile = myContext.getProfile();
 // new bean object
 UserNameContainer = new DynPageNameBean();
 // set default name
 UserNameContainer.setName("unknown user");
 // store bean in profile for the JSP
 myProfile.putValue("UserNameBean", UserNameContainer);
 // Set the state so that we can decide what action to do next
 state = INITIAL_STATE;
 }
 /**
 * Used for handling the input. Generally called on each event
 * we use this method to get the user name and store it in the bean
 */

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 632

 public void doProcessAfterInput() throws PageException {
 // get the input field from the JSP
 InputField myInputField =
 (InputField) getComponentByName("user_name_input");
 if (myInputField != null) {
 this.name = myInputField.getValueAsDataType().toString();
 }
 IPortalComponentRequest request =
 (IPortalComponentRequest) this.getRequest();
 IPortalComponentContext myContext = request.getComponentContext();
 IPortalComponentProfile myProfile = myContext.getProfile();
 DynPageNameBean myNameContainer =
 (DynPageNameBean) myProfile.getValue("MyNameBean");
 myNameContainer.setName(name);
 }
 /**
 * Used for handling the output. This method is always called.
 * In our example before the JSP made a textView with
 * "May the force be with you unknown user".
 * We now extend this method that according to the state it either -
 * that is when state = INITIAL_STATE - asks for the user name
 * and calls the user "unknown user" or after init - that is when
 * state = WELCOME_STATE - displays a success message with
 * the username.
 */
 public void doProcessBeforeOutput() throws PageException {
 switch (state) {
 case WELCOME_STATE :
 this.setJspName("OutputSuccessText.jsp");
 }
 break;
 default :
 this.setJspName("OutputText.jsp");
 break;
 }
 /**
 * this method handles the event of the button. The event is fired
 * either when the user clicks on the button or presses the
 * Return/Enter key when he is in the inputField (since we defined
 * the button as default button). In this method we set the state to
 * WELCOME_STATE so that on the following doProcessBeforeOutput
 * (which is called immediately after this method)
 * a success message is displayed
 */
 public void onSendButtonClicked(Event event) throws PageException {
 state = WELCOME_STATE;
 }
}

The only thing missing now is OutputSuccessText.jsp which should send the personalized
message to the user. The usage of the bean has been already shown in OutputText.jsp
so OutputSuccessText.jsp is very small and creates a textview with the username in it.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 633

<%-- OutputSuccessText.jsp --%>
<%@ taglib uri= "tagLib" prefix="hbj" %>
<hbj:content
 id="myContext">
 <hbj:page
 title="Successful processing">
 <jsp:useBean
 id="UserNameBean"
 scope="application"
 class="bean.DynPageNameBean"
 />
 <hbj:textView
 id="success_message"
 design="HEADER1">
 <%
 success_message.setText
 ("The force is with you" + UserNameBean.getName());
 %>

 </hbj:textView>
 </hbj:page>
</hbj:content>

Result of the JSP
(assuming that the user responded with "SAP")

The force is with you SAP

3.4.2.11.1.3.2 Data Exchange Using the Session Object
Data stored in the http session will be kept by the server as long as the user session is alive.

JSPDynPage
Getting the request object:

IPortalComponentRequest request =
 (IPortalComponentRequest) this.getRequest();

To store a value in the session we have to use the command line:
request.getComponentSession().putValue("myText",
 "Text in the session
context");

To get the stored value we have to use the command line:
request.getComponentSession().getValue("myText");

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 634

JSP
To store a value in the session we have to use the command line:

<%
 componentRequest.getComponentSession().putValue("myText",
 "That text is from the
JSP");
%>

To get the stored value we have to use the command line:

<%

componentRequest.getComponentSession().getValue("myText").toString
(); %>

3.4.2.11.1.3.3 Data Exchange Using the Context Object
The lifetime of data stored in the context cannot be guaranteed. The context can be released
any time when the web server needs resources. We strongly recommend to refresh the
stored data (for example, in the JSP DynPage method doProcessAfterInput, which is called
every time an event occurs on the web client) to avoid an exception. The exception will occur
when you try to access a value that is already gone (or has never been set).

JSP DynPage
Getting the request object:

IPortalComponentRequest request =
 (IPortalComponentRequest) this.getRequest();

To store a value in the session we have to use the command line:

request.getComponentContext().putValue("myText",
 "A short note in the
context");

To get the stored value we have to use the command line:
request.getComponentContext().getValue("myText");

JSP
To store a value in the session we have to use the command line:

<%
 componentRequest.getComponentContext().putValue("myText",
 "From the JSP");

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 635

%>

To get the stored value we have to use the command line:
<%

componentRequest.getComponentContext().getValue("myText").toString
();

%>

3.4.2.11.1.3.4 Data Exchange Using the Request Object
The lifetime of data stored in the request is limited to the request only. You have to refresh the
stored data (for example, in the JSP DynPage method doProcessAfterInput, which is called
every time an event occurs on the web client) to avoid an exception. The exception will occur
when you try to access a value that is already gone (or has never been set).

JSP DynPage
Getting the request object:

IPortalComponentRequest request =
 (IPortalComponentRequest) this.getRequest();

To store a value in the session we have to use the command line:
request.getNode().putValue("myText", "A short note in the
request");

To get the stored value we have to use the command line:

request.getNode().getValue("myText");

JSP
To store a value in the session we have to use the command line:

<%
 componentRequest.getNode().putValue("myText", "That is from the
JSP");
%>

To get the stored value we have to use the command line:

<%
 componentRequest.getNode().getValue("myText").toString();
%>

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 636

3.4.2.12 Mobile Enhancements

Purpose
Mobile enhancements for SAP NetWeaver support the development of user interfaces for
mobile devices such as pocket PCs or WAP-capable mobile telephones, thereby enhancing
the SAP Web infrastructure. They are based on an online technology in which the mobile
device is directly linked to a Web server. Examples of these technologies include WAP,
wireless LANs, Bluetooth, or GPRS. The mobile enhancements enable you to create and
modify mobile Web applications simply and cost-efficiently.

3.4.2.12.1 Mobile HTML-Business for Java

Purpose
The following documentation provides your development team with an introduction to the
technical extensions to HTMLBusiness for Java for mobile devices, such as pocket PCs and
WAP-enabled devices. These mobile extensions allow developers to create Web applications
with easy to use Web controls. Moreover, using the device recognition mechanism described
by the ClientInfo Package [Page 33], they also provide detailed information about the mobile
device making the request and its browser capabilities. These browser capabilities are taken
into account when Web controls are displayed on the mobile devices.

For more information, refer to:

• Mobile Extensions to the Java Servlet Containers [Page 33].

3.4.2.12.1.1 Mobile HTML-Business for Java – An Overview
The mobile extensions to HTMLBusiness for Java allow you to develop Web applications for
mobile devices in a device-independent way. The programming effort associated with
developing Web applications for different mobile device types can thus be simplified and
reduced.

These extensions not only enable development teams to create Servlets and Java Server
Pages (JSPs) independent of devices and platforms. They also remove the need for
developers to learn the markup language WML, which would otherwise be necessary to
develop applications for WAP-enabled devices. To keep you abreast of the latest
development techniques, SAP will include new markup languages, such as XHTML,
immediately. Another advantage of Mobile HTMLBusiness for Java is that SAP has already
taken the differences between micro-browsers on different mobile devices into account. It is
important to remember that this includes differences in the way Web pages are displayed in
the same browser on different devices.

Introductory notes
Mobile HTML-Business for Java is implemented in the package com.sap.mobile.htmlb.
To run Mobile HTMLBusiness for Java, you must install (that is, deploy) the two packages

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 637

com.sap.mobile.clientinfo and com.sapportals.htmlb in the Java Servlet Engine
environment.

The ClientInfo package contains the device recognition data of the different mobile devices
and implements the device recognition process. For more information on Web application
client information, refer to Device Recognition [Page 33] and ClientInfo Interface [Page 33].

The Client package is delivered in the archive files clientinfo.jar, clientinfo.war,
clientinfo.ear, and clientinfo.sda The Mobile HTMLBusiness for Java package is
stored in the archive files mobilehtmlb.jar, mobilehtmlb.war, mobilehtmlb.ear,
and in the SAP-specific format mobilehtmlb.sda.

The Software Delivery Archive (SDA) is the delivery format for SAP applications
in languages other than ABAP. It is a ZIP-compatible archive format used as a
container for other archives. The SDA contains the manifest information for the
archives it contains (such as .jar, .war, and .ear files) along with a SAP
manifesto containing additional information needed for software logistics.

Integration
To be able to use the functions of Mobile HTMLBusiness for Java you need the two packages
com.sapportals.htmlb and com.sap.mobile.clientinfo.

Features
HTMLBusiness for Java lets you create Web pages with the emphasis on design and
provides application programmers with a range of basic Web controls (components) in the
form of a class and tag library – similar to the Swing classes offered by Java.

Mobile HTMLBusiness for Java extends the functions of HTMLBusiness for Java for mobile
devices.

 This mobile extension thus enables you to use Web controls to develop Web applications for
mobile devices like pocket PCs and WAP-enabled mobile telephones.

The term Web controls refers to user interface elements that are used in Web applications to
allow users to execute actions. Pushbuttons, checkboxes, and radio buttons are just a few
examples of Web controls. They can be inserted in servlets and JSP pages using specially-
provided tags.

As a subclass of HTMLBusiness for Java, Mobile HTMLBusiness for Java uses all its
functions – not just the Web controls themselves, but also:

● The runtime environment

● Event handling (creating events, when the user performs an action, such as moving the
mouse)

● The data binding concept (access to data)

The development team no longer needs to go into the different behaviors of mobile devices
and their Web browsers. (The differences between Web browsers used by mobile devices are
even greater than those between browsers used on personal computers). In some cases,
difference are so great that you need to write several different Web applications to optimize
display on different devices. (See Differences Between Mobile Devices [Page 33]).

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 638

3.4.2.12.1.2 Model View Controller Architecture – The Underlying
Concept

The HTMLBusiness Library is based on the Model View Controller (MVC) architecture, which
also provides the basis for the Swing components in Java.

In this approach, the programming model for user interface elements is divided into three
areas:

● Model = the component (Web control)

● View = the graphical display (renderer)

● Controller = the object that calls the correct renderer class

In HTMLBusiness for Java, there is a model class for each component (Web control,
container) that can be accessed through its interface. In addition, there is at least one view
class for each component, which translates the components into actual HTML. The central
controller class, PageContext, and the interface IPageContext control the associated view
classes. When a mobile device sends an HTTP request, this class ensures that the renderer
class used is the one for this device.

Renderer classes are pseudo-static in character. That is, like static classes, they do not
create instances, whereas like dynamic classes they are not instantiated until runtime and do
not reserve space in memory till then. They create an instance for each browser and each
Web control.

Within this MVC architecture, Mobile HTMLBusiness for Java supports all components (Web
controls) relevant for mobile devices – such as buttons or tableViews – and provides special
view classes (renderer classes) for mobile devices such as pocket PCs and WAP-enabled
devices. In this way Mobile HTMLBusiness for Java provides a range of Web controls for
mobile devices allowing you to develop Web applications that can be run and displayed on
different devices.

3.4.2.12.1.3 Special Features of Web Controls for Mobile
Applications

Overview
Our main aim is to enable you to develop Web applications without your having to take the
properties of different devices and browser flavors into account. This means that the source
code you write for a Web application for a conventional personal computer can also run
without additional problems on mobile devices.

Use
Using Web controls, you can program Web applications quickly and easily. You need not
worry about the different ways in which this application will be displayed. Each Web Control
possesses different attributes that define the appearance of that control on the screen.

(For examples, see the User manual for HTML-Business for Java documentation).

There are mobile devices that cannot evaluate some of these attributes and thus cannot
support their display on screen. When you use Mobile HTMLBusiness for Java, these
attributes are ignored. The button Web control possesses the attributes design, disabled, id,
text, width, and tooltip. For pocket PCs for example, the value of the design button attribute is
limited to the value Standard, since you cannot display buttons highlighted on this device

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 639

(among other limitations). The Emphasized and Small values are ignored and always set to
the predefined value Standard.

When you use Web controls on mobile devices, the following principles generally apply:

● The following Web controls are supported for Web applications on mobile devices:
Button, breadCrumb, checkbox, checkboxGroup, dateNavigator, dropdownListBox,
gridLayout, group, image, inputField, itemList, label, link, listBox, radioButtonGroup,
tableView, tabStrip, textEdit, textView, and tray.

● The tooltip and disabled attributes are ignored for all available Web controls.

● All server-side events – such as onClick – are supported.

Client-side events such as onClientClick are not supported for mobile devices.

If you want to use the image Web control for WAP-enabled devices, you must
also save the graphic in the WBMP format, supported by WAP browsers, with the
same filename and in the same directory – for example src="/sap/Walldorf.jpg"
and src="/sap/Walldorf.wbmp"

If an attribute is not supported, the application takes its default value. (For the
default value of each control attribute, refer to the documentation on
HTMLBusiness for Java).

The following table shows further constraints for specific Web controls when used with mobile
applications. It also shows which events, attributes, and attribute values are ignored when
specific Web controls are used on mobile devices, along with the effects of the attribute when
the control is displayed on screen.

(Unsupported values are indicated with a cross).

Component Attributes/events Values HTML WAP
button design

disabled

STANDARD

SMALL

EMPHASIZED

TRUE

FALSE

X

X

X

X *

X *

X

form target _blank

_self

_parent

_top

X

X

X

X

X

X

gridlayout style STRING X X

image src See note
above

inputfield design STANDARD

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 640

invalid

visible

SMALL

FALSE

TRUE

TRUE

FALSE

X

X

X

X *

X

X

label design

LABEL

LABELSMALL

X *

link target _blank

_self

_parent

_top

X

X

X

X

X

X

tabStrip bodyheight Unit X X

textView design EMPHASIZED

HEADER1

HEADER2

HEADER3

LABEL

LABELSMALL

LEGEND

REFERENCE

STANDARD

X *

tray onEdit

onRemove

String

String

X

X

X

X

Note:

Support for this attribute value for WAP-enabled devices depends on the device itself. Some
devices support the WML tabs <small>, , and while others do not. If a WAP-
enabled device supports the specified WML tag, the associated values Small, Emphasized,
LabelSmall, and so on are also supported.

3.4.2.12.1.4 Using JSP Tags and Components Similar to Beans

Overview
Mobile HTMLBusiness for Java offers a range of reusable interface elements (Web controls)
that you can use when programming user interfaces. It makes sense to use these Web
controls if you want to develop Java applications for different browser flavors (including micro-
browsers on mobile devices).

By using Web controls you can substantially reduce the amount of code you need to write (to
mention just one benefit of these objects). This does not only improve the performance of
mobile devices. In some cases, it makes it possible to run them at all. This is because the
amount of memory available to applications is of particular importance in this area. For

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 641

example, many WAP-enabled devices, like the Nokia 7110 can only handle Web pages that
are a maximum of 1.36 Mb in size.

Example
The Mobile HTMLBusiness for Java extension enables users to run Java applications
developed for the PC on mobile devices. When developing these applications, you can use
the normal tag library for developing Java Server Pages (JSPs) and the Class Library for
developing servlets.

The following table shows you how to use the textView Web control in different Web
components (servlets, JSPs):

Web component Java code

Servlet TextView t = new TextView ();

t.setText ("Hello World!);

JSP <hbj: textView

 id="Answer_Required_ZIP"
 required="TRUE"
 text="ZIP Code"
 design="emphasized">

</hbj:textView>

3.4.2.12.1.4.1 Example: Displaying the tableView Web Control
The following example of the tableView Web control shows the different possibilities available
for displaying information on different mobile devices. This example also makes it clear that
the Web controls for each device are displayed correctly, without your having to develop
special source code.

The Web controls are displayed for a specific device in such a way that they support the
properties and characteristics of each device.

For example, the same JSP source code contained in the tableView Web control, is
displayed as follows on the following mobile devices (and emulators):

(1) Pocket-PC emulator (2) Palm emulation with Eudora
Browser

(3) WAP emulator

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 642

JSP example: Source code

<%@ page import="com.sapportals.htmlb.*,com.sap.mobile.htmlb.rendering.*,
com.sapportals.htmlb.table.TableView,com.sapportals.htmlb.event.*" %>

<%@ taglib uri="htmlb.tld" prefix="hbj" %>
<hbj:content id="myContext" >
<hbj:page title="TableView tag">
<hbj:form id="myFormId" method="post" action="">
<jsp:useBean id="myTableViewBean" scope="page"
class="com.sap.mobile.htmlb.test.MobileJspBean" />
<%
if(myContext instanceof MobilePageContext)
myTableViewBean.model.setPageContext((IMobilePageContext)myContext);
%>
<hbj:tableView id="myTableView1"
model="myTableViewBean.model"
design="ALTERNATING"
headerVisible="true"
footerVisible="true"
fillUpEmptyRows="true"
navigationMode="BYLINE"
headerText="TableView example 1"
onNavigate="myOnNavigate"
visibleFirstRow="1"
visibleRowCount="5"
rowCount="20"
>

<% // EventHandler for tableView
Event myEvent = myContext.getCurrentEvent();
if (myEvent != null) {
if (myEvent instanceof TableNavigationEvent) {
TableView table = (TableView)myContext.getComponentForId("myTableView1");
TableNavigationEvent event = (TableNavigationEvent)myEvent;
myTableView1.setVisibleFirstRow(event.getFirstVisibleRowAfter());
}
}

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 643

%>
</hbj:tableView>
</hbj:form>
</hbj:page>
</hbj:content>

Weather data binding: Source code

package com.sap.mobile.htmlb.test;

import com.sap.mw.jco.JCO;

import com.sapportals.htmlb.table.TableColumn;
import com.sapportals.htmlb.enum.TableColumnType;
import com.sapportals.htmlb.table.TableViewModel;
import com.sap.mobile.htmlb.table.MobileTableViewModel;

public class MobileJspBean {
static String[][] strWeather =
{
{ "Berlin", "13", "8", "cloudy", "4 NW", "cloudy.jpg" },
{ "Frankfurt", "9", "4", "rainy", "3 S", "rainy.jpg" },
{ "Rome", "20", "10", "sunny", "3 SW", "sunny.jpg" },
{ "London", "12", "7", "rainy", "4 NW", "rainy.jpg" },
{ "Vienna", "11", "7", "cloudy", "3 NW", "cloudy.jpg" },
{ "Lisbon", "23", "12", "sunny", "3 NE", "sunny.jpg" },
{ "New York", "8", "2", "cloudy", "1 N", "cloudy.jpg" },
{ "Los Angeles", "24", "14", "sunny", "2 SE", "sunny.jpg" },
{ "Kapstadt", "20", "17", "cloudy", "4 S", "cloudy.jpg" },
{ "Peking", "17", "2", "sunny", "3 S", "sunny.jpg" },
};

static Object[] colnames = {
"City", "Max", "Min", "Weather", "Wind", "Img" // header
};

static int[] colprios = {
1, 1, 2, 2, 2, 1 // header
};

// Properties:
public MobileTableViewModel model;

public TableViewModel getModel() {
return this.model;
}
public void setModel(MobileTableViewModel model) {
this.model = model;
}

// Default constructor:
public MobileJspBean() {

String mimePath = "/mobilehtmlb/mimes/";
int i=0;
while(i<10) {
if(strWeather[i][5].indexOf('/') == -1)
strWeather[i][5] = mimePath + strWeather[i][5];
i++;
}

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 644

model = new MobileTableViewModel(strWeather, colnames, colprios);

TableColumn col6 = model.getColumnAt(6);
col6.setType(TableColumnType.IMAGE);

}

}

We used emulators to consider the display of JSPs. Emulators are programs
that simulate the behavior of real devices. They are particularly well-suited to
testing applications, above all if you do not have the device available.

As you can see, the example of the weather information table looks different on different
browsers. However, it has been displayed on the screen according to the supported browser
characteristics.

● (1) A pocket PC with a color screen can display pictures in .jpg or .gif format along with
gridlines, columns and rows in a tabular form, with appropriately-aligned cell contents.

● (2) The Eudora Browser used on Palm devices can display table rows, but cannot put
data in vertically-aligned columns.

● (3) Conversely, the WAP-enabled mobile telephone from Siemens can display tables in
the expected way. It also supports pictures in wireless bitmap (WBMP) format.
However, this mobile telephone can only realistically display three columns, since it has
a relatively small screen. You can specify the number of columns that a mobile device
should display yourself using priorities (see above in the highlighted source code for
weather data binding). To do this, the MobileTableViewModel class is extends.

However, other WAP-enabled mobile telephones display tables differently (see
isTableSupported Method [Page 33] of the ClientInfo Interface).

3.4.2.12.2 Mobile Extensions to the Java Servlet Container

Purpose
The mobile extensions developed for a Java-enabled Web server and implemented in the
package com.sap.mobile.clientinfo allow you to develop device-specific Web
applications for mobile devices in the Java programming language.

By using these extensions, the attributes and capabilities of the mobile device making the
request can be specified, and then taken into account when the Web application is displayed.
Moreover, the extensions support the use of Web controls when developing Web applications
that can run on mobile devices, allowing you to program Web applications that are browser
and device-independent.

Features
If a Java application is to be developed, using a Java Server Page (JSP) or servlet, for
example, the development team can also access the mobile extensions of the Java Servlet

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 645

Engine. These mobile extensions make available the special requirements and properties of
mobile devices, such as:

• Size of the display field

• Input methods

• Markup languages

• Browser variants

• JavaScript support

The mobile extensions refer to the use of mobile devices like WAP-enabled mobile
telephones and Personal Digital Assistants (PDAs) and consist of the ClientInfo interface,
implemented using the SAP device recognition process.

The ClientInfo interface describes methods that provide the special properties of mobile
devices, and returns information on browser characteristics on these devices.

You can use this interface to create device-specific Web applications for mobile devices in the
Java programming language. You can thus take the browser and device-specific properties
into account when constructing the user interface.

Example
The isTitleSupported method of the ClientInfo interface specifies whether or not a label
is to appear on the top of the screen using the “title” attribute of the <card> WML tag. On
some devices, entering a title in the <card> WML tag displays a header in the Web
application title bar. However, many types of browser do not support this function. If they do
not, no header appears in the device’s user interface. To make the title appear on such
devices, it must be included in the body text of the document.

(See also isTitleSupported Method [Page 33]).

3.4.2.12.2.1 Differences Between Mobile Devices
The differences between devices can be split into the following categories:

● Size of the display field

● Input method

● Markup language

● Browser variant

Even when you use the standardized language WML, the differences are so great that you
need to create different formatting for the page for different devices, to optimize display. The
following sections list the differences in more detail:

Categories

• Size of the display field

○ PDA or Smartphone

○ PDA or Smartphone with VGA/4 format – such as pocket PC, Palm (similar to
VGA/4)

○ Telephones with a small screen

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 646

● Input method

○ Keypad

○ On-screen input using keyboard or handwriting recognition – for example,
pocket PC, Palm

○ Telephone keypad

● Markup language

○ HTML 3.2 – for example, pocket PC

○ Restricted version of HTML – for example, Palm, i-mode, Mobile Explorer

○ WML (>=Version 1.1)

● Browser variant

○ WAP 1.0

○ WAP 1.1 – Nokia

○ WAP 1.1 – Openwave Browser

○ WAP 1.1 – Ericsson

○ WAP 1,2

○ WAP browser on PDAs (EZOS, Materna, WAPMan, and so on)

The differences in the display of an Internet service depend not only on the
browser variant. The same browser on different devices displays the Internet
service differently.

Other differences
● Color display capability (color, grayscale, black and white)

● Graphic formats

See also:
Effects of the Differences Between WAP Browsers [Page 33]

3.4.2.12.2.2 Effects of the Differences Between WAP Browsers
The following examples show why different WAP browsers require different WML pages. The
following list is sorted in descending order of priority.
...

1. Ability to display a page

The same page is displayed correctly on one browser but cannot be displayed at all on
another.

In many cases, pages on one manufacturer’s browser are displayed completely,
whereas they are cut off on a browser from a different manufacturer. For this
reason, you must test your pages on browsers from several different
manufacturers.

2. Usability of functions

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 647

Certain functions cannot be used on certain browsers.

WTAI-Links (Wireless Telephony Application Interface) work on Openwave
Browsers. On some devices, the links are displayed but do not work. For this
reason, you should not send WTAI links to the Nokia 7110 mobile telephone, for
example. Conversely, you should use them on Openwave Browsers.

3. Display quality (1)

The appearance of the page is unacceptable.

The markup language WML contains the table tag <table>. The Nokia 7110
interprets this, but does not do justice to its tabular character. On an EZOS
Browser, the table is formatted correctly.

4. Display quality (2)

Many of the differences between browsers cause the display of the same page to differ
on different browsers, but in a way that is still acceptable.

For example, the character formatting tags , <u>, <small>, and so on are
ignored by the Nokia 7110 mobile telephone. However, this does not affect the
user’s ability to use the functions. You should use these tags in pages displayed
on an Openwave Browser, since they make the page more readable.

The above are only a few of the differences between different browsers. For this reason, it is
unreasonable to expect application developers to know about all the differences that exist and
to take account of them in their applications.

3.4.2.12.2.3 Device Recognition

Purpose
The device recognition mechanism is part of the device-specific development of Web
applications. It ascertains the device type from the HTTP query.

Prerequisites
You are using a Java-enabled Web server and have installed a Java Servlet Engine on your
Web server. In addition, you have adapted the configuration for an enterprise-specific
deployment.

Process Flow

Identifying a mobile device
The process of device recognition is based on the HTTP request headers “Accept” and
“userAgent”, which are sent to the server in the HTTP request by the requesting device. They
enable the application to access the special capabilities of the requesting device through the
implementation of the ClientInfo interface.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 648

The device recognition mechanism compares the character sequence in the “userAgent”
HTTP request header – for example, Nokia7110/1.0 (04.84), (information needed to identify
the device) – with the values of the device properties in the devices.xml configuration file.

If it finds this character sequence in the file, the associated values can be accessed using the
ClientInfo interface.

When evaluating the HTTP request header, the exactness with which the device is identified
is taken into account. To do this, a specific priority value is assigned to each device type in
the XML <priority/> tag in the configuration table.

If the priority value = 1, the character sequence matches exactly and a specific device type
has been ascertained. If it cannot find a match when comparing the sequence, the device
recognition mechanism tries to assign the device to a superordinate device type of priority 2
or 3.

For example, if the HTTP request “userAgent” contains a sequence beginning with “Nokia”,
the device type is recognized as a Nokia device and is assigned the values of a NokiaGeneric
device type. The mechanism can invoke this generic device type, since developers can
generally assume that a manufacturer will use the same browser for all devices.

If the device recognition mechanism cannot find any match in the configuration table, it can
assign one of two types to the device, based on the value in the HTTP request header
“Accept”: Either the wmlGeneric type for WAP-enabled devices or the htmlGeneric type for
HTML-enabled mobile devices. In this way, the device recognition mechanism can identify a
mobile device even if there is no entry for it in the devices.xml configuration file.

How exactly the ClientInfo interface provides the specific values of the properties of a
device is dealt with in The ClientInfo Interface in the Java Servlet Engine [Page 33].

Result
The device recognition process ascertains the type of the device and provides a set of
properties specific to the mobile device making the request.

3.4.2.12.2.4 The ClientInfo Interface in the Java Servlet Engine

Use
The device recognition mechanism in the Java Servlet Engine environment ascertains the
device type from the HTTP request and enables access to the special properties and
capabilities of the mobile device.

Implementing the device recognition process
The ClientInfo Interface [Page 33] offers a range of methods that investigate the different
display capabilities of different browser types. The values of the device properties provided by
SAP for a variety of available devices are stored in XML files on the Java-enabled Web
server.

The device properties of a specific device type are made available in a XML file with the
extension .cap. This XML file contains all the properties of the mobile device that provide
information on its capabilities, along with properties for which SAP proposes default values for
a specific device.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 649

The .cap XML files for all the device types entered by SAP are stored on the Java-enabled
Web server. They allow system administrators to perform the following tasks within the device
recognition process:

• Modify Device Properties [Page 33]

• Integrate New Mobile Devices [Page 33]

The XML files are stored in <Root_Directory>/mobile.

When the Java Servlet Container is launched, the ClientInfoInitializer servlet is executed. This
servlet loads the data from the XML file and stores the Java tables for the device properties in
the Web server’s memory. It thus provides access to the special values of the properties of
the requesting mobile device.

Using the device type information sent in the HTTP request, the system selects the entry
appropriate to the requesting device type from the table This allows the values for this device
to be ascertained and made available at runtime when a Java application is launched.

In this way, you can use the methods of the ClientInfo interface when you create Java
applications, and thus take the characteristics of mobile devices into account when
developing Web applications.

You can use the following source code fragments to access the ClientInfo interface and
device recognition mechanism:
ClientInfoFactory factory = ClientInfoFactory.newInstance();
ClientInfo clientInfo = factory.newClientInfo();
clientInfo.load(request);
if(clientInfo.isTitleSupported())
 // do sth if title is supported
 ...
else
 // do sth if title is not supported
 ...

In these fragments, an implementation of the ClientInfo interface is instantiated and
returned as the ClientInfo interface. The newClientInfo method of the
ClientInfoFactory class returns the class implemented using the ClientInfo interface.
This is specified as the ClientInfoImpl in the Deployment Descriptor web.xml.

You can, however, develop your own implementation for the ClientInfo
interface. If you do, you need to store this change in the initialization parameter
of the Deployment Descriptor.

(See also The Deployment Descriptor [Page 33]).

The following graphic shows the device recognition process schematically within the Java-
enabled Web server.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 650

HTML/
WML/

i-Mode
Page

HTML/
WML/

i-Mode
Page

Java Enabled
Web Server

Device
Capabilities

Data

Device
Capabilities

Data

Java Servlet
Container

ClientInfo
Initializer

MyServlet

DevCaps ClientInfo

3.4.2.12.2.5 ClientInfo Interface

Definition
The ClientInfo interface provides a range of methods for developing Java applications for
mobile devices. These methods take into account the different display options for Web
applications on different browsers, along with other device-specific properties – such as
screen size or input method.

Use
In this way, you can use the methods of the ClientInfo interface when you create Java
applications, and thus take the – often substantial – differences in the display of Web pages
on different devices into account.

So that you can estimate the significance for your Web application of the methods described
in the following table, some of them have been assigned a priority. For those device
properties not assigned a priority, you can decide yourself whether or not you want to use
them in your Web application.

Device properties can be categorized by their significance as follows:

Priorit
y

Title Description

1 Prerequisite This property is prerequisite for running the mobile application at all. In general,
these conditions are fulfilled by all “real” devices that fulfil the HTML or WAP
standard. Emulators, however, do not fulfil these prerequisites. Thus this property
need not be checked in the application. At most, you need a check program that
ascertains whether or not an emulator is suitable for executing the application

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 651

2 Application does
not work

If this property is not assigned a value, the application may crash on some devices
– that is, may not be executable

3 Loss of information If this property is not assigned a value, the application may not show all its
information For example, a loss of information may occur if the paragraph attribute
for automatic line breaks is switched off (<p mode=nowrap>) and the paragraph (in
a WML page) contains text that does not fit on one line. If the mobile device does
not support the isMarqueeTextSupported [Page 33] property, it is possible that
the end of the text is simply truncated. For this reason we advise you to think
carefully before switching off the automatic line break property – even if doing so
would allow you, for example, to make better use of a small screen on a mobile
telephone.

4 Unacceptable
display

If this property is not assigned a value, the application may be displayed in a way
that does not do justice to the look and feel of the device

5 Inappropriate
display

If this property is not assigned a value, the application may not be displayed at its
best. However, the display will not actually disturb the user.

Similarly, some properties are assigned to the markup languages WML (Wireless Markup
Language) and HTML (Hypertext Markup Language) – that is, you specify the markup
language for which each method is relevant and thus how it can meaningfully be used. For
example, the method isFramesSupported is only significant for HTML, since only HTML-
enabled browsers can interpret frames. In general, it is HTML browsers on handheld devices
like PDAs and pocket PCs, WAP-enabled mobile telephones with small screens cannot
display frames, because of their screen interfaces. If the appropriate table column does not
contain a value, the method can be used in both markup languages.

The following source code fragment shows how you can access the methods of the
ClientInfo interface:

ClientInfoFactory factory = ClientInfoFactory.newInstance();
ClientInfo clientInfo = factory.newClientInfo();
clientInfo.load(request);
if(clientInfo.isTitleSupported())
// do sth if title is supported
...
else
// do sth if title is not supported
...

To obtain more information on using some of these methods in your Web
application, use the links in the table.

Methods
Method Signature Description Possible

values
Content
type

Prio.

getAccept [Page 33] method getAccept
returning
value type String

Equivalent to the HTTP
request-header „USER-
AGENT“.

isAlertingSupported method
isAlertingSupported
returning
value type boolean

Specifies whether or not the
device supports messaging
– for example, using SMS.

“true" or
“false“

 1

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 652

isAnchorSupported method
isAnchorSupported
returning
value type boolean

Specifies whether or not the
<anchor> tag is supported

“true" or
“false“

WML 1

isAnchorPrevSupported method
isAnchorPrevSupp
orted
returning
value type boolean

Specifies whether or not the
anchor tag supports a
“Back” action

“true" or
“false“

WML

isAppLinksSupported method
isAppLinksSupport
ed
returning
value type boolean

Specifies whether or not you
can call a local application
on a device using a special
link

“true" or
“false“

HTML 3

getAppLinkTypes method
getAppLinkTypes
returning
value type String

Specifies what type of
application links the device
supports

 HTML

isBackHardWired [Page
33]

method
getBackHardWired
returning
value type boolean

Specifies whether or not you
can execute the “Back”
function using a fixed key
without an associated tag

“true" or
“false“

WML 4

getBackLabel [Page 33] method
getBackLabel
returning
value type boolean

Specifies whether or not a
label attribute must be
specified to display a label

“true" or
“false“

WML 3

isBackToAnyUrlSupported method
isBackToAnyUrlSu
pported
returning
value type boolean

Specifies whether the <do
type=“prev“> tag can lead to
any Web address

“true" or
“false“

WML 1

isBigSupported method
isBigSupported
returning
value type boolean

Specifies whether or not text
can be formatted as “large”

“true" or
“false“

WML

isBoldSupported method
isBoldSupported
returning
value type boolean

Specifies whether or not text
can be formatted as “bold”

“true" or
“false“

WML

getBreakingSpace [Page
33]

method
getBreakingSpace
returning
value type String

Returns the smallest
character string for an empty
space

getBrowserCategory [Page
33]

method
getBrowserCategor
y
returning
value type String

Returns the browser
category

„unknown“
„pocketie“
„avantgo“
„imode“
„palm“
„wap“
„epoc“

getBrowserName [Page
33]

method
getBrowserName
returning
value type String

Returns the browser name „unknown“
„InternetExpl
orer“
„NetscapeN
avigator“
„mobile“

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 653

getBrowserOs [Page 33] method
getBrowserOs
returning
value type String

Returns the operating
system running on the
device

„unknown“
„HPUX“
„Linux“
„MacPPC“
„SunOS“
„Win32“
„mobile“

getBrowserVersion method
getBrowserVersion
returning
value type String

Returns the browser version,
for example 5.5

isCacheEnabledByDefault method
isCacheEnabledBy
Default
returning
value type boolean

Specifies whether or not
cache memory on the
browser is activated by
default

“true" or
“false“

isCertificatesSupported method
isCertificatesSuppo
rted
returning
value type boolean

Specifies whether or not the
device supports client
certificates

“true" or
“false“

getCharHeight [Page 33] method
getCharHeight
returning
value type short

Returns the screen height in
rows

 4

getCharWidth [Page 33] method
getCharWidth
returning
value type short

Returns the screen width in
characters

 4

getColorDepth method
getColorDepth
returning
value type short

Returns the color depth, for
example 256 colors

 HTML

isColorSupported method
isColorSupported
returning
value type boolean

Specifies whether or not the
device has a color screen

 “true" or
“false“

HTML

getContentType method
getContentType
returning
value type String

Returns the content type, for
example HTML or WML

 2

getContentTypeVersion method
getContentTypeVer
sion
returning
value type String

Returns the version of the
content type – for example,
3.2 for HTML 3.2 or 1.1 for
WML 1.1

isCookiesSupported [Page
33]

method
isCookiesSupporte
d
returning
value type boolean

Specifies whether or not
browser cookies are
supported

 “true" or
“false“

 1

isCssSupported [Page 33] method
isCssSupported
returning
value type boolean

Specifies whether or not the
browser supports CSSs
(Cascading Style Sheets).

 “true" or
“false“

HTML 4

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 654

getCssVersion method
getCssVersion
returning
value type String

Returns the CSS version HTML

getDefaultActionDesign
[Page 33]

method
getDefaultActionDe
sign returning
value type String

Returns the default design
for user interface elements
representing an action

„link“
„button“
„softkey“
„linkAndSoft
key"

WML 3

getDefaultBlockSeparator
[Page 33]

method
getDefaultBlockSep
arator
returning
value type String

Returns the default string
used to separate paragraphs

 5

getDefaultBullet [Page 33] method
getDefaultBullet
returning
value type String

Returns the default symbol
used to indicate points in a
list

 WML 5

getDefaultFormStyle [Page
33]

method
getDefaultFormStyl
e
returning
value type String

Returns the default display
type for input masks

„onePage“
„menu“
„wizard“

WML

getDefaultMenuStyle
[Page 33]

method
getDefaultMenuStyl
e
returning
value type String

Returns the default display
type for menus

„selectionLis
t“
„linkList“

WML 4

getDeviceCategory [Page
33]

method
getDeviceCategory
returning
value type String

Returns the device category „unknown“
„Phone“
„PDA“
„Voice“
„PC“

getDeviceName [Page 33] method
getDeviceName
returning
value type String

Returns the device name
Unique ID for a set of device
properties

isDomSupported method
isDomSupported
returning
value type boolean

Specifies whether or not the
browser supports a
Document Object Model
(DOM)

 “true" or
“false“

HTML

getDomVersion method
getDomVersion
returning
value type String

Returns the Document
Object Model (DOM) version
supported

 HTML

isEmphasizedSupported method
isEmphasizedSupp
orted
returning
value type boolean

Specifies whether or not text
can be formatted as
“highlighted”

 “true" or
“false“

WML 5

isEmulator method isEmulator
returning
value type boolean

Specifies whether or not the
device is to be categorized
as an emulator

 “true" or
“false“

getFieldsetLayout [Page
33]

method
getFieldsetLayout
returning

Specifies how input fields
that belong together are to
be laid out using the

„notSupporte
d“
„ignored“

WML 3

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 655

value type String <fieldset> tag „beneath“
„beneathWit
hIndent“
„sideBySide“

isFieldsetTitleVisible [Page
33]

method
isFieldsetTitleVisibl
e
returning
value type boolean

Specifies whether or not the
title attribute of the
<fieldset> tag is used as
label.

 “true" or
“false“

WML 3

isFontProportional method
isFontProportional
returning
value type boolean

Specifies whether or not the
default font of the device is a
proportional font

 “true" or
“false“

getFormFactor [Page 33] method
getFormFactor
returning
value type String

Returns the device’s screen
format

„PC“
„VGA“
„halfVGA“
„mediumLan
dscape“
„mediumPort
rait“
„phone“
„unknown

 3

isFormMenuSupported
[Page 33]

method
isFormMenuSuppor
ted
returning
value type boolean

Specifies whether or not the
browser supports the
technique of displaying a
selection menu with the
input mask

 “true" or
“false“

WML 4

isFramesSupported [Page
33]

method
isFramesSupported
returning
value type boolean

Specifies whether or not
frames are supported

 “true" or
“false“

HTML 2

getGrayLevel method
getGrayLevel
returning
value type short

Returns the number of
shades of gray supported in
grayscale pictures

 “true" or
“false“

isHorzScrollingSupported method
isHorzScrollingSup
ported
returning
value type boolean

Specifies whether or not the
device has a horizontal
scroll bar

 “true" or
“false“

isHrefWithParamsSupport
ed [Page 33]

method
isHhrefWithParams
Supported
returning
value type boolean

Specifies whether or not an
Href attribute in a link can
contain URL parameters.

 “true" or
“false“

WML 2

isHttpGetSupported method
isHttpGetSupported
returning
value type boolean

Specifies whether or not the
HTTP GET is supported

 “true" or
“false“

WML 1

isHttpPostSupported method
isHttpPostSupporte
d
returning
value type boolean

Specifies whether or not the
HTTP POST is supported

 “true" or
“false“

WML 1

isImageAlignmentSupporte
d

method
isImageAlignmentS

Specifies whether or not a
graphic can be aligned (left,

 “true" or
“false“

WML

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 656

upported
returning
value type boolean

right, or centered)

isImageLinksSupported
[Page 33]

method
isImageLinksSuppo
rted
returning
value type boolean

Specifies whether or not a
graphic can be used as link.

 “true" or
“false“

 2

getImageSizeMax method
getImageSizeMax
returning
value type short

Returns the maximum
memory size of a graphic

 WML

getInputFormatDate method
getInputFormatDat
e
returning
value type String

Returns the character string
used to specify the format
for dates

 WML

getInputFormatNumeric method
getInputFormatNu
meric
returning
value type String

Returns the formatting
character string used to
specify the format for
numeric values

 WML

isInputMethodHandWriting method
isInputMethodHand
Writing
returning
value type boolean

Specifies whether or not the
device supports handwritten
input

 “true" or
“false“

isInputMethodKeyboard method
isInputMethodKeyb
oard
returning
value type boolean

Specifies whether or not the
device supports input using
a keyboard

 “true" or
“false“

isInputMethodKeypad method
isInputMethodKeyp
ad
returning
value type boolean

Specifies whether or not the
device supports input using
a telephone keypad

 “true" or
“false“

isInputMethodKeypadIntell method
isInputMethodKeyp
adIntell
returning
value type boolean

Specifies whether or not the
device supports input using
T9 text input or similar

 “true" or
“false“

isInputMethodVoice method
isInputMethodVoice
returning
value type boolean

Specifies whether or not the
device supports speech
input

 “true" or
“false“

isInputShownWithCaption
[Page 33]

method
isInputShownWithC
aption
returning
value type boolean

Specifies whether or not the
browser uses the title
attribute of the <input> tag is
used as a label

 “true" or
“false“

WML 3

isItalicSupported method
isItalicSupported
returning
value type boolean

Specifies whether or not text
can be formatted as “ítalic”

 “true" or
“false“

WML 5

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 657

isJavaSupported method
isJavaSupported
returning
value type boolean

Specifies whether or not the
device supports the Java
programming language

 “true" or
“false“

HTML 1

getJavaVersion method
getJavaVersion
returning
value type String

Returns the Java version
supported

 HTML

isLinksSeparated [Page
33]

method
isLinksSeparated
returning
value type boolean

Specifies whether or not two
consecutive links are visibly
separated

 “true" or
“false“

WML 4

getLinkDecoration [Page
33]

method
getLinkDecoration
returning
value type String

Returns the delimiters that
are automatically added to
the link text by the device –
for example [] or < >.

 WML

getLinkTextWidth [Page
33]

method
getLinkTextWidth
returning
value type short

Returns the maximum
number of characters that a
link can have to fit into one
line.

 WML 3

isLocalImagesSupported method
isLocalImagesSupp
orted
returning
value type boolean

Specifies whether or not the
device supports locally
stored graphics or symbols

 “true" or
“false“

 3

isLocalVariablesSupported method
isLocalVariablesSu
pported
returning
value type boolean

Specifies whether or not the
browser supports local
variables

 “true" or
“false“

WML 1

isMarqueeLinkSupported
[Page 33]

method
isMarqueeLinkSup
ported
returning
value type boolean

Specifies whether or not a
long link can be displayed in
one line, for example as a
ticker tape.

 “true" or
“false“

WML 3

isMarqueeTextSupported
[Page 33]

method
isMarqueeTextSup
ported
returning
value type boolean

Specifies whether or not a
long text can be displayed in
one line, for example as a
ticker tape.

 “true" or
“false“

WML 3

getMaxLinkLength [Page
33]

method
getMaxLinkLength
returning
value type short

Returns the maximum size
of the Href attributes of a
link.

 1

getMediaFormats [Page
33]

method
getMediaFormats
returning
value type String

Returns the list of
multimedia formats
supported – such as .agif
(animated .gif format), .gif,
.jpg, .png, .wbmp

 3

getMemory method getMemory
returning
value type String

Returns the maximum
memory capacity of the
device

 HTML

getModel method getModel
returning

Returns the name of the
device type – such as 7110

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 658

value type String for the Nokia 7110 mobile
telephone

isNbspSupported [Page
33]

method
isNbspSupported
returning
value type boolean

Specifies whether or not the
device supports non-
breaking blank characters

 “true" or
“false“

WML 4

isNestedTablesSupported
[Page 33]

method
isNestedTablesSup
ported
returning
value type boolean

Specifies whether or not the
browser supports nested
tables

 “true" or
“false“

HTML 2

isNewlineAfterImage
[Page 33]

method
getNewlineAfterIma
ge
returning
value type boolean

Specifies whether or not a
line break is inserted
automatically after an
tag.

 “true" or
“false“

WML 4

isNewlineAfterInput [Page
33]

method
isNewlineAfterInput
returning
value type boolean

Specifies whether or not a
line break is inserted
automatically after an
<input> tag on a specific
mobile device.

 “true" or
“false“

WML 4

isNewlineAfterLink method
getNewlineAfterLin
k
returning
value type boolean

Specifies whether or not a
line break is inserted
automatically after a link

 “true" or
“false“

WML 4

isNewlineAfterSelect method
isNewlineAfterSele
ct
returning
value type boolean

Specifies whether or not a
line break is inserted
automatically after an
<select> tag.

 “true" or
“false“

WML 4

isNewlineBeforeImage
[Page 33]

method
isNewlineBeforeIm
age
returning
value type boolean

Specifies whether or not a
line break is inserted
automatically before an
 tag.

 “true" or
“false“

WML 4

isNewlineBeforeInput
[Page 33]

method
isNewlineBeforeInp
ut
returning
value type boolean

Specifies whether or not a
line break is inserted
automatically before an
<input> tag.

 “true" or
“false“

WML 4

isNewlineBeforeLink [Page
33]

method
isNewlineBeforeLin
k
returning
value type boolean

Specifies whether or not a
line break is inserted
automatically before a link

 “true" or
“false“

WML 4

isNewlineBeforeSelect method
isNewlineBeforeSel
ect
returning
value type boolean

Specifies whether or not a
line break is inserted
automatically before an
<select> tag.

 “true" or
“false“

WML 4

isNewlineBetweenImages
[Page 33]

method
isNewlineBetweenI
mages
returning

Specifies whether or not a
line break is inserted
automatically after an
<image> tag

 “true" or
“false“

WML 3

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 659

value type boolean

isNewlineBetweenLinks
[Page 33]

method
isNewlineBetweenL
inks
returning
value type boolean

Specifies whether or not a
line break is inserted
automatically between two
<image> tags

 “true" or
“false“

WML 4

isNewlineBetwLinkAndTag
[Page 33]

method
isNewlineBetwLink
AndTag
returning
value type boolean

Specifies whether or not a
line break is inserted
automatically between a link
and a tag

 “true" or
“false“

WML 4

isOfflineBrowsingSupporte
d

method
isOfflineBrowsingS
upported
returning
value type boolean

Specifies whether or not the
browser supports offline
browsing through locally
stored pages (that is,
cached pages)

 “true" or
“false“

HTML 2

isOfflineFormsSuppported method
isOfflineFormsSupp
orted
returning
value type boolean

Specifies whether or not the
browser allows the user to
fill out input forms offline on
the device

 “true" or
“false“

HTML 2

getPageSizeMax [Page
33]

method
getPageSizeMax
returning
value type int

Returns the maximum page
size that can be processed
in a mobile device.

 2

getPixelHeight [Page 33] method
getPixelHeight
returning
value type short

Specifies the screen height
in pixels.

getPixelWidth [Page 33] method
getPixelWidth
returning
value type short

Specifies the screen width
in pixels.

isRedirAbsoluteSupported method
isRedirAbsoluteSup
ported
returning
value type boolean

Specifies whether or not the
browser supports the
redirection of an absolute
URL address.

 “true" or
“false“

 1

isRedirRelativeSupported
[Page 33]

method
isRedirRelativeSup
ported
returning
value type boolean

Specifies whether or not the
browser supports the
redirection of a relative URL
address.

 “true" or
“false“

 2

isScriptSupported [Page
33]

method
isScriptSupported
returning
value type boolean

Specifies whether or not the
browser supports scripting

 “true" or
“false“

 2

getScriptVersion method
getScriptVersion
returning
value type String

Returns the script version
supported

isSecureProtocolsSupport
ed

method
isSecureProtocolsS
upported
returning
value type boolean

Specifies whether or not the
browser supports SSL
(Secure Socket Layer) or
WTLS (Wireless Transport
Layer Security)

 “true" or
“false“

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 660

getSecureProtocolNames method
getSecureProtocols
Names
returning
value type String

Returns the names of the
security protocols supported
The names are separated by
semicolons

isSelectionMenuSupported
[Page 33]

method
isSelectionMenuSu
pported
returning
value type boolean

Specifies whether or not
the menu layout type
”selectionList“ [External]
is supported

 “true" or
“false“

WML 4

isSetvarOnEventSupporte
d

method
isSetvarOnEventSu
pported
returning
value type boolean

Specifies whether or not the
<setvar> tag can be used
within the <onevent
type=“onenterforward“>
event handler

 “true" or
“false“

WML 1

isSkippingToInput [Page
33]

method
isSkippingToInput
returning
value type boolean

Specifies whether or not the
browser automatically skips
to the first <input> tag and
displays a screen extract
around this tag

 “true" or
“false“

WML 4

isSmallSupported method
isSmallSupported
returning
value type boolean

Specifies whether or not text
can be formatted as “small”

 “true" or
“false“

WML 5

getSoftkeyNum [Page 33] method
getSoftkeyNum
returning
value type short

Returns the number of soft
keys supported by the
device

 WML 3

getSoftkeyStyle1 [Page
33]

method
getSoftkeyStyle1
returning
value type String

Specifies how soft key 1 is
displayed on the screen

„notShown“
„key“
„menu“
„screen“

WML 5

getSoftkeyStyle2 [Page
33]

method
getSoftkeyStyle2
returning
value type String

Specifies how soft key 2 is
displayed on the screen

„notShown“
„key“
„menu“
„screen“

WML 5

getSoftkeyTitleWidth
[Page 33]

method
getSoftkeyTitleWidt
h
returning
value type String

Returns the number of
displayed characters for a
soft key title.

 WML 3

isSoundSupported method
isSoundSupported
returning
value type boolean

Specifies whether or not the
device can play sounds

 “true" or
“false“

HTML

isStrongSupported method
isStrongSupported
returning
value type boolean

Specifies whether or not text
with the can be
formatted as “highlighted”

 “true" or
“false“

WML 5

isSubmitOneventSupporte
d

method
isSubmitOneventS
upported
returning
value type boolean

Specifies whether or not
“Submit” is supported within
the <onevent
type=“onenterforward“>
event handler

 “true" or
“false“

 1

getSubCategory [Page 33] method
getSubCategory

Allows you to split devices Any text

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 661

returning
value type String

into different sub-categories

isTableHasBorders [Page
33]

method
isTableHasBorders
returning
value type boolean

Specifies whether or not
tables are displayed with
gridlines

 “true" or
“false“

 4

isTableSupported [Page
33]

method
isTableSupported
returning
value type boolean

Specifies whether or not the
browser supports tables with
several columns

 “true" or
“false“

 3

isTelephonyLinksSupporte
d [Page 33]

method
isTelephonyLinksS
upported
returning
value type boolean

Specifies whether or not a
telephone can be dialed
directly using a link

 “true" or
“false“

 4

isTextAlignmentSupported method
isTextAlignmentSu
pported
returning
value type boolean

Specifies whether or not text
within a paragraph can be
aligned left, right, or
centered

 “true" or
“false“

WML 5

isTextStylesSupported
[Page 33]

method
isTextStylesSuppor
ted
returning
value type boolean

Specifies whether or not the
browser can format text
using tags such as or
<small>

 “true" or
“false“

WML 5

isTitleSupported [Page 33] method
isTitleSupported
returning
value type boolean

Specifies whether or not a
label is to appear on the top
of the screen using the “title”
property of the <card> WML
tag.

 “true" or
“false“

WML 3

getTitleWidth [Page 33] method
getTitleWidth
returning
value type short

Returns the maximum
number of characters of the
title

 3

isUnderlineSupported method
isUnderlineSupport
ed
returning
value type boolean

Specifies whether or not text
can be formatted as
“underlined”

 “true" or
“false“

WML 5

getUserAgent [Page 33] method
getUserAgent
returning
value type String

Equivalent to the HTTP
request header “userAgent“

isVarsAcrossCardSupport
ed

method
isVarsAcrossCardS
upported
returning
value type boolean

Specifies whether or not
browser variables passed to
a card can also be used for
different cards

 “true" or
“false“

WML 1

getVendor method getVendor
returning
value type String

Returns the manufacturer’s
name

isXslSupported method
isXslSupported
returning
value type boolean

Specifies whether or not the
browser supports Extensible
Stylesheet Language (XSL)

 “true" or
“false“

HTML

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 662

getXslVersion method
getXslVersion
returning
value type String

Returns the XSL version
supported

 HTML

3.4.2.12.2.5.1 getAccept Method

Use
The getAccept method returns a value that is equivalent to the value of the HTTP request
header ACCEPT. This header is sent to the Web server by a device in an HTTP request and
contains the complete information about the MIME-Types [External] (or Content types) that
can be processed by the browser.

The following list contains MIME types that a browser can pass in a request:

MIME Type Description File Extension

text/html HTML file html, htm

text/css CSS style sheet file css

text/javascript JavaScript file js

image/gif GIF graphics gif

image/jpeg JPEG graphics jpeg, jpg, jpe

application/msword Microsoft Word files doc, dot

The MIME types based on WAP include:

MIME Type Description File Extension

text/vnd.wap.wml WML source code wml

application/vnd.wap.wmlc Compiled WML wmlc

text/vnd.wap.wmlsrcipt WMLScript wmlscript

text/vnd.wap.wmlscript WMLScript wsc

application/vnd.wap.wmlscriptc Compiled WMLScript wmlsc

application/vnd.wap.wmlscriptc Compiled WMLScript wsc

image/vnd.wap.wbmp Wireless Bitmap wbmp

ClientInfo Interface [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 663

3.4.2.12.2.5.2 isBackHardWired Method

Use
The isBackHardWired method provides information on whether the Back function, which calls
the last page visited, can be executed with a fixed key or has to be defined and programmed
with a soft key.

The individual device types provide the user with varyingly customized keys for operating the
application. Not all WAP-enabled devices have a fixed key for the Back function.

With a soft key, which is displayed by a label in the menu bar at the bottom of the screen, you
can assign a function to a key. The function is assigned to the key using the WML tag <do>
and executed by pressing this key.

The WML code for assigning the Back function to a key is:
<do type=“prev“ label=“Back“>
<prev/>
</do>.

The isBackHardWired method returns a Boolean value. The value for true means that the
Back function is assigned to a key. In this case, the <do> tag is not required.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.3 getBackLabel Method

Use
The getBackLabel method of the ClientInfo interface specifies whether or not a mobile
device is to appear on the top of the screen using the label attribute of the <do> WML tag.
(See also isBackHardWired Method [Page 33]).

If the label attribute is not used for the label, you should not assign a label attribute to the
<do> tag or you should use another type (for example, type=”options”) or a link.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.4 getBreakingSpace Method

Use
The getBreakingSpace method returns the character string that can be used, for example, for
the separation of two links that otherwise would appear successively.

Unlike a forced blank character () this character
string enables the browser to add a line break between the
links if necessary.

ClientInfo Interface [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 664

3.4.2.12.2.5.5 getBrowserCategory Method

Use
The values of this method are a rough categorization of the browser variants.

If you have already created mobile applications using the Internet Transaction
Server (ITS), you should be advised that the values provided by the
getBrowserCategory method correspond to the values of the context variable
~markupsubtype that are returned by the device recognition.

Values
Values Short Description

unknown Unknown browser type

pocketie Pocket Internet Explorer

avantgo AvantGo HTML 3.2 Browser

imode Micro browser for I-mode devices

palm HTML browser for Palm devices

wap Micro browser for WAP-enabled devices

epoc HTML browser for EPOC devices

ClientInfo Interface [Page 33]

3.4.2.12.2.5.6 getBrowserName Method

Use
A detailed value definition for the getBrowserName method is not useful due to the rapid
growth of the mobile device market.

This is a free text field pre-assigned with reliable values by SAP.

However, the system administrator can change these entries for a specific
device.

Values
Values Short Description

unknown Unknown browser

Internet Explorer Microsoft Internet Explorer

Netscape Navigator Netscape Navigator

mobile Browser on the mobile device

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 665

ClientInfo Interface [Page 33]

3.4.2.12.2.5.7 getBrowserOS Method

Use
The getBrowserOs method returns the operating system of the requesting device.

Values
Values Short Description

unknown Unknown operating system

HPUX HP Unix operating system

Linux Linux operating system

MacPPC Macintosh Power PC operating system

SunOS Sun Solaris operating system

Win32 Microsoft Windows 32 bit operating system

mobile Operating system of a mobile device

ClientInfo Interface [Page 33]

3.4.2.12.2.5.8 getCharHeight Method

Use
The getCharHeight method returns the maximum number of lines that can be displayed on
the screen.

Web applications are more user-friendly if information that belongs together fits
onto one screen and there is no need to browse between the individual pages.
Using the getCharHeight method the development team can define, for each
specific device, the maximum number of lines that can be displayed on the
screen for each document.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.9 getCharWidth Method

Use
In case the mobile devices that do not support proportional fonts and therefore the width of
each character is the same, the getCharWidth method returns the maximum number of
characters that can be displayed in a screen line.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 666

This number might differ from the actual character number for a line when using proportional
fonts. In this case the value that is returned by the getCharWidth method is the maximum
number of characters with an average character width.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.10 isCookiesSupported Method

Use
The isCookiesSupported method specifies whether or not the browser or its Gateway
supports cookies.

Cookies [External] are especially used for session administration. If they are not supported by
the mobile device, the application must be modified accordingly, otherwise errors might occur.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.11 isCssSupported Method

Use
The isCssSupported method specifies whether or not the browser supports CSS (Cascading
Style Sheet).

If an application uses Cascading Style Sheets, but the browser of the mobile device does not
support this function, the application cannot be displayed properly because the style sheets
are not evaluated. Colors and fonts are missing.

However, you can display the CSS layout if you directly specify the rendering attributes of the
Cascading Style Sheets as HTML attributes.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.12 getDefaultActionDesign Method

Use
The getDefaultActionDesign method specifies which preferred type of interface element is to
be used for the display of actions.

The following are actions:

● Navigation steps (links)

● Processing steps that affect the current screen (for example save, delete, scroll)

● Initiation of device-specific actions, for example phone calls or starting an application
on the mobile device.

These interface elements include buttons, links and soft keys. The latter are specifically for
WAP-enabled devices. The selection of a specific interface element for executing functions
depends on the requesting mobile device. For HTML markup, mainly buttons and links are

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 667

used to execute these functions, while links and soft keys are normally used for WAP-enabled
devices.

Values
Values Short Description

link The action appears as a link.

button The action can be triggered by choosing a button.

softkey The action appears as soft key.

linkAndSoftkey The action appears as a link or a soft key.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.13 getDefaultBlockSeparator Method

Use
The getDefaultBlockSeparator method returns a default value for a separator between
paragraphs. The end of a page often features such a separator. The default separator is the
character string “---„.

Using this method has the following advantages over the text definition of the list character:

● Optimized separators are used for each device.

● The separators are consistent in all applications.

● The separators can be changed centrally by the system administrator without having to
modify applications.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.14 getDefaultBullet Method

Use
The getDefaultBullet method returns a default value for a list character that is to be used in
lists, for example. For most devices, the value is set to the character » (code in text »).
For mobile devices that cannot display this character at all or appropriately, another character
is used, for example a dash.

Using this method has the following advantages over the text definition of the list character:

● The list character optimized for each device is used.

● The list characters are consistent in all applications.

● The list characters can be changed centrally by the system administrator without
having to modify applications.

ClientInfo Interface [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 668

3.4.2.12.2.5.15 getDefaultFormStyle Method

Use
The getDefaultFormStyle method specifies which preferred type of input template is to be
used for a specific mobile device.

Features
The <input> and <select> tags enable you to use input templates for customizing the
interaction with the user and to allow data entry by the user.

Two options are available for data input:

● Input for optional text input by using the <input> tag

● Selection lists with check boxes and option groups by using the <select> tag

The display of these tags on the screen of a mobile device can vary, especially if a card
contains several input fields that cannot be displayed on the screen simultaneously.

In some devices, the user can scroll on the page to reach input fields that are not immediately
visible. However, after filling the input fields, some browsers display the input fields on
different screens and distribute the screen contents over different pages.

Values
Values Short Description

onPage The input fields are displayed one after another and are visible
on the same screen.

menu The input fields and selection lists are displayed in one overview
page. To fill the fields an additional page is called – one page for
each input field or selection option.

wizard The input fields and selection lists are displayed so that each
field has a card.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.16 getDefaultMenuStyle Method

Use
The getDefaultMenuStyle method specifies which preferred type of menu layout is to be used
for a specific mobile device. The device properties delivered by SAP use the values linkList
and selectionList, because there are two established variants for WAP-enabled devices:

• Numbered lists of options. This variant is mainly used on WAP-enabled devices with
Openwave browser. The various menu options are implemented as <option> tags within
a <select> tag. The Openwave browser displays this as a numbered list and a menu
option can be selected by navigating or using the appropriate number key.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 669

It is strongly recommended to use this variant on Openwave browsers, because
otherwise there is a significant difference in look-and-feel to other applications.
However, on most of the other browsers this variant is not useful, because the
<select> and <option> tags do not implement a menu-like display.

● Link list. The various menu options are displayed as links below one another or side
by side. To select a menu option the user must navigate to the link and select it. As
usual, these links are implemented by using the <a> or <anchor> tag. This variant is
universal and can be used on all browsers, but for Openwave browsers you should use
the first implementation variant for the reasons mentioned above.

Values
Values Short Description

selectionList The menu is displayed as a numbered list, and the
menu options are selected directly by using the
number keys of the mobile telephone.

linkList The menu is displayed as a link list. The user
must navigate to the desired link and select it.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.17 getDeviceCategory Method

Use
The values that are returned by the getDeviceCategory method represent a rough
categorization of the device types.

Values
Values Short Description

unknown Unknown device type

Phone Data-driven mobile telephone or Smartphone

PDA Mobile device such as Pocket PC, Palm or hand-
helds

Voice Device controlled by voice input

PC Complete personal computer

ClientInfo Interface [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 670

3.4.2.12.2.5.18 getDeviceName Method

Use
The getDeviceName method is used to uniquely identify a device property set. The value that
is returned by the getDeviceName method is the key of the table, whose data returns the
values of the properties of the requesting mobile device. Only one browser type is assigned to
the name of devices that offer several browser types.

Because the manufacturers of mobile devices are constantly launching new
products, it is possible that no suitable device is found for an HTTP request in
the database. Since the getDeviceName method must return a unique value,
generic values are entered for unknown device types.

This method is used when an application is to be customized for a specific device.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.19 getFieldsetLayout Method

Use
The getFieldsetLayout method specifies the assignment of several related input fields using
the <fieldset> tag.

Features
The <fieldset> tag is used to group related input fields in a Web application. This allows the
browser to optimize the display and navigation and display specific contents on the screen
simultaneously.

Values
Values Short Description

notSupported <fieldset> tag is not supported by the device.

ignored <fieldset> tag is ignored, the input fields are
displayed below one another.

beneath The input field groups are displayed below one
another.

beneathWithIndent The input field groups are displayed below one
another, and the input fields are indented.

sideBySide The input field groups are displayed side by side.

ClientInfo Interface [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 671

3.4.2.12.2.5.20 isFieldsetTitleVisible Method

Use
The isFieldTitleVisisible method specifies whether or not the title attribute of the <fieldset> tag
is used as label.

The <fieldset> tag is used to group related input fields in a Web application. If the <fieldset>
tag can represent the title, this feature should be used because it improves the page structure
on some devices. If not, the title should be displayed as normal text.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.21 getFormFactor Method

Use
The getFormFactor method returns the form factor (screen format) of the mobile device.

Features
An important feature for customizing a Web application is the form factor (screen format) of
the mobile device on which the application is to be used. Form factor is the physical size and
shape of a mobile device. The transitions regarding shape and form of devices can be
seamless, and therefore the categorization of exact screen measures for mobile devices is
not useful.

The device recognition process returns a value that helps to decide how to build the graphical
user interface of a Web application.

Values
The form factor that is returned by the getFormFactor method provides a rough categorization
(recommended by SAP) with the following values:

Values Short Description Example

PC Large screen in full VGA format or greater

VGA Screen in full VGA format

halfVGA Screen in half VGA format

mediumLandscape Medium screen size as used by Smartphones For example
640 x 200 pixel for Nokia
Communicator

mediumPortrait Medium screen size as used by PDA’s (Personal Digital
Assistant [External])

For example
320 x 240 pixel for
Pocket PC

160x160 pixel
Palm

phone Mobile telephone screen

unknown Unknown device

Example

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 672

You can use this attribute for displaying data in a table. For the mediumPortrait format, which
specifies the form factor of a PDA [External], it is useful to display data in tables, but other
options normally have to be chosen for mobile telephones due to their small screen size.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.22 isFormMenuSupported Method

Use
The isFormMenuSupported method specifies whether, using the attribute ordered="false" in
the <card> tag, the browser can be made to place a page with a selection menu before a
page with input fields.

In this selection menu, the input fields are displayed in a numbered list. This enables the user
to go directly to an input field by entering the relevant number.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.23 isFramesSupported Method

Use
The isFramesSupported method specifies whether or not the browser supports frames.

If the device cannot display frames, the application must be modified, because it cannot be
displayed correctly.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.24 isHrefWithParamsSupported Method

Use
The isHrefWithParamsSupported method specifies whether or not an Href attribute in a link
can contain URL parameters.

If a device does not support this, parameters should not be used, since errors
might occur.

ClientInfo Interface [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 673

3.4.2.12.2.5.25 isInputShownWithCaption Method

Use
The getInputShownWithCaption method specifies the various display types of the title
attribute of the <input> tag on different WAP-enabled devices.

With some devices, Ericsson devices for example, the value of the title attribute appears as a
label before the input field. In this case, you should not use another label before the input
field.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.26 isImageLinksSupported Method

Use
The isImageLinksSupported method specifies whether or not a graphic can be used as link.

If this is not the case, a normal link should be used, otherwise the functions of
the page are restricted.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.27 isLinksSeparated Method

Use
The isLinksSeparated method specifies whether or not links are to be displayed separately.
This optical separation can be caused by:

● A line break between links

● Delimiting a link, for example with [] or < >

● Automatic insertion of a blank character.

If links cannot be separated, a blank character should be inserted to distinguish the individual
links.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.28 getLinkDecoration Method

Use
The getLinkDecoration method returns the delimiters that are automatically added to the link
text by the device. Some mobile devices highlight the links by using square or angle brackets
as delimiters. The layout for the same browser may vary on different devices.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 674

These additional characters reduce the space that is available for information. This method
helps to calculate the available space.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.29 getLinkTextWidth Method

Use
The getLinkTextWidth method returns the maximum number of characters that a link can
have to still fit into one line.

For small WAP-enabled devices, the length of the link text should not exceed 14
characters. If you want to offer longer link texts for larger devices, you should
define different variants dependent on this attribute.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.30 isMarqueeLinkSupported Method

Use
The isMarqueeLinkSupported method specifies whether or not a long link can be displayed in
one line, for example as a ticker tape.

For small devices that support this attribute, you can also use long link texts. (See also
getLinkTextWidth Method [Page 33])

ClientInfo Interface [Page 33]

3.4.2.12.2.5.31 isMarqueeTextSupported Method

Use
The isMarqueeTextSupported method specifies whether or not a long text can be displayed in
one line, for example as a ticker tape.

If you want to display a long text in one line instead of having a line break, you
can use the enclosing tag <p nowrap="true">. However, you should only use it if
this value is met. Otherwise the text may be truncated.

ClientInfo Interface [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 675

3.4.2.12.2.5.32 getMaxLinkLength Method

Use
The getMaxLinkLength method returns the maximum size of the Href attributes of a link.

The maximum value of this attribute is 256, regardless of the actual value. Your links should
not exceed this size, since otherwise the application will not function correctly.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.33 getMediaFormats Method

Use
The getMediaFormats method returns the list of supported multimedia formats (separated by
semicolons).

You must be able to evaluate the supported multimedia formats in an application to avoid the
use of graphics that cannot be displayed. Most WAP browsers only support the WBMP
format; while HTML browsers usually support GIF and JPEG.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.34 isNbspSupported Method

Use
The isNbspSupported method specifies whether or not the device supports non-breaking
blank characters.

If a mobile device does not support this property, the expression cannot
be used appropiately for text formatting.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.35 isNestedTablesSupported Method

Use
The isNestedTablesSupported method specifies whether or not the browser supports nested
tables.

Since the WAP standard does not support nested tables, this attribute is only relevant for
HTML browsers. Some of these browsers do not allow nested tables either.

ClientInfo Interface [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 676

3.4.2.12.2.5.36 isNewlineAfterImage Method

Use
The isNewlineAfterImage method specifies whether or not a line break is inserted
automatically after an tag. If a mobile device displays two tags side by side, a

 tag must be inserted to display in a new line. In mobile devices that meet the condition,
only the isNewlineAfterImage method can prevent the screens from being moved apart by
inserted blank lines.

The same arguments for the use of this method apply to all methods that
concern the line break into a new line.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.37 isNewlineAfterInput Method

Use
The isNewlineAfterInput method specifies whether or not a line break is inserted after an
<input> tag or the subsequent tag is displayed in the same line. If this method returns the
value true, the subsequent tag is displayed in the next line. In this case, a
 tag could
insert an unwanted blank line.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.38 isNewlineBeforeImage Method

Use
The isNewlineBeforeImage method specifies whether or not a line break is inserted
automatically before an tag.

If you want graphics to start in a new line, you must use the
 tag in devices that return
the value false. In mobile devices that meet this condition, this could result in the insertion of a
blank line, which you want to avoid due to space restrictions on small screens.

The same arguments for the use of this method apply to all methods that
concern line breaks into new lines.

ClientInfo Interface [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 677

3.4.2.12.2.5.39 isNewlineBeforeInput Method

Use
The isNewlineBeforeInput method specifies whether or not a line break is inserted
automatically before an <input> tag.

If you want the <input> tag to appear in the following line of a Web application, you must use
the
 tag for the line break. A mobile device that automatically inserts a line break before
an <input> tag and therefore returns the value true, would then display an unwanted blank
line.

The same arguments for the use of this method apply to all methods that
concern line breaks into new lines.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.40 isNewlineBeforeLink Method

Use
The isNewlineBeforeLink method specifies whether or not a line break is inserted
automatically before a <link> tag.

If a mobile device meets this condition, the link cannot be displayed in the line of the
preceding text.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.41 isNewlineBetweenImages Method

Use
The isNewlineBetweenImages method specifies whether or not a line break is inserted
automatically between two tags.

If a mobile device meets this condition, two successive screens cannot be
displayed in the same line, even if so desired.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.42 isNewlineBetweenLinks Method

Use
The isNewlineBetweenLinks method specifies whether or not a line break is inserted
automatically between two links.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 678

If a mobile device meets this condition, the link cannot be displayed in the same
line as the previous link, even if so desired.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.43 isNewlineBetwLinkAndTag Method

Use
The isNewlineBetwLinkAndTag method specifies whether or not a line break is inserted
automatically between a link and a tag. Some mobile devices display a text before a link in a
new line if this text is, for example, enclosed by a font tag such as .

If a mobile device meets this condition, a link that follows a formatted text is
always displayed in a new line, even if this is not wanted.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.44 getPageSizeMax Method

Use
The getPageMax method returns the maximum page size that can be processed on a mobile
device.

In WAP [External] applications, this corresponds to the size of the compiled WML
of a deck in bytes. Each WML page, known as a deck, can be divided into
different cards that you can switch between using links.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.45 getPixelHeight Method

Use
The getPixelHeight method specifies the screen height in pixels.

This method can be used if, for example, you want to integrate screens of different sizes into
the application. For mobile devices with a bigger screen format (form factor), the
getPixelHeight method enables you to load bigger and therefore more legible graphics into
the user interface.

ClientInfo Interface [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 679

3.4.2.12.2.5.46 getPixelWidth Method

Use
The getPixelWidth method specifies the screen width in pixels.

Similar to the getPixelHeight Method [Page 33] this method specifies which screen width can
be used with a specific mobile device.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.47 isRedirRelativeSupported Method

Use
The isRedirRelativeSupported method specifies whether or not the browser supports the
rerouting of a relative URL address.

If you want to redirect the browser to a different URL, you can use the Redirect
function. However, some WAP browsers do not support this function for relative
addresses (URLs). If you disregard this browser feature, the application, in
which the Redirect function is used, will not work.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.48 isScriptSupported Method

Use
The isScriptSupported method specifies whether or not the browser supports scripting.

Scripting allows you to improve the layout of many pages and add client-side functions. Be
aware that on browsers that do not support scripting, these pages may become unusable.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.49 isSelectionMenuSupported Method

Use
The isSelectionMenuSupported method specifies whether or not the WAP browser displays a
<select> tag as a numbered list of selection values.

If a mobile device meets this condition, you can use the <select> tag to implement a selection
menu; the selection is made by pressing a number key.

ClientInfo Interface [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 680

3.4.2.12.2.5.50 isSkippingTolnput Method

Use
The isSkippingTolnput method specifies whether or not the browser automatically skips to the
first <input> tag and displays a screen extract around this tag.

If the <input> tag in a Web application appears towards the end of an extensive
page, the information of the Web application that appears at the beginning may
not be readable immediately and important data might not be available. To find
out what data needs to be entered in the input field, the user must scroll back to
the location of the information. This makes the Web application awkward to use
and also makes it difficult to navigate in the pages.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.51 getSoftkeyNum Method

Use
The getSoftkeyNum method returns the number of available soft keys that can be created
with <do> tags.

When defining a page layout, you must ensure that you do not assign important
functions to more soft keys than are available.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.52 getSoftkeyStyle1 Method

Use
The getSoftkeyStyle1 method specifies how the type attribute accept of the <do> tag is
displayed on the mobile device screen.

Features
The <do> tag is used to execute actions either by pressing a device key or by choosing a
menu option.

Therefore, the <do> tag enables you to customize additional navigation and control options in
addition to navigation with links. For this purpose, you can access the predefined functions
(such as go, prev, or noop) using the type attribute in the <do> tag. For example, you can
switch to the next card by using the <go> action. This is why the <do> tag plays an important
role in navigation on mobile devices.

The display of the <do> tag on the screen is browser-dependent and the tag can be
presented graphically as a soft key in the menu bar at the bottom of the screen.

(see also isBackHardWired Method [Page 33] and getSoftkeyStyle2 Method [Page 33])

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 681

A soft key is similar to a control or an interface element. You can use it to execute processes
if the <do> event occurs after pressing a device key.

You specify the type of the event using the type attribute of the <do> tag. This means you
pass information about the content of the event and the associated action to the mobile
device. The mobile devices use this information to find an appropriate display type for the
execution of this action.

If you assign the value accept to the type attribute of the <do> tag, interface elements are
displayed that can be used for confirmation, for example, of a selection.

On some devices, the <do> tag is displayed as a soft key at the bottom of the
screen and the corresponding action is executed with a device key. This type of
implementation of the <do> tag on mobile devices is very common, however, on
some devices, the <do> tag is displayed as a selection option in the menu, as a
button on a touch screen of a mobile hand-held device, or it is not displayed at all.

Values
Values Short Description Example

notShown The <do> tag does not appear
on the screen.

key The <do> tag is displayed as a
soft key and the function is
assigned to a device key.

menu The <do> tag appears as a
selection option in the menu.

screen The <do> tag appears as a
button on the screen.

For example, on the touch
screen of a hand-held device
like a PDA [External] or Pocket
PC. Tapping the screen (with a
special pen) triggers the action.

Example
The following WML code is an example for the use of soft keys in a WML card.

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<card id="Card1" title="Card1">
<do type="accept" label="Next">
<go href="#Card2"/>
</do>
<p>
Choose Next to continue
</p>
</card>
<card id="Card2" title="Card2">
<p>
Card2
</p>

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 682

</card>
</wml>

ClientInfo Interface [Page 33]

3.4.2.12.2.5.53 getSoftkeyStyle2 Method

Use
The getSoftkeyStyle2 method specifies the display of the type attribute options of the <do>
tags on the screen of the mobile device.

Features
Using the <do> tag offers the user more navigation and control options on mobile devices,
and for some devices enables you, for example, to customize the menu bar at the bottom of
the screen. You can use predefined actions like go, prev, help, or noop as controls. These are
executed by pressing the corresponding keys on the mobile device.

The display of this tag on the screen is browser-dependent and in some devices the tag can
be converted into a visible soft key, a kind of navigation button, in the menu bar at the bottom
of the screen. For example, you can switch to the next card by using the <go> action and then
directly select a Web address by using the interface element that is defined by the <do> tag.
In so doing, the <do> tag assigns a defined function to a key on the mobile device. If you
press this key, the <do> event occurs, which in turn triggers the <go> action.

You specify the type of the event using the type attribute of the <do> tag. This means you
pass information about the content of the event and the associated action to the mobile
device. The mobile devices use this information to find an appropriate display type for the
execution of this action.

If you assign the “options” value to the type attribute of the <do> tag, interface elements are
displayed that you can use to call a list of context-sensitive options or a selection list.

The type value “options” should be used in a <do> tag if you have already
defined a soft key of the type “accept” in a card.

On some devices, the <do> tag is displayed as a soft key at the bottom of the
screen and the corresponding action is executed with a device key. This type of
implementation of the <do> tag on mobile devices is very common, however, on
some devices, the <do> tag is displayed as a selection option in the menu, as a
button on a touch screen of a mobile hand-held device, or it is not displayed at
all.

(see also getSoftkeyStyle1 Method [Page 33] and isBackHardWired Method [Page 33])

Values
Values Short Description Example

notShown The <do> tag does not appear
on the screen.

key The <do> tag is displayed as a
soft key and the function is

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 683

assigned to a device key.

menu The <do> tag appears as a
selection option in the menu.

screen The <do> tag appears as a
button on the screen.

For example, on the touch
screen of a hand-held device
like a PDA [External] or Pocket
PC. Tapping the screen (with a
special pen) triggers the action.

Example
The following WML code is an example for the use of soft keys.

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<card title="Page1">
<do type="accept" label="Continue">
<go href="page2.wml"/>
</do>
<do type="options" label="Exit">
<exit/>
</do>
</p>…
</card>
</wml>

ClientInfo Interface [Page 33]

3.4.2.12.2.5.54 getSoftkeyTitleWidth Method

Use
The getSoftkeyTitleWidth method returns the number of displayed characters for a soft key
title.

For a small WAP-enabled device, the length of the soft key label should not
exceed 6 characters. You should define different variants of this property if you
want to offer longer label texts for specific devices.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.55 getSubCategory Method

Use
The getSubCategory method is used for the refinement of the device categorization.

(See also getDeviceCategory Method [Page 33]).

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 684

However, SAP does not predefine values. Therefore the system administrator can implement
a company-specific categorization of the mobile devices.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.56 isTableHasBorders Method

Use
The isTableHasBorders method specifies whether or not tables are displayed with gridlines.

If a mobile device meets this condition, the <table> tag cannot be used for the
layout of forms in your application. This is the especially the case if input fields
and buttons are to be arranged form-like and justified. Only genuine tabular
arrangements should use the table. However, this can also cause problems on
mobile browsers that do not display the table attributes cellspacing and
cellpadding as desired.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.57 isTableSupported Method

Use
The isTableSupported method specifies whether or not a mobile device can interpret the
<table> tag, so multiple columns can be displayed side by side.

Features
Tables are a crucial element for the clear layout of Web applications. It is essential that you
define the number of columns in a table using the tag attribute columns.

For example, there are mobile devices that can only display one column on each page. So,
for example, WAP-enabled Nokia devices do not interpret tables in the usual way. For these
devices, the value is set to false, because the contents of the columns are not displayed side
by side but below one another. The layout becomes too complex and you can no longer
correctly assign the column values.

However, an Openwave browser displays the tables in the usual way – that is, it displays
columns side by side.

If a mobile device does not meet the condition, because it does not support the <table> tag,
another display type for the structure of the Web application should be selected (see
example). For some devices, you can use lists instead of tables.

Example
The following JSP example shows one way of how to use the isTableSupported method for
the customization of Web applications.

<%@ page import="com.sap.mobile.clientinfo.*" %>
<%
ClientInfoFactory factory = ClientInfoFactory.newInstance();
ClientInfo clientInfo = factory.newClientInfo();

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 685

clientInfo.load(request);
%>
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<card id="main" title="table">
<p>
<% if clientInfo->getTableSupported() == true; { %>
<table columns="3">
<tr> <td>Rome</td><td>sunny</td><td>28°C</td> </tr>
<tr> <td>Berlin</td><td>cldy</td><td>21°C</td> </tr>
<tr> <td>Oslo</td><td>rain</td><td>15°C</td> </tr>
</table>
<% } else { %>
<%= clientInfo->getDefaultBullet(); %>Rome

sunny 28°C

<%= clientInfo->getDefaultBullet(); %>Berlin

cloudy 21°C

<%= clientInfo->getDefaultBullet(); %>Oslo

rain 15°C

<% } %>
</p>
</card>
</wml>

ClientInfo Interface [Page 33]

3.4.2.12.2.5.58 TelephonyLinksSupported Method

Use
The getTelephonyLinksSupported method specifies whether or not you can use a link to
directly dial a telephone number. If a mobile device meets this condition and supports
telephony links, a WTAI (Wireless Telephony Application Interface) link is used.

If the device does not meet the condition, the phone number should be displayed on the
screen, so the user can dial it afterwards.

WAP-enabled Nokia devices allow you to dial phone numbers displayed on the screen by
using the [USE NUMBER] function. Since this dial operation does not use WTAI links, the
getTelephonyLinksSupported method returns the value false for these devices.

Example
<%@ page import="com.sap.mobile.clientinfo.*" %>
<%! String contentType; %>
<%
 ClientInfo clientInfo = ClientInfoFactory.newInstance().newClientInfo();
 clientInfo.load(request);
 contentType = clientInfo.getContentType();
%>
<%response.setContentType("text/vnd.wap.wml");%>
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 686

<wml>
<card id="karte1" title="Dialling Example">
<% if (clientInfo.isTitleSupported() == false)
 { %>
 <p align="center">
<% if (clientInfo.isEmphasizedSupported() == true) { %>
 Dialling Example
<% } else { %>
 Dialling Example
<% } %>
</p>
<% } %>
<p>
<% if (clientInfo.isTelephonyLinksSupported() == false)
 { %>
Dialling is not supported on this device
<% } else { %>
use softkey for dialling!
+49 6227 7 64900
 <do type="options" label="Dial">
 <go href="wtai://wp/mc;+496227764900"/>
 </do>
<% } %>
</p>
</card>
</wml>

ClientInfo Interface [Page 33]

3.4.2.12.2.5.59 isTextStylesSupported Method

Use
The isTextStylesSupported method specifies whether or not the browser can format text using
tags such as or <small>.

If these format tags are used, although the browser cannot interpret them, no problems are
caused in familiar devices. However, these tags unnecessarily use up valuable memory
space.

ClientInfo Interface [Page 33]

3.4.2.12.2.5.60 isTitleSupported Method

Use
The isTitleSupported method of the ClientInfo interface specifies whether or not the title
attribute of the WML tag <card> causes the title to appear at the top of the screen.

On some devices, for example Nokia devices, specifying a title in the WML tag <card>
displays a header in the Web application title bar.

However, an Openwave browser does not support this function on every device. In this case,
no header appears in the device’s user interface. To make the title appear on such devices, it
must be included in the body text of the document.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 687

Example
The following JSP code shows how to use the isTitleSupported method:
<%@ page import="com.sap.mobile.clientinfo.*" %>
<%@ page import="WeatherData" %>
<%
 int prio;
 ClientInfo clientInfo = ClientInfoFactory.newInstance().newClientInfo();
 clientInfo.load(request);
%>
...
<%response.setContentType("text/vnd.wap.wml");%>
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<card id="karte1" title="Table Example">
<% if (clientInfo.isTitleSupported() == false)
 { %>
 <p align="center">
<% if (clientInfo.isEmphasizedSupported() == true) { %>
 Table Example
<% } else { %>
 Table Example
<% } %>
</p>
<% } %>
...
</card>
</wml>
<% } %>

ClientInfo Interface [Page 33]

3.4.2.12.2.5.61 getTitleWidth Method

Use
If a mobile device does not support proportional fonts and therefore each character has the
same width, the value that is returned by the getTitleWidth method represents the maximum
number of characters a title can be displayed with.

This number might differ from the actual character number for a title when using proportional
fonts. In this case, the value that is returned by the getTitleWidth method represents the
maximum number of characters with an average character width.

ClientInfo Interface [Page 33]

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 688

3.4.2.12.2.5.62 getUserAgent Method

Use
The value returned by the getUserAgent method represents the value of the HTTP request
header USER-AGENT. This header is sent to the browser by a mobile device in every HTTP
request and contains information on which browser type and browser version is used by the
requesting device.

Example
For example, Ericsson’s mobile telephone R380 passes the character string R380 2.0
WAP1.1 to the Web server. This character string is used to uniquely identify the browser of
the mobile device and, by using matching in the device recognition process, ensures that only
the appropriate properties for a mobile device are made available.

ClientInfo Interface [Page 33]

3.4.2.12.2.6 The Administrator’s Guide to the Device Recognition
Process

Purpose
The following explanation provides System Administrators with a guide to installing and
executing ClientInfo for Java Web applications (delivered as clientinfo.war). The ClientInfo
Web application is an extension of the Java-enabled Web server and is implemented in Java
in the package com.sap.mobile.clientinfo. This Web application provides the device
properties of mobile devices like pocket PCs and WAP-enabled mobile telephones at runtime.

Among other tasks, System Administrators can change the Deployment Descriptor web.xml
file. They can also change values already specified for the properties of mobile devices and
add new mobile devices to the device recognition process.

Features

Installing a Web application
● Modifying the Deployment Descriptor

System Administrators can adapt the deployment of the Web application to the Web
server structure of their own enterprise by changing the parameters of the Deployment
Descriptor element <servlet/>.

For more information on the Deployment Descriptor, refer to The Deployment
Descriptor [Page 33].

When assigning file names, field names, and so on, bear in mind that Java is case-
sensitive.

Including other mobile devices in the device recognition process
The innovations in the mobile devices market sector ensure that there are always new
devices on the market. This in turn means that not all commercially available mobile devices
with their properties and values can be contained in the delivered XML documents.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 689

To add additional devices with their special properties, System Administrators can create new
XML files.
...

1. Change the properties predefined by SAP and thus adapt the guidelines for Web
applications to the needs of your enterprise.

2. Include new devices by adding more XML files.

For details on maintaining and enhancing these XML documents, see the following:

− Modifying Device Properties [Page 33]

− Adding New Mobile Devices [Page 33]

3.4.2.12.2.6.1 The Deployment Descriptor

Definition
In Java programming, deployment refers to the process of installing the Web application in
the Web server environment. Among other things, the deployment process ensures that the
files and other resources are stored in the right places and that all the information the Web
server needs to run the application is available.

The relevant web.xml file contains the "Web Application Deployment Descriptor" of the Java
Web application. This descriptor (an XML document) defines the configuration of the Web
application and contains all the information the Web server needs. This information is needed
to install (deploy) the clientinfo.war file (delivered by SAP) to the Web server environment
and to control, for example, saving the individual files in the correct directories. This Web
ARchive (.war) file is a packed Web application.

Delivering the Web application as the Web Archive file clientinfo.war makes deployment
easier, since all the files needed for this Web application are installed in the correct
hierarchical structure on the Web server.

Use
To deploy a Web application successfully the system requires certain information, which must
be formulated in the Deployment Descriptor web.xml file. Before you can set up a servlet you
must specify the servlet element of the Deployment Descriptor web.xml more exactly.

The configuration information, which the Deployment Descriptor of the Java Web application
ClientInfo describes, includes :

● The definition of the servlet and its initialization parameters

● MIME type mappings (lists of authorized MIME types)

The ClientInfoInitializer servlet, however, requires additional information that is passed to it
initialization. This information is defined in the Deployment Descriptor element <servlet>.

The initialization parameters of the ClientInfoInitializer servlet include:

1. Parameters specifying the class to be implemented using the ClientInfo interface. .

...
<init-param>
<param-name>com.sap.mobile.clientinfo.ClientInfoImpl</param-name>
<param-value>com.sap.mobile.clientinfo.DefaultClientInfo</param-value>
</init-param>
...

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 690

If you use the SAP implementation, the DefaultClientInfo is used by default for
implementing the ClientInfo interface – that is, the above parameters need not
be changed. If, however, you use your own implementation of the ClientInfo
interface, you must assign the appropriate parameter value to ClientInfoImpl.

3. Parameters specifying the root directory of the device recognition data

<init-param>
<param-name>com.sap.mobile.clientinfo.Home</param-name>
<param-value>C:\tomcat\webapps\clientinfo\mobile</param-value>
</init-param>

Note that you can save the device recognition data in a different directory. It
makes sense to do this if you want to add new devices and want to store the
new files temporarily in another directory for test purposes.

4. Parameters for specifying the trace level

<init-param>
<param-name>com.sap.mobile.clientinfo.TraceLevel</param-name>
<param-value>1</param-value>
</init-param>

The trace level describes the information depth of a log file and is a value from 0 (not
logged) to 4 (debug). For the ClientInfo Web application the trace level is set by default
to the value 1 (brief).

It may be appropriate in some circumstances – for example, for technical support – to
raise the trace level to 4. This would then increase the amount of information contained
in the log file, since only then could the error messages accompanying problems be
interpreted. However, to set the trace level to a high value all the time would be bad for
the performance of the Web application.

Moreover, if you assign a value of 1 to the sub-element <load-on-startup> causes the servlet
ClientInfoInitializer to be executed first.

You can edit the parameters of the Deployment Descriptor element <servlet> and thus adapt
the directory and data structure to your own Web server. For example, you can change the
root directory for the device recognition data of the Java Web application ClientInfo specified
by SAP, and set up an appropriate structure for you own enterprise.

For more details on how to do this, refer to Changing Deployment Descriptor Elements [Page
33].

3.4.2.12.2.6.2 Changing Deployment Descriptor Elements

Use
When you deploy the Web application in the structure of the Web server in your own
enterprise, you must adapt the Deployment Descriptor web.xml [Page 33] file for this structure
to your own needs.

We also advise you to store the .cap files with the device properties temporarily
in another directory for test purposes – for example, when adding new devices.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 691

To do this, you must edit the XML document web.xml containing the parameters
of the Deployment Descriptor element <servlet>.

Procedure
● Open the XML document web.xml, stored in the WEB-INF sub-directory of the root

directory, in an appropriate Editor – either an XML Editor or Microsoft Notepad.

● Enter your changes – for example, enter a new path for the root directory.

● Save your changes.

After you change the Deployment Descriptor you must execute the Java Servlet
Engine again.

Result
You have customized your Web application and tailored the deployment of the Web
application to your own enterprise.

3.4.2.12.2.6.3 Modifying Device Properties

Use
To adapt the device properties for a specific mobile device to the layout guidelines of your
enterprise, you must edit the associated XML file and then store the changed values in the
XML document with the .cap extension.

The *.cap XML files for the device types are stored on the Java-enabled Web server in the
sub-directory .../mobile.

Procedure
...

1. In the XML Editor, open the XML document with the .cap extension containing the
device properties of a specific device type. (You can also use the widely available
Microsoft Notepad).

2. Change the appropriate data or add new values for a specific device type. (See the
example for more details). For a summary of all available device properties, see the
template file template.cap and the Document Type Definition (DTD) files devcap.dtd.

3. Save your entries.

Note that you can also adapt the display of the Web application to the look and
feel of your enterprise. To do this, change the values suggested by SAP returned
by the methods of the ClientInfo interface – for example
getDefaultActionDesign and getDefaultBullet – to the design laid down by your
enterprise.

In some cases, you may also want to change the properties preset by the device – for
example, if a Web application is displayed in landscape format on a handheld device like a

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 692

pocket PC. Normally, the getPixelHeight and getPixelWidth methods return values that
display the application in portrait format.

If you have deleted a property, its default value is returned to the Java application
at runtime.

In any case, you must restart the Java Servlet Engine after changing the device
properties.

Result
You have updated the XML document .cap, which provides the device properties for a
specific mobile device.

Example
In the following example, the values delivered by SAP – “---“ of the method
getDefaultBlockSeparator and “»" of the method getDefaultBullet – are replaced by the string
“***” and the “-“ character (– in the source code) in the .cap file.
<!-- edited with XML Spy v3.5 NT (http://www.xmlspy.com) by SAP AG (SAP AG) -->
<!DOCTYPE device SYSTEM "devcap.dtd">
<device>
<backHardWired>true</backHardWired>
<backLabel>false</backLabel>
<backToAnyUrlSupported>true</backToAnyUrlSupported>
<cacheEnabledByDefault>true</cacheEnabledByDefault>
<charHeight>4</charHeight>
<charWidth>16</charWidth>
<contentType>wml</contentType>
<contentTypeVersion>1.1</contentTypeVersion>
<deviceCategory>Phone</deviceCategory>
<deviceName>siemensGeneric</deviceName>
<formFactor>phone</formFactor>
......
<defaultActionDesign>softkey</defaultActionDesign>
<defaultBlockSeparator>***</defaultBlockSeparator>
<defaultBullet>–</defaultBullet>
<defaultFormStyle>onePage</defaultFormStyle>
<defaultMenuStyle>linkList</defaultMenuStyle>
<defaultPageLayoutDesign>sequential</defaultPageLayoutDesign>
</device>

3.4.2.12.2.6.4 Adding a New Mobile Device

Use
To make device properties for additional mobile devices available, create a new XML
document with the extension .cap and save it in the appropriate directory.

The XML file for each device type is stored on the Java-enabled Web server in the sub-
directory .../mobile of the root directory.

When you add new devices, we recommend that you temporarily copy the files
describing the device properties (that is, all the files in the /mobile sub-directory)
to another directory for test purposes. To do this, you must change the

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 693

Deployment Descriptor parameters appropriately. (See Changing Deployment
Descriptor Elements [Page 33] for more information).

Procedure
...

1. To create a new device type, choose the template provided, template.cap, stored on
the Java-enabled Web server under .../mobile. The template.cap file lists all the
available device properties. They offer an overview of all available device properties, as
well as providing help when you want to enter device-specific values for these
properties. All available device properties are also stored in the DTD file devcap.dtd.
You only need to define properties for a specific device.

If you do not define properties the default values are sent to the Java application
at runtime.

2. In the XML Editor, open the XML document template.cap, which contains the device
properties of a specific device type. (You can also use the widely available Microsoft
Notepad).

3. Enter the appropriate data – that is, the values you want to assign to the device
properties.

4. Save the new file with a meaningful name and the extension .cap – for example,
siemensM35.cap.

5. Then edit the configuration file devices.xml saved in the same directory in an XML
Editor. You have to add another <device/> tag to this file. To do this, enter:

...

a. The ID number

b. The string contained in the HTTP header “userAgent”

c. The priority (specifies the exactness with which the device can be identified).
See Device Recognition Mechanism [Page 33]

d. The MIME type passed in the HTTP header “accept” by the requesting device

e. The name of the device

<device>
<id>Y_SiemensS35</id>
<userAgent>SIE-S35/1.0 UP/</userAgent>
<priority>1</priority>
<accept>text/vnd.wap.wml</accept>
<deviceName>SiemensS35</deviceName>
</device>

The device name <deviceName/> in the devices.xml file must match the name of
the associated XML file, .cap. Choose a meaningful name for the name of the
device in the configuration table. The ID number must begin with an upper case Y
or Z, followed by an underscore, and then by a meaningful string representing the
name of the device. The ID numbers should begin with a Y or Z; otherwise they
will be overwritten during updating.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 694

When maintaining contents or names of files, fields and so on, bear in mind that
Java is case-sensitive.

In any case, you must restart the Java Servlet Engine after changing the device
properties.

Result
You have added a specific device to the device recognition mechanism.

3.4.3 User Management Engine

Purpose
SAP Enterprise Portal 6.0 uses the User Management Engine (UME) 4.0 to enable integration
of the portal with a existing LDAP or user management solution. The UME is used by the SAP
NetWeaver platform.

This document describes how to develop customized applications with the UME that is
provided by the SAP Web AS Java [Page 33] and the SAP Enterprise Portal [Page 33].

From the application point-of-view, the UME provides three main functions:

● Authentication: Which user is logged in

● Authorization: What the user is allowed to do

● Profile: Details of user like user name, address and so on

See the SAP Web AS Java documentation Identity Management [External] for more details
about the authentication concept. This document is also available on the SAP Help Portal at
http://help.sap.com.

3.4.3.1 SAP Web AS Java

See the SAP Web AS Java UME [External] documentation for details about installation and
administration. This document is also available on the SAP Help Portal at
http://help.sap.com.

User Authentication and Single Sign-On
There are several mechanisms for user authentication available on the SAP NetWeaver
platform. If you have several systems in your system landscape, the Single Sign-On (SSO)
environment is a useful feature, to reduce the number of logon procedures a user usually has
to perform.

The SAP Web AS Java is the underlying technology for authenticating users with SAP
NetWeaver. The following table gives an overview of the available user authentication
services and if the service is used directly for user authentication or for SSO.

Mechanism User
Authenti-

Single
Sign-

ABAP Java

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 695

cation On

User ID and password x x x x

Secure Network Communications (SNC) x x x

SAP logon tickets x x x

SSL and X.509 client certificates x x x x

Pluggable Authentication Services (PAS) x x

Security Assertion Markup Language (SAML) x x

Java Authentication and Authorization Service
(JAAS)

x x x

For more details on SSO refer to the Single Sign-On in a Complex System Landscape
[External] or refer to the SAP Help Portal at http://help.sap.com.

3.4.3.1.1 Authentication
The logon stacks enable you to choose different combinations of authentication types for
every application you create, and for each of the components on the server with applied
security restrictions.

Interface IAuthentication
The SAP WebAS Java provides an API to check if a user is logged in, to enforce that a user
is logged in and to get the logged in user object.

The interface has following methods:
public interface IAuthentication {

 //Returns the logged on user or null, if no user is logged on.
 public IUser getLoggedInUser(HttpServletRequest req,
 HttpServletResponse resp);
/*
 * Checks if a user is logged on and returns the user id if it is.
 * If the user is not logged on, a logon page is displayed,
 * written as ServletResponse.
 */
 public IUser forceLoggedInUser(
 HttpServletRequest req,
 HttpServletResponse resp)
 throws UserManagementException;

 //Logs the user out
 public void logout(
 HttpServletRequest req,
 HttpServletResponse resp);
}

Example: Enforcing Logon
IUser user =
 UMFactory.getAuthenticator().forceLoggedInUser(request, response);
if (user == null)

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 696

 return;

The user object can be used for access control and to get the profile of the user.

The method forceLoggedInUser() changes the response if the user is not
logged on.

To avoid exceptions an application must stick to the following recommendations:

■ do not write to the response before calling method
forceLoggedInUser().

■ do not write to the response after calling method
forceLoggedInUser() when the method returned value null.

Session Handling for SAP WebAS Java Applications
If a SAP WebAS Java application stores confidential or user relevant data in the session
context, the application has to make sure that the data/session is destroyed when the user
logs off. The application has to check if a user is logged on at every request with the method
getLoggedInUser().

Whenever a user logs on, a reference to the logged on user is stored in the session context. If
the session already contains a reference to another user (this includes the case that the
session contains a user reference but the user is not logged on), use the method
forceLoggedInUser() to initiate a new log on and to cancel the existing session. When
the user logs off, the SSO cookie is removed and the session is closed.

For a good performance of the method getLoggedInUser(), the UME caches the
information to verify the log on status of user.

See the Sun Microsystems servlet specification for more details about the HTTP
session object when you have to create a SAP WebAS Java application.

In the SAP Enterprise Portal the session is controlled by the portal. So the portal
application does not have to take care about user data stored in the session
context itself.

Single Sign-On (SSO)
Authentication with SSO works as follows:

● After a user is logged on, an encrypted cookie is created for the user.

● In the following requests, this cookie can be used for SSO. The method getUser()
verifies the cookie and retrieves the available user information.

The method forceLoggedInUser() works in the same way.

● When the user is not logged on or the cookie is for any reason invalid and method
forceLoggedInUser() is called, the method will automatically display the log on
page. The requested URL (for example, servlet, HTML page, JSP and so on) is passed
on to the log on page. When the user is logged on again, the requested URL is called.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 697

3.4.3.2 SAP Enterprise Portal

See the SAP Enterprise Portal UME documentation for details about configuration and
administration. The document Authentication on the Portal contains details about Single Sign-
on (SSO).

Both documents are also available on the SAP Help Portal at http://help.sap.com →
SAP NetWeaver → People Integration → Portal → Portal Architecture
→ Security and User Management → User Management Engine (UME).

3.4.3.2.1 LoginModule Example

Purpose
The SAP Enterprise Portal 6.0 provides a flexible mechanism to plug-in custom authentication
mechanisms and authentication configuration for a portal content.

This section explains the basic concepts where the customized authentication mechanisms
can be plugged-in, how the flexible architecture can be used and how it is assembled.

Prerequisites
You should be familiar with the following services and tools:

● Java Authentication and Authorization Service (JAAS).

Documentation for the JAAS service can be found on the Sun Microsystems Inc. Java
developer network site.

● Experiences with the Java programming language.

● Basic concepts of the SAP Enterprise Portal, iViews and authentication schemes.

Documentation on these issues can be found on the SAP Help portal.

Structure of this Section
Section Custom Password Based Authentication [Page 33] covers the easiest way to
customize the logon. The LoginModule interface has to be implemented and a few
configuration changes have to be done. The portal will use the standard logon screen.

Section Changing the Login Screen [Page 33] describes how to replace the standard portal
logon screen by a customized logon screen.

Section Advanced Authentication Example [Page 33] describes the advanced features of the
authentication architecture like, how to evaluate http information and how to deal with
cookies.

3.4.3.2.1.1 Customized Password Authentication
The authentication by password is the most common authentication method. The SAP
Enterprise Portal provides several password based authentication features, like for the
following services:

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 698

● All supported LDAP directories.

● The User Management Engine (UME) 4.0 proprietary database repository.

● The SAP ABAP engine.

Customized authentication is necessary in following use cases:

● Proprietary user repository (for example, LDAP compliant)

User records can be synchronized with the portal user repository but passwords
cannot. This is the case, if the one-way hash algorithm used to store passwords is not
identical for both user repositories. The stored hash values cannot be copied from one
repository into the other and the password cannot be restored from the hash value. The
SAP Enterprise Portal user administration can use the synchronized user record in the
portal user repository but the authentication must be performed with the original
repository.

● Hardware device generates a PIN for authentication

Usually these hardware devices are synchronized with a central server which verifies
the pins. In this case the customized authentication would establish a connection with
the central server and verify the pin.

In this section we describe the basic concept of customized authentication with the
LoginModule interface and which steps are necessary to integrate it into SAP Enterprise
Portal.

3.4.3.2.1.1.1 Customized Authentication Implementation
In this section a customized authentication is implemented that will accept a password if it is
equal to the user name after a cyclic right-shift by one character. The comparison is not case
sensitive.

The class of the example is called com.sap.security.demo.DemoLoginModule.

Implementing the LoginModule Interface
The LoginModule interface provides the method necessary to implement the customized
authentication. In the following we describe the methods that have to be implemented.

checkPasswd(String user, char [] pwd) Method
This method verifies the password.

The password parameter pwd comes in a character array in compliance with the
JAAS standard.

The method is implemented as follows:
/**
 * This function verified if the password is a cyclic
 * right shift by one character of the lowercase user
 * name
 */
 protected boolean checkPasswd (String name, char [] pwd)
 {
 if (name==null || pwd==null || name.length()==0 || pwd.length==0)
{

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 699

 return false;
 }
 name = name.toLowerCase();

 // cut off the first character
 String strPwd = new String (pwd, 1, pwd.length-1);

 // compare if the first character of the password
 // is the last of the user name
 if (pwd[0]!=name.charAt(name.length()-1))
 return false;

 return name.substring (0,name.length()-1).equals(strPwd);
 }

initialize() Method
This method is called when the service is initialized, for example when the portal is started.
 Subject _subject = null;
 CallbackHandler _ch = null;

 public void initialize(Subject subj, CallbackHandler ch,
 Map sharedState, Map options)
 {
 _subject = subj;
 _ch = ch;
 }

To save resources the portal cannot keep the login context. Therefore the
settings are not available in the sharedState map for an entire logon/logoff
cycle. A new sharedState map is instantiated before the methods login()
or logoff() are called.

login() Method
This method is called, when the user chooses the Logon button on the logon screen. The
login() method gets the username and password. It checks the password and returns
true, when the password is correct, or an exception when the password is incorrect.
public boolean login() throws LoginException
{
 Exception exception_on_the_way = null;
 PasswordCallback pc = new PasswordCallback ("Password:", false);
 NameCallback nc = new NameCallback ("User:");
 Callback [] mycallbacks = new Callback [] { nc, pc };

 try {
 _ch.handle (mycallbacks);
 }
 catch (IOException e) {
 exception_on_the_way = e;
 }
 catch (UnsupportedCallbackException e) {

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 700

 exception_on_the_way = e;
 }

 String name = nc.getName();
 char [] pwd = pc.getPassword();

 if (name.length()==0)
 throw new LoginException (MISSING_UID);

 if (pwd.length==0)
 throw new LoginException (MISSING_PASSWORD);

 if (exception_on_the_way!=null) {
 // A productive application should write an entry
 // into the trace here
 exception_on_the_way.printStackTrace ();
 throw new LoginException ("Could not handle callbacks");
 }

 if (!checkPasswd (name, pwd)) {
 throw new LoginException (USER_AUTH_FAILED);
 }
 else {
 _bSucceeded = true;
 _auth_user = name;
 }

 return true;
}

If a LoginException exception is thrown in the method login(), like shown in the
example above, the standard logon page of the portal displays the standard error messages
for the standard error cases, like user or password incorrect.

To display a specific message on the logon page, a
javax.security.auth.login.LoginException with a defined error constant has to be
thrown. The error constants are defined as String constants in the core class
com.sap.security.core.logon.imp.SecurityPolicy. Since the core class is not
part of the published UME API the error codes have to be defined as follows:
 public final static String MISSING_UID = "MISSING_UID";
 public final static String MISSING_PASSWORD = "MISSING_PASSWORD";
 public final static String USER_AUTH_FAILED = "USER_AUTH_FAILED";
 public final static String USERID_NOT_FOUND = "USERID_NOT_FOUND";
 public final static String ACCOUNT_LOCKED_ADMIN = "ACCOUNT_LOCKED_AD
MIN";
 public final static String ACCOUNT_LOCKED_LOGON = "ACCOUNT_LOCKED_LO
GON";

commit() Method
This method is called, when the login() method returned true. It provides the identity of
the authenticated user.
 public boolean commit ()
 {
 if (_bSucceeded == false) {
 return false;
 }

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 701

 else {
 // add a Principal (authenticated identity) to the Subject
 final String final_name = _auth_user;
 _subject.getPrincipals().add (new Principal () {
 public String getName ()
 {
 return final_name;
 }
 });
 return true;
 }
 }

The user name used to create the Principal object has to be the logon user ID of an
existing portal user. The SAP Enterprise Portal will instantiate a
com.sap.security.api.IUser object with the method
IUserFactory.getUserByLogonID(String logonuid).

Deploying the Customized Authentication
Build a Java Archive (JAR) file that contains the customized authentication implementation
and other classes that the implementation needs.

For this example the class files of the com.sap.security.demo.DemoLoginModule
implementation is put into the demolm.jar file. The demolm.jar file has to be copied into
the folder <j2ee home>/cluster/server/additional-lib.

To register the customized authentication the configuration of the portal has to be changed.
See section Configure the Portal for Customized Authentication [Page 33] for more details.

3.4.3.2.1.1.2 Configure the Portal for Customized Authentication
When the JAR file with the classes of the customized authentication implementation
(demolm.jar in this example) has been copied to the folder <j2ee
home>/cluster/server/additional-lib the JAR file has to be added to the following configuration
files.

Changes in file library.txt
The classes in the demolm.jar file have to be visible to the UME classes and vice versa.
This is done by adding the JAR file to the definition of the UME libraries in the file <j2ee
home>/cluster/server/managers/library.txt.

Append the name of the JAR file as follows (the added characters are written in bold):

library com.sap.security.ume
com/sap/security/api/com.sap.security.api.jar;
com/sap/security/api/com.sap.security.api.perm.jar;
com/sap/ip/basecomps/BaseComps.jar;
com/sap/security/api/com.sap.security.core.jar;
com/sap/security/api/com.sap.security.core.tpd.jar;
com/sap/security/demolm.jar

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 702

Changes in file authschemes.xml
The customized authentication implementation has to be added as new authscheme section
to the authscheme structure defined in the file authschemes.xml.

New authscheme section:
<authscheme name="myNewLogon">
 <loginmodule>
 <loginModuleName>
 com.sap.security.demo.DemoLoginModule
 </loginModuleName>
 <controlFlag>REQUISITE</controlflag>
 <options></options>
 </loginmodule>
 <priority>20</priority>
 <frontendtype>2</frontendtype>
 <frontendtarget>com.sap.portal.runtime.logon.certlogon</frontendtar
get>
</authscheme>
The standard authscheme entry of the portal is called uidpwlogon. The new authscheme entry
is identical to uidpwlogon, except for the authscheme name and loginModulename.

Using the Customized Authentication as Default Authentication
To use a customized authscheme as standard portal authentication, the authscheme
parameter in the authscheme-refs section has to be changed to the name of the
customized authscheme.

To use the myNewLogon authscheme the authscheme-refs entry has to be changes as
follows:
<authscheme-refs>
 <authscheme-ref name="default">
 <authscheme>myNewLogon</authscheme>
 </authscheme-ref>
</authscheme-refs>

Refer to SAP Note 686538 for details about saving the settings in the
authschemes.xml file before applying a Support Package to the SAP
Enterprise Portal.

Using the Customized Authentication for Specific iViews
With the portal user interface in section Portal Content, you can assign the customized
authentication to certain iViews.

The customized authentication can also be specified in the deployment descriptor
portalapp.xml of an iView.

Running the Customized Authentication
After all the changes on the portal configuration are finished, restart the server and logon to
the portal.

Core Development Tasks March 2006

Uniform Resource Name (URN)

Running an Enterprise Portal 703

3.4.3.2.1.2 Changing the Logon Screen
For a customized logon screen, an iView has to be implemented. This section describes,
which fields have to be defined in the user interface and how to set the properties for the
iView.

For more details about creating an iView and JSP refer to the PDK.

Necessary HTML - Form Parameters
The customized login screen has to follow certain rules in naming the form and input fields.

Following rules apply to the customized logon screen:
● The input field for the user name must have the name j_user.

● The input field for the password must have the name j_password.

● The hidden input field login_submit has to be set to true (=1) to tell the portal that a
logon takes place.

● To use another authscheme than default, the customized authscheme, that refers to
the name in the authschemes.xml file, has to be provided in the hidden input field
j_authscheme.

Example of the standard logon page, using the default authscheme:
<FORM name="logonForm" method="post" action=" /irj/servlet/prt/portal
 /prtroot/com.sap.portal.navigation.portallauncher.default
">
 <input name="login_submit" type="hidden" value="on">
 <input type="hidden" name="login_do_redirect" value="1" />
 <input name="j_authscheme" type="hidden" value="default">
 <table border="0" align="left" valign="top">
 <tr>
 <td >
 User Id
 </td>
 <td width="183" height="20">
 <input name="j_user" type="text" value="">
 </td>
 </tr>
 <tr>
 <td width="161" height="20">
 Password
 </label>
 </td>
 <td width="183" height="20">
 <input name="j_password" type="password">
 </td>
 </tr>
 <tr>
 <td colspan="2" height="20"> </td>
 </tr>
 <tr>
 <td colspan="2">
 <input value="Log on">
 </td>
 </tr>

Core Development Tasks March 2006

Changes in the LoginModule Implementation

Running an Enterprise Portal 704

 </table>
</form>

3.4.3.2.1.3 Advanced Authentication Example
The portal allows the access to the http request for all custom logon modules during the
authentication process. With access to the http request it is possible to read and set cookies
or http header values, for example to reject certain namespaces.

In the following chapter we extend the example with an access to the http request.

3.5 Changes in the LoginModule Implementation
We extend the LoginModule implementation, described in section Customized
Authentication Implementation [Page 33], that in addition to the password the IP address of
the client has to be in a predefined range.

initialize() Method
For the further coding, we need the options parameter, which is available in initialize().
We store the options parameter locally.

Extended initialize() method:
 Subject _subject = null;
 CallbackHandler _ch = null;
 Map _options = null;

 public void initialize(Subject subj, CallbackHandler ch,
 Map sharedState, Map options)
 {
 _subject = subj;
 _ch = ch;
 _options = options;
 }

login() Method
We extend the existing login() method, because, we still want to check the password.
Therefore we create the com.sap.security.demo.DemoLoginModule2, inherit a new
LoginModule class from our exsting LoginModule class from section Customized
Authentication Implementation [Page 33] and overwrite the method login() method the
following way:
Exception on_the_way = null;
String client_ip_str = null;
String ip_range_str=(String)_options.get("com.sap.security.demo.ip_ma
sk");
String ip_match =(String)_options.get("com.sap.security.demo.ip_ma
tch");

// First we check if the password login
// is successful
boolean rc = super.login ();

Core Development Tasks March 2006

Changes in the LoginModule Implementation

Running an Enterprise Portal 705

// In addition we perform the check whether
// The ip address is within a given range

// Get ip-range from options
byte [] iprange_as_byte_array = getIPAsByteArray (ip_mask);
// Get ip-address of client
byte [] client_ip = null;
// Get ip-match
int [] ipmatch = getIPAsIntArray (ip_match);

try {
 client_ip_str = getClientIP ();
} catch (UnsupportedCallbackException e) {
 on_the_way = e;
} catch (IOException e) {
 on_the_way = e;
}

client_ip = getIPAsByteArray (client_ip_str);

if (on_the_way!=null) {
 on_the_way.printStackTrace ();
 throw new LoginException ("Exception occured");
}

if (!ip_address_in_range (client_ip, iprange_as_byte_array, ipmatch))
 throw new LoginException ("IP-address " + client_ip_str +
 " is not in range" + ip_range_str);

return rc;

Utility Methods
The method ip_address_in_range() checks if the IP address of the client is in a given
range. Therefore, it first flips all bits in the array iprange_as_byte_array and performs
then a logical AND with the IP address. The result of the AND operation is zero, when all bits
are in the allowed range.

The method getClientIP() gets the client IP. To get access to the http request object, we
call the handle() method with an instance of WebCallback. The handle() method is the
interface of the LoginModule to the calling environment and enables the access to the object
data. Refer to the JAAS documentation for more details.
private boolean ip_address_ok (byte [] client_ip,
 byte [] iprange_as_byte_array,
 byte [] ipmatch)
{

 for (int ii=0; ii<4; ii++) {
 if (ipmatch[ii]!=(client_ip[ii] & iprange_as_byte_array[ii]))
 return false;
 }
 return true;
}

private String getClientIP ()

Core Development Tasks March 2006

Changes in the LoginModule Implementation

Running an Enterprise Portal 706

 throws UnsupportedCallbackException, IOException
{
 WebCallback wcb = new WebCallback ();
 _ch.handle (new Callback [] { wcb });

 HttpServletRequest req = wcb.getRequest();

 return req.getRemoteAddr ();
}

Configuration
To use the com.sap.security.demo.DemoLoginModule2 implementation we have to
add an authscheme to the authschemes.xml file.

The entry has following format:
<authscheme name="myNewLogon2">
 <loginmodule>
 <loginModuleName>
 com.sap.security.demo.DemoLoginModule2
 </loginModuleName>
 <controlFlag>REQUISITE</controlFlag>
 <options></options>
 </loginmodule>
 <priority>25</priority>
 <frontendtype>2</frontendtype>
 <frontendtarget>com.sap.portal.runtime.logon.certlogon</frontendtar
get>
</authscheme>
The priority of this authentication is higher, because the authentication mechanism is
stronger.

3.5.1.1 User
The SAP WebAS Java and the SAP Enterprise Portal are provides interfaces to get details
about the current user.

User Management Factory
The user management factory give access to the user management functions. The user
management factory is in the following package:

com.sap.security.api.UMFactory

Interface IUser
The IUser interface provides read access to the available user information.

Examples for user information:

● Company the user belongs to.

● Profile information, like full name and address)

● Authorization information. Which rights does the user have.

Core Development Tasks March 2006

Changes in the LoginModule Implementation

Running an Enterprise Portal 707

The IUserMaint interface extends the IUser interface and provides methods to change the
user information. One reason for the separation is the performance. Most applications only
need read access. The IUser interface does not have to deal with the overhead necessary to
change a user and is therefore faster.

Getting a User Object
The user management factory provides several methods to get the IUser object, for
example, get user by user name. For all available methods, please refer to the Javadoc.

Example:
//Get an 'IUserFactory'-object to instantiate user-objects.
 IUserFactory userFactory= UMFactory.getUserFactory();
 IUser myUser = userFactory.getUser(request.getUser().getUserId()
);

Accessing the Logon ID of a User
In EP 5.0 it was possible to get the logon ID with the getUid() method of the user factory.
This method is deprecated in EP 6.0 due to the fact that a user can be associated with
several logon accounts. The method getUniqueId() is a substitution for getUid(), but the
returned value has to be parsed to get the logon ID. You can access the logon ID by iterating
through the IUserAccounts array that is returned by method getUserAccounts()T, with
method getLogonUid().
 String logonID = user.getUid();
 IUserAccount accounts[]= null;
 try {
 accounts= user.getUserAccounts();
 } catch (UMException e) {
 response
 .write(
 ("
Error getting accounts: "
 + e.getLocalizedMessage());
 }
 if (accounts != null) {
 response.write(
 "
Number of Login Accounts: " + accounts.length);
 for (int i= 0; i < accounts.length; i++) {
 response.write(
 "
** Login ID #"
 + i
 + ": LogonUID="
 + accounts[i].getLogonUid()
 + ", AssignedUID="
 + accounts[i].getAssignedUserID());
 response.write(
 "
Last Login: "
 + accounts[i]
 .getLastSuccessfulLogonDate()
 .toString());
 response.write(
 "
Logins: "
 + accounts[i].getSuccessfulLogonCounts());
 }
 }

Core Development Tasks March 2006

ServiceUserFactory

Running an Enterprise Portal 708

3.5.1.1.1 Service User
Service user do not log on interactively. A service user is used, for example, to connect to a
remote system with certain rights. Although a service user does not log on interactively, it is
authenticated and the attributes contain a valid ticket. User mapping [Page 33] can be defined
for a service users as well as assigning a role and general attributes to a service user.

Service users are defined as regular users with their own namespace.

3.6 ServiceUserFactory
The ServiceUserFactory can be accessed as follows:
 UMFactory().getServiceUserFactory()

The ServiceUserFactory provides the method getServiceUser(String uniqueName).
The ServiceUserFactory verifies that the specifies user is a service user and if so, returns an
IUser object with a ticket attached to a transient attribute.

For a service user only the user profile is stored, not the user itself. This has following
advantages:

● No interactive log on possible

authentication will first check in the store of accounts and will not find a user account
for a service user no special coding necessary for authentication process

● Initial service users can be provided when the UME tables are created. After creating
the UME tables, following users, in this case Knowledge Management service users,
are automatically added:

"index_service" ,

"subscription_service",

"ice_service",

"collaboration_service",

"timebasedpublish_service",

"notificator_service",

"cmadmin_service",

"action_inbox_service"

Security of Service Users
Service users have the rights that are needed to perform a certain task, for example, all
necessary permissions to perform all actions, like delete and modify, on an Access Control
List [Page 33] (ACL).

Permission check example:
 IUser createServiceUser(String uid) {
 SecurityManager secman= UMFactory.getSecurityManager();
 if (secman != null) {
 ProtectedCallPermission p=
 new ProtectedCallPermission(createServiceUser, uid);
 secman.checkPermission();
 }

Core Development Tasks March 2006

ServiceUserFactory

Running an Enterprise Portal 709

 }
The call name acts as target and the user name as action. With this granularity, you can
specify exactly which application can instantiate which service users.

Example for a permissions:
codeBase ${portal.home}\WEB-INF\portal\…\private\lib\km.jar {
 grant ProtectedCallPermission createServiceUser
IndexService,QueueService;
}

3.6.1.1 Role
EP 5.0 has a basic role structure, with a unique name for every role. In EP 6.0, roles can be
nested in folders and have a unique identifier. Most of the role API methods require the
unique role ID as a handle or key to obtain the role information.

The getRoles() method of the IUser object gets a list of roles as iterator. The iterator
contains the unique IDs of the roles associated with the user. In order to get the actual
information about a specific role you have to use the role factory to get an instance of that
role. The unique ID is passed to the getRole() method of the role factory.

Example:

 response.write("
**** ROLE INFORMATION:");
 if (rit.hasNext()) {
 IRoleFactory rfact = UMFactory.getRoleFactory();
 while (rit.hasNext()) {
 String roleName = (String) rit.next();
 IRole role = null;
 try {
 role = rfact.getRole(roleName);
 response.write("
Role:" + roleName
 + "
Display Name:" + role.getDisplayName()
 + "
ID: " + role.getUniqueID()
 + "
Uniquename: " + role.getUniqueName()
 + "
Description: " + role.getDescription());
 } catch (UMException e) {
 response.write("error: " + e.getLocalizedMessage());
 }
 }
 }

3.6.1.2 Group
The group API is very similar to the role API for accessing, searching and determining
memberships of groups.

3.6.1.3 Searching for Users, Roles and Groups
The UME provides several methods to search for users, groups and roles with different
attributes. The search is performed with search filters.

Search for Users
Example to get a user search filter and start search:
 IUserFactory ufact = UMFactory.getUserFactory();

Core Development Tasks March 2006

ServiceUserFactory

Running an Enterprise Portal 710

 IUserSearchFilter isf = ufact.getUserSearchFilter();
// Provide the search attributes
 isf.setDisplayName (…);
// Start search
 ISearchResult sr = fact.searchUsers(isf);

Search for Roles
To search for roles is similar to search for users.

Example:
 IRoleFactory rfact = UMFactory.getRoleFactory();
 IRoleSearchFilter isf = rfact.getRoleSearchFilter();
// Provide the search attributes
 isf.setDisplayName (…);
// Start search
 ISearchResult sr = fact.searchUsers(isf);

Defining a Search Attribute
The search attribute can be set with setDisplayName() method. This method allows exact
searches or wildcard searches.

Example:
// Provide the search attributes, with wildcards before and after
// the search string.
 isf.setDisplayName ("*" + mySearchStr + "*",
 ISearchAttribute.LIKE_OPERATOR, false);

// Provide the search attributes for an exact search
 isf.setDisplayName (mySearchStr,
 ISearchAttribute.EQUALS_OPERATOR, false);

Search Result
Depending on the search attribute, the search method returns one or several users or roles.
The returned value is a ISearchResult object that can be iterated.

To which Role or Group does a User Belong
With the methods isMemberOfRole() or isMemberOfGroup() it can be determined if a
user is a member of a particular role or group. The methods require the unique ID of the role
or group.

Example:
 IRole superRole= null;
 try {
 superRole= getSingleRole("super_admin", false);
 } catch (UMException e) {
 response.write(
 "Error getting role: " + e.getLocalizedMessage());
 }

Core Development Tasks March 2006

ServiceUserFactory

Running an Enterprise Portal 711

 if (user.isMemberOfRole(superRole.getUniqueID(), true))
 response.write(" IS a super admin");
 else
 response.write(" IS NOT a super admin");

3.6.1.4 User Mapping
User mapping is a feature that has been introduced to SAP products with EP 5.0. This feature
provides log on information for users on third party systems. The log on information can
simply be user ID and password and additionally information like NT-Domain and language.

In EP 5.0, user mapping is available as a personalization feature for every end user and as an
administration feature that allows administrators to map users, groups or roles to specific
accounts. In a productive environment, the user mapping feature contains a user interface to
administer the data. In the SAP Enterprise Portal, the user interface calls the system
landscape service to get a list of all systems that apply for user mapping. The system
landscape has an user mapping attribute that has to be set accordingly.

The UME for EP 6.0 offers two interfaces to access the user mapping data:

● IUserMappingService

● IUserMappingData

Example:
import java.util.HashMap;
import java.util.Map;
import com.sap.security.api.IUser;
import com.sap.security.api.umap.IUserMappingData;
import com.sap.security.api.umap.NoLogonDataAvailableException;
import com.sapportals.portal.prt.component.AbstractPortalComponent;
import com.sapportals.portal.prt.component.IPortalComponentRequest;
import com.sapportals.portal.prt.component.IPortalComponentResponse;
import com.sapportals.portal.prt.runtime.PortalRuntime;
import com.sapportals.portal.prt.service.usermapping.IUserMappingServ
ice;

public class UserMapping extends AbstractPortalComponent
{
 public void doContent(IPortalComponentRequest request,
 IPortalComponentResponse response)
 {
 // obtain system
 String systemalias = "system";

 // get user from request
 IUser iuser = request.getUser ();

 // get usermapping service
 IUserMappingService iums = (IUserMappingService)
 PortalRuntime.getRuntimeResources().getService(IUserMappingService
.KEY);
 IUserMappingData iumd = iums.getMappingData (systemalias, iuser);
 Map map = new HashMap ();
 try {
 iumd.enrich (map);

Core Development Tasks March 2006

ServiceUserFactory

Running an Enterprise Portal 712

 }
 catch (NoLogonDataAvailableException nldae) {
 // Error handling
 }

 // In m is all data
 String userid = (String)map.get("user");
 String pwd = (String)map.get ("mappedpassword");
 response.write("hallo" + userid);
 response.write(" " + pwd);
 }
}

3.6.1.5 Access Control List (ACL)
The security concept implemented in EP 6.0 allows an administrator (object creator) to create
a new ACL object and assign it to the owner.

The ACL feature provides an interface for following functions:
• Create, modify or delete supported permissions for the ACL.
• Create, modify or delete an ACL object for a portal object.
• Add or remove ACL owners.
• Create, modify or delete the permissions for a principal (ACE).
• Check if a user has permission to execute an action.

Application Specific ACL Manager
With the default ACL manager all applications that use ACL have the same namespace. To
avoid conflicts with object ID and permission names among applications, the user
management factory provides the method getAclManager(String applicationID)
that returns an application specific ACL manager.

API
The application that uses the ACL API works with following interfaces:

● com.sap.security.api.acl.IAclManager

This interface defines all the methods that are required for the general administration of
ACL. It allows application to:

○ Create, modify, read and delete an ACL object for a portal object.

○ Check the permission for a principal on an object.

○ Add, remove and get available supported permissions.

○ Delete the whole corresponding data for a principal.

● com.sap.security.api.acl.IAcl

This interface allows application to:

○ Add or remove an ACL owner.

○ Check if an user is an ACL owner.

○ Create, delete or get ACE.

○ Check the user permissions.

○ Check the object ID

Core Development Tasks March 2006

ServiceUserFactory

Running an Enterprise Portal 713

● com.sap.security.api.acl.IAclEntry

The ACE object contains information about a principal and its permissions. It allows the
application to:

○ Get the permission and the principal of ACE.

○ Check if the ACE has permissions.

○ Check if the principal has the required permission.

● com.sap.security.api.acl.PermissionStatus

The permission status object returns the status for a given principal if the permission is
allowed, denied or undefined. The application gets the ACL Manager from the Portal
Runtime (PRT).

Example:
IAclService service = (IAclService)

PortalRuntime.getRuntimeResources()
 .getService(IAclService.SERVICE_ID);

IAclManager manager = service.getAclManager();

In the UME, the application gets the ACL Manager from the user management factory.

Example:

IAclManager aclManager = UMFactory.getAclManager();

● com.sap.security.api.acl.IAclHierarchy

This interface provides the application an access point to:

○ Check the permission for a principal on a list of object Ids which represent the
parent objects of the former object.

○ Distribute an ACE to the members of a object ID tree. If an ACE for a root object
gets changed, this new ACE will be distributed to all members of the sub node
of this root. All entries are inherited.

ACL Manager Interface
The ACL Manager administers the ACLs. The ACL manager interface defines methods to
administer ACL's and check if a principal has access to an object with a certain permission.

Permissions
A permission is defined by an object type and a permission name separated by a dot (.), for
example, default_type.read.

A dot is not allowed in the object type, but in the permission name.

A global permission is defined without an object type.

Permissions must be unique within the namespace of the ACL manager. Therefore, for an
application specific ACL manager, the permissions have to be unique within the application
and for the default ACL Manager, the permission has to be globally unique.

Core Development Tasks March 2006

ServiceUserFactory

Running an Enterprise Portal 714

Object ID
Object IDs must be unique within the namespace of the ACL manager. Therefore, for an
application specific ACL manager, the object IDs have to be unique within the application and
for the default ACL Manager, the object IDs has to be globally unique.

Example:
//Get default ACL Manager
IAclMAnager manager = UMFactory.getAclManager();

// Get specific ACL Manager
IAclMAnager manager = UMFactory.getAclManager("Workflow");

//Create some Permissions
manager.addPermission("WorkflowPermission.read", null);
manager.addPermission("WorkflowPermission.write", null);

//Create a Permission Container
List members = new ArrayList(2);
members.add("WorkflowPermission.read");
members.add("WorkflowPermission.write");
manager.addPermission("WorkflowPermission.full_control", members);

//Create an ACL on an objectID
IUser userA;
IAcl acl = manager.createAcl(userA, "WorkflowItemABC");

//Get this ACL again
IAcl acls = manager.getAcls("WorkflowItemABC");

//Delete an ACL
manager.removeAcl(userA, "WorkflowItemABC");

//Delete all info's abaout a principal (concerning ACL info)
manager.deletePrincipal(usersA);

//Create an ACE (Access Control Entry) for user B (user A is ACL Owne
r)
IAclEntry aclEntry = acl.createAclEntry
 (userA, userB, "WorkflowPermission.read", false);

//Get all ACE's for a special principal
acl.getAclEntries(userB);

//Get all ACE's
acl.getAclEntries();

//check a permission on IAclManager
manager.isAllowed("WorkflowItemABC", usersA, "WorkflowPermission.read
");

//check a permission on IAcl
acl.isAllowed(usersA, "WorkflowPermission.read");

//check a permission on IAclEntry
acl.isAllowed("WorkflowPermission.read");

//Delete an ACL Entry

Core Development Tasks March 2006

ServiceUserFactory

Running an Enterprise Portal 715

acl.removeAclEntry(usersA, aclEntries);

//Reset the hole ACL (only deletion of ACE's)
acl.resetAcl(usersA);

3.6.2 User Agent Service

Purpose
A user agent is an application which is used to browse through the World Wide Web. Web
user agents can be web browsers and search engine spiders as well as accessibility products
like screen readers and braille browsers.

The user agent provides information about itself, when a web site is accessed. The
information contains the brand and version of the browser and the operating system the
browser is running on.

Example
User agent

Internet Explorer 5.5 running on MS Windows 2000

Provided information

Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0).

How to get the User Agent

Necessary SharingReference Entry in Deployment Descriptor
To use the user agent service you have to add a sharing reference entry to the deployment
descriptor (file portalapp.xml) in the section <application-config>.

The entry has following format:
<application-config>

 <property name="SharingReference"
value="com.sap.portal.useragent"/>

.

</application-config>

When you use another service or services in the portal application, you separate
the services by a comma.

Example
value="htmlb,com.sap.portal.useragent"

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 716

Get the Useragent Service
The entry point of the user agent service is the interface IUserAgentService. You get this
interface from the Portal Runtime (PRT) with following command:
 IUserAgentService userAgentService =
 (IUserAgentService) PortalRuntime
 .getRuntimeResources()
 .getService(
 "com.sap.portal.useragent.useragent");

Get the User Agent
To get the user agent, you have to get the user agent name first. With the user agent name
and the user agent service you get the user agent from the HttpServletRequest object.
You can use the following commands:
 HttpServletRequest sRequest = request.getServletRequest();
 String userAgentName = sRequest.getHeader("User-Agent");
 // Using this information you can use the method getUserAgent()
 of
 // IUserAgentService to get the user agent object of type IUser
Agent:
 IUserAgent userAgent =
 userAgentService.getUserAgent(sRequest.getHeader(userAgentNam
e));

For more details about the usage of the userAgent methods refer to the PDK.

Get the User Agent Family
The user agent service also provides information about the user agent family with interface
IUserAgentService. This interface provides the method getUserAgentFamily() that
delivers the information. You get this interface with the following commands:
 IUserAgentFamily userAgentFamily =
 userAgentService.getUserAgentFamily();
/* From this object you get an enumeration of all user agent sets of
 type IUserAgentSet that matches the IUserAgent: object: */
 Enumeration enum = userAgentFamily.findUserAgentSets(userAgent);

3.7 Modifying the Desktop and Navigation
This section describes how to create navigation links in the portal, and includes the following:

● Navigating in the Portal [Page 33]

● Creating Custom Layouts [Page 33]

● Object-Based Navigation [Page 33]

3.7.1 Navigating in the Portal
The portal’s navigation service and related interfaces enable you to control how users
navigate in the portal.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 717

Essentially, the navigation service creates a tree of navigation nodes for each user who
enters the portal. Each node represents specific content, or a collection of content, that can
be viewed by the user. A set of tools – the navigation service, navigation tag library and
navigation iViews – enable you to display the navigation tree for the current user and provide
the necessary links for navigation.

This section provides background on how portal navigation works and describes the main
tasks for managing portal navigation. This section contains the following:

● Architecture [Page 33]

● Creating Navigating iViews [Page 33]

● Creating Navigation Connectors [Page 33]

● Triggering Navigation [Page 33]

3.7.1.1 Architecture
This section describes how navigation is handled in the portal, and includes the following:

● Navigation Model [Page 33]: Describes the major components that create and display
the navigation hierarchy.

● Navigation Hierarchy [Page 33]: Describes the types of nodes within the navigation
hierarchy.

● Navigation URL [Page 33]: Describes the URL for navigating to a specific navigation
node.

3.7.1.1.1 Navigation Model
Navigation is based on the following three-level model:

● Data Level: Contains the navigation connectors that generate the navigation nodes
and the navigation hierarchy. The portal comes with a roles connector, and you can
create addition connectors in order to create additional navigation nodes and
hierarchies.

● Integration Level: Retrieves navigation nodes and hierarchies from the connectors
and creates the final navigation hierarchy for each user. Also provides services, such
as the look up of navigation nodes.

● Visualization Level: Contains navigation iViews for displaying the navigation hierarchy
for the current user and providing navigation links.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 718

Navigation
Service

TLN
Navigation iView

DTN
Navigation iView

See Also
Navigation iView

Data Level
Roles

Connector
Other

Connector
Other

Connector

Integration
Level

Visualization
Level

Navigation data is retrieved as follows:
...

1. The portal initializes the navigation service.

2. Navigation connectors are registered with the navigation service.

3. Navigation iViews call the navigation service to retrieve the navigation nodes, either
initial nodes or specific nodes.

4. The navigation service retrieves the navigation information from the registered
navigation connectors and returns navigation nodes to the navigation iViews. The
navigation service preprocesses the request by sorting and merging the nodes.

5. Navigation iViews use the retrieved navigation nodes to display the navigation
hierarchy.

3.7.1.1.2 Navigation Hierarchy
The navigation hierarchy is a structure of navigation nodes. It can be maintained in a tree,
map, list or array structure or any other structure that organizes the nodes correctly. The
following diagram shows an example of a navigation hierarchy using a tree structure and
based on portal roles:

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 719

The diagram shows the different types of nodes:

● Valid/Visible: For these nodes, navigation iViews display a link to the content. This
type of node is located under one of the initial nodes in the navigation hierarchy.

● Valid/Invisible: For these nodes, navigation iViews do not display a link to the
content, but the user is still allowed to view the content. The user can access the
content by supplying the correct navigation URL or by clicking a link supplied with a
content iView.

A navigation node is valid/invisible when:

○ It is located under a role but not under an initial node in the navigation hierarchy.

○ Its invisible attribute is set to true.

● Invalid: The user is not allowed to access the content for this node.

3.7.1.1.3 Navigation URLs
A URL that navigates to a specific navigation node is made up of the base portal URL, plus a
NavigationTarget parameter, whose value is a navigation target.

For example, the following URL

http://myServer:50000/irj/portal?
 NavigationTarget=ROLES://portal_content/myFolder/myRole

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 720

navigates to the navigation node represented by the navigation target
ROLES://portal_content/myFolder/myRole.

The navigation target is made up of the following parts:

● Prefix: A string that represents the navigation connector that defines the requested
navigation node.

For the roles connector, the prefix is ROLES.

● Separator: The character string ://

● Internal URL or Path: A string that can be interpreted by the specified navigation
connector.

In the example, the path is portal_content/myFolder/myRole.

3.7.1.1.4 Navigation Service
The navigation service enables you to retrieve information about the navigation hierarchy for
a specific user.

The service can be obtained with the following code:
INavigationService service = (INavigationService)

PortalRuntime.getRuntimeResources().getService(INavigationService.KEY
);

The service provides the following methods:

● getInitialNodes(): Queries the navigation connectors and returns all the top-level
nodes.

● getFirstNode(): Returns the first node in the navigation hierarchy, if it is
launchable. If the first node is not launchable, the method returns the first child of the
first node in the navigation hierarchy.

● getNode(): Returns the INavigationNode for a specified navigation target.

● getNodes(): Returns a Vector of INavigationNode objects for a specified
Vector of navigation targets.

● getNodeByQuickLink(): Returns the navigation node for a specified quick link.

● getNavigationNodeHashedName(): Takes the long name for a navigation node
and returns the node’s hashed name.

● getNavigationNodeOriginalName(): Takes the hashed name for a navigation
node and returns the node’s long name.

All of the navigation service methods require you to pass a Hashtable of environment
variables, one of which must be an IUser object for the current user. This value must be
stored with the key NavigationPrincipal; a constant is defined for this value in
INavigationConstants.

Note that navigation connectors supply INavigationConnectorNode
(AbstractNavigationConnectorNode) objects to the navigation service,
while the navigation service supplies INavigationNode objects to navigation
iViews (and all other components that call the service).

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 721

Additional Interfaces
The navigation service also implements the following interfaces, which provide additional
methods for working with the navigation hierarchy:

● INavigationConnectorRegistration: Provides methods for registering a
navigation connector and redirector.

For more information, see Creating Navigation Connectors [Page 33].

● INavigationNamingHandler: Provides methods for composing navigation node
names.

● INavigationRedirector: Provides a method to retrieve redirected node names. A
redirector must be registered that recognizes the prefix of the navigation target.

For more information, see Redirectors [Page 33].

● INavigationGenerator: Provides methods for creating the JavaScript (such as the
doNavigate() method) for navigation to a navigation target.

For more information on triggering navigation, see Triggering Navigation [Page 33] and
Client-Side Eventing [Page 33].

● IObjectBasedNavigation: Provides methods for creating object-based navigation
links.

For more information, see Object-Based Navigation [Page 33].

To obtain an object that implements one of these interfaces, get the navigation service (with
INavigationService.Key) and cast it into the desired interface.

For example:
INavigationNamingHandler service = (INavigationNamingHandler)

PortalRuntime.getRuntimeResources().getService(INavigationService.KEY
);

3.7.1.1.5 Framework Page
The following shows the default layout for the default framework page (the names in
parentheses are the PCD IDs for these objects):

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 722

Page: Default Framework Page (com.sap.portals.frameworkpage)

iView: Masthead

iView: Tools Area

iView: Top-Level Navigation

Page: Desktop Innerpage (com.sap.portal.innerpage)

iView: Content Area

Layout: Navigation
Panel and Content
Area Layout

Layout: Framework
Layout

iView:
Detailed Navigation

iView:
Dynamic Navigation

iView: Drag&Relate
Targets

iView:
Related Links

iView: Page Title Bar

iView:
Portal Favorites

A navigation iView can be content independent (always visible, for example, the top-level
navigation iView) or content dependent (only visible sometimes, for example, the See Also
panel, which is displayed only when related links are defined for the current content).

The following are the default iViews within the framework page.

● Masthead: Displays the personalized welcome message and portal links, such as
Help, Personalize and Log Off.

● Tools Area: Contains a search input field for Knowledge Management (KM)
components. Except for KM enabled installations, this iView is invisible. A portal
administrator can edit the portal framework page and enable the iView.

● Top Level Navigation (TLN): Displays the top levels of the navigation hierarchy for the
current user, by default two levels. The following are key properties of the TLN:

○ Hovering: In hovering mode, the user can hover over a first-level node and this
node’s second-level nodes are displayed.

○ Number of Display Levels: By default, the TLN shows two root levels of the
navigation hierarchy. If this attribute is 0, the TLN is not shown, and the
hierarchy is displayed in the DTN. If this attribute is 1, the TLN contains one
level and the rest of the navigation hierarchy is displayed in the DTN.

○ Personalize Portal Page: The PCD location of the personalization portal page.
By default, the portal personalization dialog page is used.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 723

● Page Title Bar: Displays links for page-related functions, such as refreshing the page
or opening the page in a new window.

● Detailed Navigation (DTN): Displays the portal navigation hierarchy, by default
starting from the third level.

The first level to be displayed in the DTN iView depends on what is displayed in the
TLN. For example, if the TLN displays one level, the DTN should start from the second
level. The Start At Level attribute specifies the start level in the DTN.

● Dynamic Navigation: Displays navigation iViews assigned to the current content.

● Drag&Relate Targets: Displays a list of iViews related to the current content and for
which Drag&Relate actions can be performed. A content administrator can select
iViews and pages to associate to the current content, and Drag&Relate links to these
iViews and pages are displayed in the Drag&Relate iView.

For more information on Drag&Relate actions, see Drag&Relate Targets in the Portal
Administration Guide.

● See Also (Related Links): Displays a list of iViews related to the current content. A
content administrator can select iViews and pages to associate to the current content,
and links to these iViews and pages are displayed in the See Also iView.

● Portal Favorites: Displays a list of links to pages and iViews that the user has chosen
as favorites.

Location of Components
The following lists the portal applications that contain the framework page, navigation iViews
and layouts:

● Default Framework Page

Component Portal Application

Default Framework Page com.sap.portal.layouts.framework (framework.jsp)

Innerpage com.sap.portal.layouts.framework (WAandNavPanel.jsp)

Navigation Area com.sap.portal.layouts.framework (dynNavArea.jsp)

Content Area com.sap.portal.navigation.contentarea

● Navigation iViews:

Component Portal Application

Masthead com.sap.portal.navigation.masthead

Tools Area com.sap.portal.navigation.toolarea
(only delivered with Knowledge Management)

TLN com.sap.portal.navigation.toplevel

Page Title Bar com.sap.portal.navigation.pagetoolbar

DTN com.sap.portal.navigation.detailedtree

Dynamic Navigation com.sap.portal.navigation.dynnavarea

Drag&Relate Targets com.sap.portal.navigation.targets
(same iView as Related Links)

See Also (Related
Links)

com.sap.portal.navigation.targets
(same iView as Drag&Relate

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 724

Portal Favorites com.sap.km.cm
(only delivered with Knowledge Management)

3.7.1.1.5.1 Light Framework Page

The portal provides an additional framework page for displaying light content for an external-
facing portal. Light content is content that uses fewer resources than standard content, for
example, because it does not use HTMLB or client-side eventing Javascript.

The light framework page differs from the default framework page in the following ways:

● The light framework page creates a single-frame page, avoiding the need for client-side
Javascript that would enable different frames to communicate with each other.

● The light framework page uses light navigation iViews, which avoid the use of
resource-heavy HTMLB and client-side eventing Javascript.

● For more information about an external-facing portal, see Implementing an External-
Facing Portal [External].

Location of Components
The following additional components are provided for the light framework page:

● Default Framework Page

Component Portal Application

Light Framework Page com.sap.portal.layouts.framework (light_framework.jsp)

Light Innerpage com.sap.portal.layouts.framework
(light_WAandNavPanel.jsp)

Light Content Area com.sap.portal.navigation.contentarea

The Navigation Area component for the light framework page is the same as the one in
the default framework page.

● Navigation iViews:

Component Portal Application

Light Masthead com.sap.portal.navigation.masthead

Light TLN com.sap.portal.navigation.lighttoplevel

Light Page Title Bar com.sap.portal.navigation.pagetoolbar

Light DTN com.sap.portal.navigation
.lightdetailednavigationtree

The Tools Area, Dynamic Navigation, Drag&Relate Targets, See Also (Related Links)
and Portal Favorites iViews are the same as those in the default framework page.

3.7.1.1.6 Special Navigation Features
This section describes the following special features of portal navigation:

● Navigation Cache [Page 33]

● Short (Hashed) URLs [Page 33]

● Quick Links [Page 33]

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 725

3.7.1.1.6.1 Navigation Cache
The portal caches the set of navigation nodes that is returned for each user. If another user is
entitled to the exact same set of navigation nodes, the navigation service retrieves this set of
navigation nodes from the cache instead of creating them again.

Each set of nodes is cached with a unique key, or discriminator. For the roles connector, each
set of nodes is given a key based on the combination of roles that created the set of nodes.
For example, for the set of navigation nodes for the Content Administrator and User
Administrator roles, the nodes in these roles are cached together with a key that indicates this
combination of roles, perhaps ContentAdmin/SystemAdmin.

The following is an example process flow for navigation caching:
...

1. User A with the roles Content Administrator and System Administrator logs on.

2. The portal generates the nodes for these roles, and then saves them in the cache with
a key ContentAdmin/SystemAdmin.

3. User B with the role Content Administrator logs on.

4. The portal generates the nodes for this role, and then saves them in the cache with a
key ContentAdmin. The portal does not retrieve them from the cache because there
is no set of nodes in the cache for someone with just the Content Administrator role.

5. User C with the roles Content Administrator and System Administrator logs on.

6. The portal retrieves the nodes for these roles from the cache.

The cache is maintained on the server, and is turned off by default.

If you modify a navigation connector and redeploy it, you should clear the
navigation cache.

For information on enabling or clearing the navigation cache, see Navigation Cache [External]
in the Portal Administration Guide.

Custom Navigation Connectors
To support navigation caching, a custom navigation connector must implement
getConnectorCacheDiscriminator(), which returns a key for the set of navigation
nodes for the current user.

The following is the signature for getConnectorCacheDiscriminator():

public String getConnectorCacheDiscriminator(Hashtable environment);

You may want to create the navigation nodes – and, therefore, the cache discriminator –
based on the current user. You can retrieve the IUser object for the current user from the
Hashtable passed into the method, as follows:
IUser user = (IUser)
 environment.get(INavigationConstants.NAVIGATION_PRINCIPAL);

The final discriminator is a combination of the discriminators generated by all navigation
connectors for a user’s set of navigation nodes.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 726

3.7.1.1.6.2 Short (Hashed) URLs
The portal supports navigation based on short (hashed) URLs. Instead of a URL such as the
following:

http://myServer:50000/irj/portal?NavigationTarget=ROLES://portal
_content/administrator/super_admin/super_admin_role/com.sap.port
al.system_administration/com.sap.portal.system_admin_ws/com.sap.
portal.permissions

the portal creates another URL for the same navigation target such as the following:
...

http://myServer:50000/irj/portal?
 NavigationTarget=navurl://0c3c7ac0dfe1083d8f50ae954b8ec25f

An administrator can turn this feature on, and then the navigation service creates hashed
URLs for all navigation nodes. All links created by the navigation service are generated as
hashed URLs and not as the original URL. For more information on links, see Navigation
URLs [Page 33].

You do not have to do anything to have the navigation service create hashed
URLs for your connector. If the feature is turned on by an administrator, the
hashing occurs automatically.

You can call the following methods to get the long and hashed URL of a navigation node:

● getHashed(): Returns the short (hashed) URL. If the hashed URL feature is turned
off, this method returns the long URL.

● getName(): Returns the long URL.

By default, this feature is on.

3.7.1.1.6.3 Quick Links
The portal enables users to navigate to a specific node by entering the portal’s base address
followed by a short string, or quick link.

For nodes defined by the roles connector, a portal administrator can assign quick links to a
node by setting the Quick Link property of the iView or page associated with the node.

For nodes defined by a custom navigation connector, the connector must implement the
method getNodeByQuickLink(), which determines what node to return for a specific quick
link. For example, you can keep a Map of quick link strings and its corresponding node.

The following is the signature for getNodeByQuickLink():

public NamingEnumeration getNodeByQuickLink(
 Hashtable environment, String quickLink);

Quick links must be composed of only URI unreserved characters, which are letters, digits,
hyphen (-), period (.), underscore (_) and tilde (~).

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 727

3.7.1.2 Creating Navigation iViews
Navigation iViews are the iViews within the framework page that provide links for navigating
to different content in the portal.

The portal comes with a default framework page that includes a set of default navigation
iViews.

The default iViews can also be configured by a portal administrator to change the look and
feel, without the need for rewriting the iView. For example, an administrator can configure the
masthead to display the New Session link or the page title bar to hide the History link. For
more information, see Navigation in the Portal Administration Guide.

You can customize the look and feel of the portal by creating new navigation iViews, and then
replacing the default iViews with your iViews or simply adding your iViews to the framework
page.

The recommended way to create navigation iViews is by writing a JSP page and using built-in
tag libraries: Navigation Tag Library [Page 33] for iViews that display navigation nodes and
Framework Tag Library [Page 33] for masthead and page title bar iViews.

For more information on creating JSP pages in the portal, see Writing JSP Pages [Page 33].

For more information on the default navigation iViews, see Framework Page [Page 33].

3.7.1.2.1 Navigation Tag Library

Purpose
The navigation tag library enables you to easily develop navigation iViews based on JSP
pages that use the tag library.

The tags provide access to the navigation nodes for the current user, and enable you to
iterate through those nodes. You can create top-level and detailed navigation iViews by
iterating through the navigation nodes and building and displaying navigation links.

The tag library examples in this chapter assume that the navigation iView is
placed within a light framework page, which provides its own style sheet with
unique styles for light pages.

This section contains the following:

● Types of Tags [Page 33]

● How to Use the Tag Library [Page 33]

● Tag Reference [Page 33]

● Samples [Page 33]

Prerequisites
● You are familiar with how to write JSP pages in the portal, as described in Writing JSP

Pages.

3.7.1.2.1.1 Types of Tags
The navigation tag library contains the following types of tags:

● Iterator: Iterates through a set of nodes, exposing in its body a different navigation
node during each iteration.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 728

● Node: Exposes in its body a specific navigation node.

● Operator: Performs an operation, such as storing a navigation node for later recall.

● Rendering: Outputs HTML based on the currently exposed navigation node.

● Conditional: Includes its body if a condition is true or false.

Iterator Tags
These tags enable you to iterate through a set of nodes, for example the top-level navigation
nodes or the children of a node.

In the body of each tag, a different navigation node is exposed during each iteration. You can
include cooperating tags – for example, navNodeAnchor for building a link from the current
node – that work with the current node in the iteration.

The navigation tag library includes the following iterator tags:

● iterateInitialNavNodes [Page 33]

● iterateNavNodeChildren [Page 33]

● iterateNavNodesInSelectedPath [Page 33]

● iterateSelectedNavNodesLevel [Page 33]

● recurseNavNodeChildren [Page 33]

Node Tags
These tags enable you to select a specific navigation node, such as the currently selected
node or the parent of the current node.

In the body of each tag, the specific navigation node is exposed.

The navigation tag library includes the following node tags:

● launchedNavNode [Page 33]

● navNode [Page 33]

● navNodeParent [Page 33]

● selectedNavNode [Page 33]

Operator Tags
These tags perform an operation, such as storing a node. Generally, these are closed tags.

The navigation tag library includes the following operator tags:

● storeNavNode [Page 33]

● recallNavNode [Page 33]

● doNotRecurseNavNodeChildren [Page 33]

Rendering Tags
These tags output HTML to be displayed in the iView.

The navigation tag library includes the following rendering tags:

● navNodeAnchor [Page 33]

● navNodeDescription [Page 33]

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 729

● navNodePictogram [Page 33]

● navNodeTitle [Page 33]

Conditional Tags
These tags enable you to include HTML or perform some action based on the currently
exposed navigation node or the current user. A tag’s body is included if the condition for that
tag is true.

For example, you can check whether the current node is an iView node and, if it is, include an
iView icon in the detailed navigation tree, as shown in the following:

<nav:selectedNavNode>

 <nav:ifNavNodeIsIView>

 ... include an icon ...

 </nav:ifNavNodeIsIView>

</nav:selectedNavNode>

The navigation tag library includes the following conditional tags:

● ifAnonymousUser [Page 33]

● ifHasMoreIterations [Page 33]

● ifNavNodeEqualsLaunchedNavNode [Page 33]

● ifNavNodeEqualsSelectedNavNode [Page 33]

● ifNavNodeHasChildren [Page 33]

● ifNavNodeInSelectedPath [Page 33]

● ifNavNodeIsFolder [Page 33]

● ifNavNodeIsIView [Page 33]

● ifNavNodeIsPage [Page 33]

● ifNavNodeVisualizationType [Page 33]

● ifNextRecursionDepthWillDecrease [Page 33]

● ifNextRecursionDepthWillIncrease [Page 33]

● ifNextRecursionDepthWillNotChange [Page 33]

For most of the tags above, the tag library includes a second tag for checking whether the
condition is false. For more information on these tags, see ifNot … [Page 33].

3.7.1.2.1.1.1 Glossary
The following are key terms for describing the navigation tag library:

● Current Node: In an iterator tag, the node that is exposed during the current iteration.

● Selected Node: The node that the end user selected by clicking a navigation link,
generally within a navigation iView.

● Nodes in the Selected Path: The set of nodes in the current user’s navigation tree
that form the path from the initial nodes to the selected nodes.

For example, if the user selects Content Administration → Users → Create User, all
three nodes are in the selected path, and Create User is the selected node.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 730

The following tags work with the nodes in the selected path:

○ iterateNavNodesInSelectedPath [Page 33]: Iterates through the nodes in the
selected path.

In the example above, the tag would iterate three times, first exposing the
Content Administration node, then the Users node, and then the Create Users
node.

○ iterateSelectedNavNodesLevel [Page 33]: Iterates through the siblings of the
node in the selected path on a specified level.

In the example above, if level 2 is specified, then the tag would iterate through
the children nodes of the Content Administration node (that is, the Users node
and its siblings).

● Launched Node: The node that was launched because of the most recent navigation.

Generally, the launched node is the same as the selected node, but can be different.
For example, if the user selects a folder node, the launched node is the first child node
of the folder that is a page or iView.

Example
The following is an example of a partial navigation tree for the super admin role.

Level 1

Level 3

Level 2

Create
User

Content
Administrator

User
Administrator

System
Administrator

Users Roles Groups

SearchNew User
Requests

Role or folder
Page or iView

● If the user clicks the Create User link, the Create User node is the selected node, as

well as the launched node.

The nodes shown in bold are the nodes in the selected path. The
iterateNavNodeInSelectedPath tag iterates through these nodes. The
iterateSelectedNavNodesLevel tag, with level 2 specified, iterates through the
Level 2 nodes displayed (which are the children of the User Administration node).

● If the user clicks the Users link, the Users node is the selected node, and the Create
User node is the launched node (because it is the first page or iView child of the Users
node).

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 731

3.7.1.2.1.2 How to Use the Tag Library
The navigation tag library is designed to enable you to build navigation iViews based on JSP
pages, which are deployed to the portal as portal components in a PAR file that contains the
JSP page and a portalapp.xml file.

For more information on writing JSP pages for the portal, see Writing JSP Pages [Page 33].

Referencing the Tag Library
To use navigation tags in a JSP page, do the following:
...

1. At the top of the JSP page, add a reference to the tag library, as follows:
<%@ taglib uri="NavigationTagLibrary" prefix="nav" %>

2. In the portalapp.xml file:

a. Add a sharing reference in the <application-config> element, as follows:
<property name="SharingReference"
 value="com.sap.portal.navigation.navigationtaglibrary"/>

b. Add a reference to the tag library by adding the following property to the
<component-profile> element for the JSP component:

<property name="NavigationTagLibrary"
 value="/SERVICE/com.sap.portal.navigation.navigationtaglibrary/
taglib/TagLibrary.tld"/>

3.7.1.2.1.3 Tag Reference
This section lists all the tags in the navigation tag library.

3.7.1.2.1.3.1 doNotRecurseNavNodeChildren
Indicates that the children of the current node should not be included in the recursive iteration
in a recurseNavNodeChildren tag.

Cooperating Tags
The tag must be nested in the following tag:

● recurseNavNodeChildren

Example
The following creates a detailed navigation iView and displays the navigation tree starting at a
specified level. Each node can be displayed as either open (its children are also displayed) or
closed (its children are not displayed).

The recurseNavNodeChildren tag starts a depth-first traversal through all nodes below
the current node. If a node is closed, its children are not displayed. The
doNotRecurseNavNodeChildren tag is used to skip the traversal through the children
nodes of the current node and prevent these children nodes from being displayed.
<TABLE Width='100%' Class="lightDTNTable">
 <nav:iterateSelectedNavNodesLevel level="<%=strStartLevel%>"
 currentNavNode="currentRoot">

 ...

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 732

 <nav:recurseNavNodeChildren currentDepth="currentDepth"
 currentNavNode="currentNavNode">
 <%
 ... Determine if node has children

 if(!nodeIsOpen) {
 %><nav:doNotRecurseNavNodeChildren/><%
 } %>
 <TR Style="{text-indent:

 ... Display Node

 <TR/>
 </nav:recurseNavNodeChildren>
 </nav:iterateSelectedNavNodesLevel>
</TABLE>

See Also
● recurseNavNodeChildren [Page 33]

3.7.1.2.1.3.2 ifAnonymousUser
Includes its body if the current user is an anonymous user.

Example
The following displays a link to a logon page if the use is anonymous, and a welcome greeting
if the user is not anonymous.

<nav:ifAnonymousUser>

 ... Display logon link

</nav:ifAnonymousUser>

<nav:ifNotAnonymousUser>

 ... Display greeting for current user

</nav:ifNotAnonymousUser>

See Also
● ifNot ... [Page 33]

3.7.1.2.1.3.3 ifHasMoreIterations
Includes its body if the current node is not the last node in the current iteration.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 733

For example, if you display separators between the names of nodes, such as in a top-level
navigation iView, use this tag to display the separator and the ifNotHasMoreIterations
tag to prevent a separator after the last node.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● recurseNavNodeChildren

Example
The following displays a separator if the iteration has more nodes.
<nav:ifHasMoreIterations>
 <TD nowrap class="spacingTDPipeLevel2"> | </TD>
</nav:ifHasMoreIterations>

See Also
● ifNot ... [Page 33]

3.7.1.2.1.3.4 ifNavNodeEqualsLaunchedNavNode
Includes its body if the current node is the node that was launched during the most recent
navigation.

For example, when creating a detailed navigation iView, you may want to bold the navigation
node that is currently launched. You can add code to bold the current node in the
ifNavNodeEqualsLaunchedNavNode tag during an iteration through all the navigation
nodes.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

● recallNavNode

● recurseNavNodeChildren

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 734

● selectedNavNode

Example
The following displays the current node in the iteration with a different style depending on
whether the node is the launched node.
<nav:ifNavNodeEqualsLaunchedNavNode>
 <nav:navNodeAnchor navigationMethod="byURL"
 urlParameters="<%=urlParameters%>"
 anchorAttributes="class='lightDTNTextSelected'"/>
</nav:ifNavNodeEqualsLaunchedNavNode>
<nav:ifNotNavNodeEqualsLaunchedNavNode>
 <nav:navNodeAnchor navigationMethod="byURL"
 urlParameters="<%=urlParameters%>"
 anchorAttributes="class='lightDTNText'"/>
</nav:ifNotNavNodeEqualsLaunchedNavNode>

See Also
● ifNot ... [Page 33]

3.7.1.2.1.3.5 ifNavNodeEqualsSelectedNavNode
Includes its body if the current node is the node that was selected by the user during the most
recent navigation.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

See Also
● ifNot ... [Page 33]

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 735

3.7.1.2.1.3.6 ifNavNodeHasChildren
Includes its body if the current node has children nodes.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

Example
The following displays an icon and link to open and close the node if the node has children.
<nav:ifNavNodeIsFolder>
 <nav:ifNavNodeHasChildren>
 <A href="<%=componentURI%>?<%=urlParameters%>"
 class="lightDTNKnob
 <% if(nodeIsOpen) { %>Open<% } else { %>Closed<% } %>"/>
 </nav:ifNavNodeHasChildren>
 <nav:ifNotNavNodeHasChildren>

 </nav:ifNotNavNodeHasChildren>
 <A class="lightDTN
 <% if(nodeIsOpen) { %>Open<% } else { %>Closed<% } %>Folder"/>
</nav:ifNavNodeIsFolder>

See Also
● ifNot ... [Page 33]

3.7.1.2.1.3.7 ifNavNodeInSelectedPath
Includes its body if the current node is one of the nodes in the path of selected nodes.

The node is in the selected path if it is the selected node, or the parent of the selected node,
or the grandparent of the selected node, and so forth. For more information about the
selected path, see Glossary [Page 33].

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 736

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

Example
The following displays the top-level navigation nodes and displays in a special style the initial
node in the selected path.
<nav:iterateInitialNavNodes>
 <nav:ifNavNodeInSelectedPath>
 <TD nowrap class="chosenTDLevel1">
 <nav:navNodeAnchor navigationMethod="byURL"
 anchorAttributes="class='chosenOnLevel1'"/>
 </TD>
 <% if(levels==2) { %>
 <nav:storeNavNode/>
 <% } %>
 </nav:ifNavNodeInSelectedPath>
 <nav:ifNotNavNodeInSelectedPath>
 <TD nowrap class="unChosenTDLevel1">
 <nav:navNodeAnchor navigationMethod="byURL"
 anchorAttributes="class='unChosenOnLevel1'"/>
 </TD>
 </nav:ifNotNavNodeInSelectedPath>
</nav:iterateInitialNavNodes>

See Also
● ifNot ... [Page 33]

3.7.1.2.1.3.8 ifNavNodeIsFolder
Includes its body if the current node’s visualization type is folder.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 737

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

Example
The following displays a folder icon (either opened or closed) if the current node is a folder
node.
<nav:ifNavNodeIsFolder>
 <nav:ifNavNodeHasChildren>
 <A href="<%=componentURI%>?<%=urlParameters%>"
 class="lightDTNKnob<% if(nodeIsOpen) { %>Open<% }
 else { %>Closed<% } %>"/>
 </nav:ifNavNodeHasChildren>
 <nav:ifNotNavNodeHasChildren>

 </nav:ifNotNavNodeHasChildren>
 <A class="lightDTN<% if(nodeIsOpen) { %>Open<% }
 else { %>Closed<% } %>Folder"/>
</nav:ifNavNodeIsFolder>

See Also
● ifNot ... [Page 33]

3.7.1.2.1.3.9 ifNavNodeIsIView
Includes its body if the current node’s visualization type is iView.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

Example
The following displays an iView icon if the current node is an iView.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 738

<nav:ifNavNodeIsIView>

... Display iView icon

</nav:ifNavNodeIsIView>

See Also
● ifNot ... [Page 33]

3.7.1.2.1.3.10 ifNavNodeIsPage
Includes its body if the current node’s visualization type is page.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

Example
The following displays a page icon if the current node is a page.
<nav:ifNavNodeIsPage>

... Display page icon

</nav:ifNavNodeIsPage>

See Also
● ifNot ... [Page 33]

3.7.1.2.1.3.11 ifNavNodeVisualizationType
Includes its body if the current node is of the type specified by the equals attribute.

The tag library includes tags for each individual type of node, for example,
ifNavNodeIsIView. This tag enables the development of additional types without the need
to create new tags.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 739

Attributes
Name Mandatory Description

equals Yes A constant that represents a type of navigation node. The
constants for this attribute are defined in the
INavigationConstants interface of the
com.sapportals.portal.navigation package.

The following constants are defined:

• TYPE_IVIEW

• TYPE_PAGE

• TYPE_FOLDER

INavigationConstants also provides the constant
TYPE_WORKSET and TYPE_OTHER, but these are not valid
for this tag.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

Example
<nav:ifNavNodeVisualizationType equals="1">

... Display icon for visualization type

</nav:ifNavNodeVisualizationType>

See Also
● ifNot ... [Page 33]

● ifNavNodeIsFolder [Page 33]

● ifNavNodeIsIView [Page 33]

● ifNavNodeIsPage [Page 33]

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 740

3.7.1.2.1.3.12 ifNextRecursionDepthWillDecrease
Includes its body if the next node in a recursive iteration is a node at a higher level than the
current node – that is, there are more nodes and the current node has no children or any
more siblings.

Cooperating Tags
The tag must be nested in the following tag:

● recurseNavNodeChildren

Example
The following displays images for building a visual tree of the navigation nodes.
<nav:recurseNavNodeChildren>
 <nav: ifNextRecursionDepthWillNotChange >

 ... Display image for node with no children but with more
siblings

 </nav:ifNextRecursionDepthWillNotChange>

 <nav: ifNextRecursionDepthWillIncrease >

 ... Display image for a node with children

 </nav:ifNextRecursionDepthWillIncrease>

 <nav:ifNextRecursionDepthWillDecrease>

 ... Display image for a node with no children and no more
siblings

 </nav:ifNextRecursionDepthWillDecrease>
</nav:recurseNavNodeChildren>

See Also
• ifNextRecursionDepthWillIncrease [Page 33]

• ifNextRecursionDepthWillNotChange [Page 33]

3.7.1.2.1.3.13 ifNextRecursionDepthWillIncrease
Includes its body if the next node in a recursive iteration is a child of the current node.

Cooperating Tags
The tag must be nested in the following tag:

● recurseNavNodeChildren

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 741

Example
The following displays images for building a visual tree of the navigation nodes.
<nav:recurseNavNodeChildren>
 <nav: ifNextRecursionDepthWillNotChange >

 ... Display image for node with no children but with more
siblings

 </nav:ifNextRecursionDepthWillNotChange>

 <nav: ifNextRecursionDepthWillIncrease >

 ... Display image for a node with children

 </nav:ifNextRecursionDepthWillIncrease>

 <nav:ifNextRecursionDepthWillDecrease>

 ... Display image for a node with no children and no more
siblings

 </nav:ifNextRecursionDepthWillDecrease>
</nav:recurseNavNodeChildren>

See Also
• ifNextRecursionDepthWillDecrease [Page 33]

• ifNextRecursionDepthWillNotChange [Page 33]

3.7.1.2.1.3.14 ifNextRecursionDepthWillNotChange
Includes its body if the next node in a recursive iteration is a sibling of the current node.

Cooperating Tags
The tag must be nested in the following tag:

● recurseNavNodeChildren

Example
The following displays images for building a visual tree of the navigation nodes.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 742

<nav:recurseNavNodeChildren>
 <nav: ifNextRecursionDepthWillNotChange >

 ... Display image for node with no children but with more
siblings

 </nav:ifNextRecursionDepthWillNotChange>

 <nav: ifNextRecursionDepthWillIncrease >

 ... Display image for a node with children

 </nav:ifNextRecursionDepthWillIncrease>

 <nav:ifNextRecursionDepthWillDecrease>

 ... Display image for a node with no children and no more
siblings

 </nav:ifNextRecursionDepthWillDecrease>
</nav:recurseNavNodeChildren>

See Also
• ifNextRecursionDepthWillDecrease [Page 33]

• ifNextRecursionDepthWillIncrease [Page 33]

3.7.1.2.1.3.15 ifNot ...
For many of the conditional tags, a second tag is included for testing whether the condition is
false. If the condition is false, the tag’s body is included.

Often, it is necessary to include HTML if a condition is true and to include different HTML if
the condition is false. This is done by adding a conditional tag for testing if the condition is
true, and then adding the corresponding tag for testing if the condition is false.

The following selects one style for an anchor if the current node is the launched node, and
selects a different style if it is not the launched node:
<nav:ifNavNodeEqualsCurrentlyLaunchedNavNode>
 <nav:navNodeAnchor navigationMethod="byURL"
 urlParameters="<%=urlParameters%>"
 anchorAttributes="class='lightDTNTextSelected'"/>
</nav:ifNavNodeEqualsCurrentlyLaunchedNavNode>

<nav:ifNotNavNodeEqualsCurrentlyLaunchedNavNode>
 <nav:navNodeAnchor navigationMethod="byURL"
 urlParameters="<%=urlParameters%>"
 anchorAttributes="class='lightDTNText'"/>
</nav:ifNotNavNodeEqualsCurrentlyLaunchedNavNode>

The tags for checking if a condition is false are the same as the tags for checking if the
condition is true, except that they start with ifNot instead of if.

The following is a list of tags for checking if a condition is false.

Tag Description

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 743

ifNotAnonymousUser Includes its body if the current user is not an
anonymous user.

See ifAnonymousUser [Page 33].

ifNotHasMoreIterations Includes its body if the current node is the last node in
the current iteration.

See ifHasMoreIterations [Page 33].

ifNotNavNodeEqualsLaunchedNavNode Includes its body if the current node is not the node
that was launched during the most recent navigation.

See ifNavNodeEqualsLaunchedNavNode [Page 33].

IfNotNavNodeEqualsSelectedNavNode Includes its body if the current node is not the node
that was selected by the user.

See ifNavNodeEqualsSelectedNavNode [Page 33].

ifNotNavNodeHasChildren Includes its body if the current node has no children
nodes.

See ifNavNodeHasChildren [Page 33].

ifNotNavNodeIsFolder Includes its body if the current node is not a folder.

See ifNavNodeIsFolder [Page 33].

ifNotNavNodeIsIView Includes its body if the current node is not an iView.

See ifNavNodeIsIView [Page 33].

ifNotNavNodeIsPage Includes its body if the current node is not a page.

See ifNavNodeIsPage [Page 33].

ifNotNavNodeInSelectedPath Includes its body if the current node is not in the
selected path.

See ifNavNodeInSelectedPath [Page 33].

ifNotNavNodeVisualizationType Includes its body if the current node is not of the type
specified by the equals attribute.

See ifNavNodeVisualizationType [Page 33].

3.7.1.2.1.3.16 iterateInitialNavNodes
Iterates through the top-level navigation nodes.

During each iteration of the tag, a different node is exposed in the body of the tag, either via a
cooperating tag that accesses the current node in the iteration or the scriptlet variable defined
by the currentNavNode attribute.

Attributes
Name Mandatory Description

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 744

currentNavNode No The name of the Java variable to create for holding
the INavigationNode object for the current node in
the iteration.

The variable is accessible in scriptlets in the body of
the tag.

direction No Indicates in what direction to iterate. The attribute can
have the following values:

● forward (default): Iterate from the first to the
last node.

● backward: Iterate from the last to the first
node.

Variables
Name Scope Description

<currentNavNode>
attribute

Body of tag INavigationNode object representing the current
node in the iteration.

Example
The following iterates through all the top-level navigation nodes and creates a link for each
one.
<nav:iterateInitialNavNodes>
 <nav:ifNavNodeSelected>
 <TD nowrap class="chosenTDLevel1">
 <nav:navNodeAnchor navigationMethod="byURL"
 anchorAttributes="class='chosenOnLevel1'"/>
 </TD>
 <% if(levels==2) { %>
 <nav:storeNavNode/>
 <% } %>
 </nav:ifNavNodeSelected>
 <nav:ifNotNavNodeSelected>
 <TD nowrap class="unChosenTDLevel1">
 <nav:navNodeAnchor navigationMethod="byURL"
 anchorAttributes="class='unChosenOnLevel1'"/>
 </TD>
 </nav:ifNotNavNodeSelected>
</nav:iterateInitialNavNodes>

3.7.1.2.1.3.17 iterateNavNodeChildren
Iterates through the children of the current navigation node.

During each iteration of the tag, a different node is exposed in the body of the tag, either via a
cooperating tag that accesses the current node in the iteration or the scriptlet variable defined
by the currentNavNode attribute.

Attributes
Name Mandatory Description

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 745

currentNavNode No The name of the Java variable to create for holding
the INavigationNode object for the current node in
the iteration.

The variable is accessible in scriptlets in the body of
the tag

direction No Indicates in what direction to iterate. The attribute can
have the following values:

● forward (default): Iterate from the first to the
last node.

● backward: Iterate from the last to the first
node.

Variables
Name Scope Description

<currentNavNode>
attribute

Body of tag INavigationNode object representing the current
node in the iteration.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

Example
The following recalls a navigation node (for example, the top-level node that was selected by
the user) and iterates through the node’s children.

For more information on recalling a node, see recallNavNode [Page 33].
<nav:recallNavNode>
 <nav:iterateNavNodeChildren>
 <nav:ifNavNodeSelected>
 <TD nowrap class="chosenTDLevel2">
 <nav:navNodeAnchor navigationMethod="byURL"
 anchorAttributes="class='chosenOnLevel2'"/>
 </TD>
 </nav:ifNavNodeSelected>
 <nav:ifNotNavNodeSelected>
 <TD nowrap class="unChosenTDLevel2">

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 746

 <nav:navNodeAnchor navigationMethod="byURL"
 anchorAttributes="class='unChosenOnLevel2'"/>
 </TD>
 </nav:ifNotNavNodeSelected>
 <nav:ifHasMoreIterations>
 <TD nowrap class="spacingTDPipeLevel2"> | </TD>
 </nav:ifHasMoreIterations>
 </nav:iterateNavNodeChildren>
 <TD nowrap class="spacingTDLevel2"> </TD>
</nav:recallNavNode>

3.7.1.2.1.3.18 iterateNavNodesInSelectedPath
Iterates through the nodes (one on each level) that were selected by the user.

For example, if the user selects Content Administration → Users → Create User, the tag
iterates through these three nodes.

During each iteration of the tag, a different node is exposed in the body of the tag, either via a
cooperating tag that accesses the current node in the iteration or the scriptlet variable defined
by the currentNavNode attribute.

For more information about the selected path, see Glossary [Page 33].

Attributes
Name Mandatory Description

currentNavNode No The name of the Java variable to create for holding
the INavigationNode object for the current node in
the iteration.

The variable is accessible in scriptlets in the body of
the tag.

direction No Indicates in what direction to iterate. The attribute can
have the following values:

● forward (default): Iterate from the first to the
last node.

● backward: Iterate from the last to the first
node.

Variables
Name Scope Description

<currentNavNode>
attribute

Body of tag INavigationNode object representing the current
node in the iteration.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 747

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

Example
The following creates a breadcrumb list of links to the nodes in the selected path.

<nav:iterateNavNodesInSelectedPath>

 <nav:navNodeAnchor method="byURL"/>

 <nav:ifHasMoreIterations>

 ... Display separator

 </nav:ifHasMoreIterations>

</nav:iterateNavNodesInSelectedPath>

Example
● iterateSelectedNavNodesLevel [Page 33]

● selectedNavNode [Page 33]

3.7.1.2.1.3.19 iterateSelectedNavNodesLevel
Iterates through all the sibling nodes of the node in the selected path on a specified level.

For example, if the user selects Content Administration → Users → Create User, and the tag
specifies level 2, then the tag iterates through all the nodes on the same level as the Users
node (that is, the Users node and its siblings).

During each iteration of the tag, a different node is exposed in the body of the tag, either via a
cooperating tag that accesses the current node in the iteration or the scriptlet variable defined
by the currentNavNode attribute.

For more information about the selected path, see Glossary [Page 33].

Attributes
Name Mandatory Description

currentNavNode No The name of the Java variable to create for holding
the INavigationNode object for the current node in

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 748

the iteration.

The variable is accessible in scriptlets in the body of
the tag.

direction No Indicates in what direction to iterate. The attribute can
have the following values:

● forward (default): Iterate from the first to the
last node.

● backward: Iterate from the last to the first
node.

level Yes The level in the navigation tree whose nodes to
include in the iteration. Only the children of the
selected node on the level above are included.

Variables
Name Scope Description

<currentNavNode>
attribute

Body of tag INavigationNode object representing the current
node in the iteration.

Example
The following creates a detailed navigation iView by starting an iteration of all the sibling
nodes of the node in the selected path on level strStartLevel.
<TABLE Width='100%' Class="lightDTNTable">
 <nav:iterateSelectedNavNodesLevel level="<%=strStartLevel%>"
 currentNavNode="currentRoot">
 <nav:recurseNavNodeChildren currentDepth="currentDepth"
 currentNavNode="currentNavNode">

 ... Display DTN nodes

 </nav:recurseNavNodeChildren>
 </nav:iterateSelectedNavNodesLevel>
</TABLE>

See Also
● iterateNavNodesInSelectedPath [Page 33]

● selectedNavNode [Page 33]

3.7.1.2.1.3.20 launchedNavNode
Exposes the navigation node that was launched by the most recent navigation.

The node generally is the same as the node exposed by the selectedNavNode tag, but
may be different. For example, if the user selects a folder node, the portal launches within the
content area the first child node within the folder. The folder node is exposed by the
selectedNavNode tag and the launched iView or page node is exposed by the
launchedNavNode tag.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 749

Attributes
Name Mandatory Description

navNode No The name of the Java variable to create for holding the
INavigationNode object for the node that was
launched by the most recent navigation.

The variable is accessible in scriptlets in the body of
the tag.

Variables
Name Scope Description

<navNode> attribute Body of tag INavigationNode object representing the launched
node.

Example
The following displays the title of the current node.

<nav:launchedNavNode navNode="myNode">

 You are in: <%=myNode.getTitle(request.getLocale())%>

</nav:launchedNavNode>

See Also
● selectedNavNode [Page 33]

3.7.1.2.1.3.21 navNode
Exposes the navigation node with the name specified in the name attribute.

The navNode tag does not function properly for merged nodes. For more
information about merging nodes, see Merging Navigation Nodes and Defining
the Sequence in the Portal Administration Guide.

Attributes
Name Mandatory Description

navTarget Yes Specifies the name of the navigation node to expose.

The name is the same string as returned by the
INavigationNode.getName() method. For example,
specify
ROLES://portal_content/myFolder/myRole to
get the node that represents the role myRole in folder
portal_content/myFolder.

navNode No The name of the Java variable to create for holding the

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 750

INavigationNode object for the specified node.

The variable is accessible in scriptlets in the body of the
tag.

Variables
<navNode> attribute No INavigationNode object representing the specified

node.

Example
The following creates a link for a set of navigation nodes, whose names are stored in a
String array.

<% String[] targets = ... %>

...

<nav:navNode navTarget="<%=targets[6]%>">

 <nav:navNodeAnchor method="byURL"/>

</nav:navNode>

3.7.1.2.1.3.22 navNodeAnchor
Outputs an HTML link – anchor tag (<a>) with nested text or an image – for navigating to the
current navigation node.

For more information about how to create navigation links, see Triggering Navigation [Page
33].

Attributes
Name Mandator

y
Description

anchorAttribute
s

No A string that is added inside the anchor tag, in which you
can add additional HTML attributes for the anchor tag,
such as onClick.

EPCMHistoryMode No Indicates whether the navigation node is added to the
portal’s history list on the page title bar and, if it is,
whether duplicate entries are allowed if a user clicks on
the link multiple times.

The following are valid values:

• 0: Added to history with duplicates

• 1: Added to history without duplicates (default)

• 2: No tracking

This attribute is only relevant when the
navigationMethod attribute is set to byEPCM.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 751

hashURL No Indicates whether to set the value of the anchor’s href
attribute to the standard navigation URL or to its hashed
URL.

The following are valid values:

• true (default)

• false

Any other value is equivalent to true.

navigationConte
xt

No The navigation node to set as selected.

With this attribute, you can launch one navigation node
but set another navigation node to appear in navigation
iViews as if it was selected.

Specify a node by its name, which is the same as the
value returned by INavigationNode.getName(), for
example,
ROLES://portal_content/myFolder/myRole/myI
View.

navigationMetho
d

Yes Indicates whether to use client-side eventing for
navigation after the user clicks the link.

The following are valid values:

• byEPCM: Use client-side eventing.

• byURL: Do not use client-side eventing. This
eliminates the need for EPCM Javascript, reducing
network traffic. This option is useful when
implementing an external-facing portal in low-
bandwidth scenarios.

This option prevents the navigation node from being
added to the history list.

For more information on an external-facing portal,
see Implementing an External-Facing Portal
[External].

navigationMode No Indicates how to launch the node when the user clicks
the link.

The following are valid values:

• 0: Node is launched in the same frame.

• 1: Node is launched in new window.

• 2: Node is launched in a new session of the portal,
which is displayed in a new window.

The values are defined by the constants defined in
INavigationConstants and with the prefix SHOW.

title No The visible text for the link. If not specified, the title of the
navigation node is used, which is the same as the value
returned by INavigationNode.getTitle().

urlParameters No A string that is appended to the URL in the anchor tag’s
href attribute. This attribute enables you to add

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 752

parameters to the link URL.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

Example
The following creates a navigation link.
<nav:ifNavNodeSelected>
 <TD nowrap class="chosenTDLevel1">
 <nav:navNodeAnchor navigationMethod="byURL"
 anchorAttributes="class='chosenOnLevel1'"/>
 </TD>
 <% if(levels==2) { %>
 <nav:storeNavNode/>
 <% } %>
</nav:ifNavNodeSelected>

3.7.1.2.1.3.23 navNodeDescription
Outputs the description for the current navigation node. The string is the same as that
returned by INavigationNode.getDescription().

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 753

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

3.7.1.2.1.3.24 navNodeParent
Exposes the parent node of the current node.

If the current node is a top-level node, the body is not included.

Attributes
Name Mandatory Description

navNode No The name of the Java variable to create for holding the
INavigationNode object for the parent node of the
current node.

The variable is accessible in scriptlets in the body of
the tag.

Variables
Name Scope Description

<navNode>
attribute

Body of tag INavigationNode object representing the parent
node of the node exposed by the cooperating tag.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

Example
The following displays the title of all siblings of the launched node.
<nav:launchedNavNode>
 <nav:navNodeParent>
 <nav:iterateNavNodeChildren>
 <nav:navNodeTitle/>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 754

 </nav:iterateNavNodeChildren>
 </nav:navNodeParent>
</nav:launchedNavNode>

3.7.1.2.1.3.25 navNodePictogram
Outputs an HTML image tag () that displays the image associated with the current
node.

If no pictogram is associated with the node, the default pictogram is used.

Attributes
Name Mandatory Description

pictogramAttributes No A string that is added inside to the image tag, in
which you can add additional attributes for the
image tag.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

3.7.1.2.1.3.26 navNodeTitle
Outputs the title for the current navigation node. The string is the same as that returned by
INavigationNode.getTitle().

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 755

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

3.7.1.2.1.3.27 recallNavNode
Exposes a navigation node that was previously stored by the storeNavNode tag.

Attributes
Name Mandatory Description

id No The ID of the stored node.

If no ID is specified, the last node that was stored with
no ID or with the ID default is recalled.

Example
The following iterates through the top-level nodes, storing the selected top-level node. The
selected node is then recalled, and an iteration is started through the children of that node.
<TABLE border="0" cellspacing="0" cellpadding="0" class="table1">
 <TR>
 <nav:iterateInitialNavNodes>
 <nav:ifNavNodeSelected>

 ...

 <% if(levels==2) { %>
 <nav:storeNavNode/>
 <% } %>
 </nav:ifNavNodeSelected>
 <nav:ifNotNavNodeSelected>

 ...

 </nav:ifNotNavNodeSelected>
 </nav:iterateInitialNavNodes>
 <TD nowrap class="spacingTDLevel1"> </TD>
 </TR>
</TABLE>
<TABLE border="0" cellspacing="0" cellpadding="0" class="table2">
 <TR>
 <nav:recallNavNode>
 <nav:iterateNavNodeChildren>

 ... Display level 2 nodes

 </nav:iterateNavNodeChildren>
 <TD nowrap class="spacingTDLevel2"> </TD>
 </nav:recallNavNode>
 </TR>
</TABLE>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 756

See Also
● storeNavNode [Page 33]

3.7.1.2.1.3.28 recurseNavNodeChildren
Iterates recursively through all the nodes below the current node, performing a depth-first
traversal through the navigation tree, starting with the current node.

During each iteration of the tag, a different node is exposed in the body of the tag, either via a
cooperating tag that accesses the current node in the iteration or the scriptlet variable defined
by the currentNavNode attribute.

Attributes
Name Mandatory Description

depthLimit No The number of levels through which to iterate.

currentDepth No The name of the Java variable to create for holding
the Byte object that equals the current depth within
the recursive iteration.

The first level of the iteration equals 1.

The variable is accessible in scriptlets in the body of
the tag.

currentNavNode No The name of the Java variable to create for holding
the INavigationNode object for the current node in
the iteration.

The variable is accessible in scriptlets in the body of
the tag.

Variables
Name Scope Description

<currentNavNode>
attribute

Body of tag INavigationNode object representing the current
node in the iteration.

<currentDepth>
attribute

Body of tag A Byte object representing the current depth within
the recursive iteration.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 757

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

Example
The following creates a detailed navigation iView by starting a recursive iteration of all the
children nodes of the node in the selected path on the specified level. The current depth is
used in the TR tag to create the required indent for that level.
<TABLE Width='100%' Class="lightDTNTable">
 <nav:iterateSelectedNavNodesLevel level="<%=strStartLevel%>"
 currentNavNode="currentRoot">
 <nav:recurseNavNodeChildren currentDepth="currentDepth"
 currentNavNode="currentNavNode">

 ...

 <TR Style="{text-indent:<%=((currentDepth.byteValue()-1) *
16)+10%>px}">
 <TD Class="lightDTNCell">

 ...

 </TD>
 <TR/>
 </nav:recurseNavNodeChildren>
 </nav:iterateSelectedNavNodesLevel>
</TABLE>

Example
● doNotRecurseNavNodeChildren [Page 33]

3.7.1.2.1.3.29 selectedNavNode
Exposes the navigation node that was selected by the user during the most recent navigation.

Attributes
Name Mandatory Description

navNode No The name of the Java variable to create for holding the
INavigationNode object for the node that was
selected by the user.

The variable is accessible in scriptlets in the body of
the tag.

Variables
Name Scope Description

<navNode> attribute Body of tag INavigationNode object representing the selected
node.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 758

See Also
● launchedNavNode [Page 33]

● ifNavNodeEqualsSelectedNavNode [Page 33]

● ifNavNodeInSelectedPath [Page 33]

3.7.1.2.1.3.30 storeNavNode
Stores a navigation node so that it can later be recalled by the recallNavNode tag.

Attributes
Name Mandatory Description

id No The ID of the stored navigation node.

If no ID is specified, the navigation node is stored with
the ID default.

Cooperating Tags
The tag must be nested in one of the following tags:

● iterateInitialNavNodes

● iterateNavNodeChildren

● iterateNavNodesInSelectedPath

● iterateSelectedNavNodesLevel

● launchedNavNode

● navNode

● navNodeParent

● recallNavNode

● recurseNavNodeChildren

● selectedNavNode

Example
The following iterates through the top-level nodes, storing the selected top-level node. The
selected node is then recalled, and an iteration is started through the children of that node.
<TABLE border="0" cellspacing="0" cellpadding="0" class="table1">
 <TR>
 <nav:iterateInitialNavNodes>
 <nav:ifNavNodeSelected>

 ...

 <% if(levels==2) { %>
 <nav:storeNavNode/>
 <% } %>
 </nav:ifNavNodeSelected>
 <nav:ifNotNavNodeSelected>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 759

 ...

 </nav:ifNotNavNodeSelected>
 </nav:iterateInitialNavNodes>
 <TD nowrap class="spacingTDLevel1"> </TD>
 </TR>
</TABLE>
<TABLE border="0" cellspacing="0" cellpadding="0" class="table2">
 <TR>
 <nav:recallNavNode>
 <nav:iterateNavNodeChildren>

 ... Display level 2 nodes

 </nav:iterateNavNodeChildren>
 <TD nowrap class="spacingTDLevel2"> </TD>
 </nav:recallNavNode>
 </TR>
</TABLE>

See Also
● recallNavNode [Page 33]

3.7.1.2.1.4 Samples
This section provides samples of the following:

● Top-Level Navigation iView [Page 33]

● Detailed Navigation iView [Page 33]

3.7.1.2.1.4.1 Top-Level Navigation iView
The following creates a one- or two-level top-level navigation iView, depending on the value in
the NumOfDisplayLevels property of the navigation iView portal component. The page
does the following:

● Iterates through the initial nodes.

● Saves the node that is selected.

● After iterating through all the initial nodes, recalls the selected node and iterates
through its children.

<%@ page import = "com.sapportals.portal.navigation.*" %>
<%@ page import = "com.sapportals.portal.prt.resource.IResource" %>
<%@ page import = "com.sapportals.portal.prt.runtime.PortalRuntime"
%>
<%@ page import =
"com.sapportals.portal.navigation.INavigationGenerator"%>
<%@ page import =
"com.sapportals.portal.prt.component.IPortalComponentRequest" %>

<%@ taglib uri="NavigationTagLibrary" prefix="nav" %>

<%
INavigationGenerator service =

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 760

(INavigationGenerator)PortalRuntime.getRuntimeResources().getService(
 INavigationService.KEY);

IPortalComponentRequest currentRequest =
 (IPortalComponentRequest)pageContext.getAttribute(
 javax.servlet.jsp.PageContext.REQUEST);

IPortalComponentResponse currentResponse =
 (IPortalComponentResponse)pageContext.getAttribute(
 javax.servlet.jsp.PageContext.RESPONSE);

IPortalComponentContext componentContext =
 currentRequest.getComponentContext();

IPortalComponentProfile profile = componentContext.getProfile();

boolean previewMode = false;
String mode = (String)componentRequest.getNode().getValue("mode");
if(mode!=null && mode.equals("preview")) {
 previewMode = true;
}

String strLevels = profile.getProperty("NumOfDisplayLevels");
int levels = 2;
try {
 levels = Integer.parseInt(strLevels);
} catch(NumberFormatException e) {
}
if(levels<0 || levels>2) {
 levels = 2;
}
if(levels>0) { %>

<TABLE border="0" cellspacing="0" cellpadding="0" class="mainTable">
 <TR>
 <TD nowrap class="notch"> </TD>
 <TD>
 <TABLE border="0" cellspacing="0" cellpadding="0"
class="table1">
 <TR>

 <!-- Iterate initial nodes -->
 <nav:iterateInitialNavNodes>
 <nav:ifNavNodeInSelectedPath>
 <TD nowrap class="chosenTDLevel1">
 <% if(previewMode) { %>
 <nav:navNodeTitle/>
 <% } else { %>
 <nav:navNodeAnchor navigationMethod="byURL"
 anchorAttributes="class='chosenOnLevel1'"/>
 <% } %>
 </TD>
 <% if(levels==2) { %>
 <!-- Save selected node -->
 <nav:storeNavNode/>
 <% } %>
 </nav:ifNavNodeInSelectedPath>
 <nav:ifNotNavNodeInSelectedPath>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 761

 <TD nowrap class="unChosenTDLevel1">
 <% if(previewMode) { %>
 <nav:navNodeTitle/>
 <% } else { %>
 <nav:navNodeAnchor navigationMethod="byURL"
 anchorAttributes="class='unChosenOnLevel1'"/>
 <% } %>
 </TD>
 </nav:ifNotNavNodeInSelectedPath>
 </nav:iterateInitialNavNodes>
 <TD nowrap class="spacingTDLevel1"> </TD>
 </TR>
 </TABLE>
 <TABLE border="0" cellspacing="0" cellpadding="0"
class="table2">
 <TR>

 <!—Recall initial selected node and iterate
children -->
 <nav:recallNavNode>
 <nav:iterateNavNodeChildren>
 <nav:ifNavNodeInSelectedPath>
 <TD nowrap class="chosenTDLevel2">
 <% if(previewMode) { %>
 <nav:navNodeTitle/>
 <% } else { %>
 <nav:navNodeAnchor navigationMethod="byURL"
 anchorAttributes="class='chosenOnLevel2'"/>
 <% } %>
 </TD>
 </nav:ifNavNodeInSelectedPath>
 <nav:ifNotNavNodeInSelectedPath>
 <TD nowrap class="unChosenTDLevel2">
 <% if(previewMode) { %>
 <nav:navNodeTitle/>
 <% } else { %>
 <nav:navNodeAnchor navigationMethod="byURL"
 anchorAttributes="class='unChosenOnLevel2'"/>
 <% } %>
 </TD>
 </nav:ifNotNavNodeInSelectedPath>
 <nav:ifHasMoreIterations>
 <TD nowrap class="spacingTDPipeLevel2"> | </TD>
 </nav:ifHasMoreIterations>
 </nav:iterateNavNodeChildren>
 <TD nowrap class="spacingTDLevel2"> </TD>
 </nav:recallNavNode>
 </TR>
 </TABLE>
 </TD>
 </TR>
</TABLE>

<% } %>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 762

3.7.1.2.1.4.2 Detailed Navigation iView
The following creates a detailed navigation iView. The page does the following:

● Determines the start level for the detailed navigation.

● Starts an iteration through the children nodes of the selected node on the level above
the start level.

● For each node, starts a recursive iteration through all its children nodes.

● For each node in the recursive iteration, displays the appropriate HTML.
<%@ page import = "java.util.*" %>
<%@ page import = "com.sapportals.portal.navigation.*" %>
<%@ page import = "com.sapportals.portal.prt.resource.IResource" %>
<%@ page import = "com.sapportals.portal.prt.runtime.PortalRuntime"
%>
<%@ page import =
"com.sapportals.portal.navigation.INavigationGenerator"%>
<%@ page import =
"com.sapportals.portal.prt.component.IPortalComponentRequest" %>

<%@ taglib uri="NavigationTagLibrary" prefix="nav" %>

<%
NavigationEventsHelperService helperService =

(NavigationEventsHelperService)PortalRuntime.getRuntimeResources()
 .getService(NavigationEventsHelperService.KEY);

INavigationGenerator service =
 (INavigationGenerator)PortalRuntime.getRuntimeResources()
 .getService(INavigationService.KEY);

IPortalComponentRequest currentRequest =
 (IPortalComponentRequest) pageContext.getAttribute(
 javax.servlet.jsp.PageContext.REQUEST);

IPortalComponentResponse currentResponse =
 (IPortalComponentResponse)pageContext.getAttribute(
 javax.servlet.jsp.PageContext.RESPONSE);

IPortalComponentContext componentContext =
 currentRequest.getComponentContext();

IPortalComponentProfile profile = componentContext.getProfile();

IPortalComponentURI componentURI =
 currentRequest.createPortalComponentURI ();

TreeSet openNodes = (TreeSet)currentRequest
 .getComponentSession().getValue("LightDTNOpenNodes");

if(openNodes==null) {
 openNodes = new TreeSet();
 session.putValue("LightDTNOpenNodes",openNodes);
}

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 763

String oldIndices = (String) currentRequest
 .getComponentSession().getValue("LightDTNRootIndicies");

NavigationNodes path = (NavigationNodes)helperService
 .getNavNodesListForPath(
 currentRequest,INavigationConstants.NAVIGATION_CONTEXT_ATTR);

boolean nodeIsOpen = false;
boolean nodeIsPressed = false;
boolean nodeInSelectedPath = false;
int nodeID = 0;
Integer nodeIDInteger = null;
int pressedKnobID = 0;
Integer pressedKnobIDInteger = null;
String pressedKnobIDString = (String)currentRequest.
 getParameter("LightDTNKnobID");
String urlParameters = "";

boolean previewMode = false;
String mode = (String)componentRequest.getNode().getValue("mode");

if(mode!=null && mode.equals("preview")) {
 previewMode = true;
}

componentURI.setContextName(currentRequest.getComponentContext()
 .getContextName());

componentURI.setTargetNode(currentRequest.getNode());

if(pressedKnobIDString!=null && !pressedKnobIDString.equals("")) {
 pressedKnobID = Integer.parseInt(pressedKnobIDString);
 pressedKnobIDInteger = new Integer(pressedKnobID);
}

// Find start level
String strStartLevel = profile.getProperty(

"com.sap.portal.navigation.lightdetailednavigationtree.startLevel");
int startLevel = 3;
try {
 startLevel = Integer.parseInt(strStartLevel);
} catch(NumberFormatException e) {
 strStartLevel = "3";
}
if(startLevel<1 || previewMode) {
 startLevel = 1;
 strStartLevel = "1";
}

String indices = "";
ArrayList indicesList =
helperService.getNavNodesPathIndexesList(currentRequest);
try {
 for(int i=0; i<startLevel-1; i++) {
 indices += indicesList.get(i) + ".";
 }

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 764

} catch(IndexOutOfBoundsException e) {
}
if(oldIndices==null || !indices.equals(oldIndices)) {
 openNodes.clear();
}
if(!indices.equals("")) {
 currentRequest.getComponentSession().putValue(
 "LightDTNRootIndicies",indices);
}

%>

<TABLE Width='100%' Class="lightDTNTable">

 <!--Iterate through children of selected node in TLN -->
 <nav:iterateSelectedNavNodesLevel level="<%=strStartLevel%>">

 <!--For each node, start rescursive iteration -->
 <nav:recurseNavNodeChildren currentDepth="currentDepth"
 currentNavNode="currentNavNode">
 <% nodeInSelectedPath = false; %>
 <nav:ifNavNodeInSelectedPath>
 <% nodeInSelectedPath = true; %>
 </nav:ifNavNodeInSelectedPath>
 <% nodeID = currentNavNode.getName().hashCode();
 nodeIDInteger = new Integer(nodeID);
 nodeIsOpen = openNodes.contains(nodeIDInteger);
 nodeIsPressed = (pressedKnobIDInteger!=null &&
 pressedKnobID==nodeID);
 urlParameters = "LightDTNKnobID=" + nodeID;
 if(nodeIsOpen) {
 if(nodeIsPressed) {
 openNodes.remove(nodeIDInteger);
 nodeIsOpen = false;
 }
 } else {
 if(nodeIsPressed) {
 openNodes.add(nodeIDInteger);
 nodeIsOpen = true;
 }
 }
 if(nodeInSelectedPath && pressedKnobIDInteger==null) {
 openNodes.add(nodeIDInteger);
 nodeIsOpen = true;
 } %>

 <!--Display HTML for each node -->
 <TR Style="{display:block;position:relative;left:
 <%=((currentDepth.byteValue()-1) * 16)+10%>px}">
 <TD Class="lightDTNCell">
 <nav:ifNavNodeIsFolder>
 <nav:ifNavNodeHasChildren>
 <% if(previewMode) { %>
 <A class="lightDTNKnob<%
 if(nodeIsOpen) { %>Open<% } else { %>Closed<% }
 %>" style="display:block;float:left"/>
 <% } else { %>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 765

 <A href="<%=componentURI%>?<%=urlParameters%>"
 class="lightDTNKnob<%
 if(nodeIsOpen) { %>Open<% } else { %>Closed<% }
 %>" style="display:block;float:left"/>
 <% }
 if(!nodeIsOpen) { %>
 <nav:doNotRecurseNavNodeChildren/>
 <% } %>
 </nav:ifNavNodeHasChildren>
 <nav:ifNotNavNodeHasChildren>
 <A class="lightDTNKnobNone"
style="display:block;float:left"/>
 </nav:ifNotNavNodeHasChildren>
 <% if(previewMode) { %>
 <A class="lightDTN<%
 if(nodeIsOpen) { %>Open<% } else { %>Closed<% }
 %>Folder" style="display:block;float:left"/>
 <% } else { %>
 <A href="<%=componentURI%>?<%=urlParameters%>"
 class="lightDTN<%
 if(nodeIsOpen) { %>Open<% } else { %>Closed<% }
 %>Folder" style="display:block;float:left"/>
 <% } %>
 </nav:ifNavNodeIsFolder>
 <nav:ifNotNavNodeIsFolder>
 <nav:doNotRecurseNavNodeChildren/>
 <A class="lightDTNKnobNone"
style="display:block;float:left"/>
 <A class="lightDTNLeaf"
style="display:block;float:left"/>
 </nav:ifNotNavNodeIsFolder>
 <nav:ifNavNodeEqualsLaunchedNavNode>
 <% if(previewMode) { %>
 <A class="lightDTNTextSelected"
 style="float:left"><nav:navNodeTitle/>
 <% } else { %>
 <nav:navNodeAnchor navigationMethod="byURL"
 urlParameters="<%=urlParameters%>"
 anchorAttributes="class='lightDTNTextSelected'
 style='float:left'"/>
 <% } %>
 </nav:ifNavNodeEqualsLaunchedNavNode>
 <nav:ifNotNavNodeEqualsLaunchedNavNode>
 <nav:ifNavNodeIsFolder>
 <% if(nodeIsOpen) { %>
 <A href="<%=componentURI%>?<%=urlParameters%>"
 class="lightDTNText"
 style='float:left'><nav:navNodeTitle/>
 <% } else {
 if(previewMode) { %>
 <nav:navNodeTitle/>
 <% } else { %>
 <nav:navNodeAnchor navigationMethod="byURL"
 urlParameters="<%=urlParameters%>"
 anchorAttributes="class='lightDTNText'
 style='float:left'"/>
 <% }
 } %>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 766

 </nav:ifNavNodeIsFolder>
 <nav:ifNotNavNodeIsFolder>
 <% if(previewMode) { %>
 <A class="lightDTNText"
 style='float:left'><nav:navNodeTitle/>
 <% } else { %>
 <nav:navNodeAnchor navigationMethod="byURL"
 anchorAttributes="class='lightDTNText'
style='float:left'"/>
 <% } %>
 </nav:ifNotNavNodeIsFolder>
 </nav:ifNotNavNodeEqualsLaunchedNavNode>
 </TD>
 <TR/>
 </nav:recurseNavNodeChildren>
 </nav:iterateSelectedNavNodesLevel>
</TABLE>

3.7.1.2.2 Framework Tag Library
The framework tag library helps you create masthead and page title bar navigation iViews.
The tags enable you to create standard links (such as for logging off) and display commonly
used text strings (such as the current user’s name).

For all tags that create a link, the tag’s body is the text or image for the link.

None of the tags has attributes.

Tags for Masthead iViews
The masthead iView is generally used to display the current user’s name, links for logging off
the portal and performing other tasks, and branding images and text.

The following tags are available:

Tag Description

personalizePortalAnchor Creates a link to open the personalize dialog for the
portal.

newSessionAnchor Creates a link to open a new session in the portal.

logInAnchor Creates a link to log on to the portal.

logOffAnchor Creates a link to log off the portal.

portalHelpAnchor Creates a link to display help for the portal.

userFirstName Displays the current user’s first name.

userLastName Displays the current user’s last name.

welcomeTitle Displays the default welcome message.

The masthead tags require special JavaScript contained in the default
masthead. To create your own masthead iView, either modify a copy of the

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 767

default masthead or copy the JavaScript from the default masthead to your
masthead.

Tags for Page Title Bar iViews
The page title bar iView is generally used to display the title of the current page and to display
links for invoking page functions, such as refreshing or personalizing the page.

The following tags are available:

Tag Description

pageDetailsAnchor Creates a link to display information about the current
page.

pageExpandAnchor Creates a link to open the current page in a new
window.

pageHelpAnchor Creates a link to display help for the current page.

pagePersonalizeAnchor Creates a link to open the personalize dialog for the
current page.

pageRefreshAnchor Creates a link to refresh the page.

addToBrowserFavoritesAnchor Creates a link to add the current page to the
browser’s favorites.

addToPortalFavoritesAnchor Creates a link to add the current page to the portal
favorites displayed in the navigation panel.

3.7.1.2.2.1 How to Use the Tag Library
The framework tag library is designed to enable you to build navigation iViews based on JSP
pages, which are deployed to the portal as portal components in a PAR file that contains the
JSP page and a portalapp.xml file.

For more information on writing JSP pages for the portal, see Writing JSP Pages [Page 33].

Referencing the Tag Library
To use navigation tags in a JSP page, do the following:
...

1. At the top of the JSP page, add a reference to the tag library, as follows:
<%@ taglib uri="FrameworkTagLibrary" prefix="nav" %>

2. In the portalapp.xml file:

a. Add a sharing reference in the <application-config> element, as follows:
<property name="SharingReference"
 value="com.sap.portal.pagebuilder"/>

b. Add a reference to the tag library by adding the following property to the
<component-profile> element for the JSP component:

<property name="FrameworkTagLibrary"

value="/SERVICE/com.sap.portal.pagebuilder/taglib/framework.tld"/>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 768

3.7.1.3 Creating Navigation Connectors

Purpose
The navigation service creates a tree of navigation nodes for the current user from the
registered navigation connectors. Navigation iViews can display these nodes to enable the
user to navigate within the portal.

The portal comes with the roles navigation connector, which creates nodes based on objects
defined in the PCD and is closely linked with the roles hierarchy defined by a content
administrator. A user administrator assigns roles to individual users. The roles navigation
connector then creates a set of navigation nodes based on the current user and the roles
assigned to the user.

You can create additional connectors for creating additional navigation nodes.

A navigation connector is packaged in a portal application (PAR file). The following are the
steps for creating a navigation connector:

● Step 1: Creating a Navigation Connector Node [Page 33]

● Step 2: Creating a Navigation Connector [Page 33]

● Step 3: Registering the Connector [Page 33]

Several methods of your navigation connector (INavigationConnector) and navigation
connector node (INavigationConnectorNode) return a
javax.naming.NamingEnumeration object. You may need to write an implementation
for this interface. The examples in this section make use of the class NavigationEnum,
which is a sample implementation of NamingEnumeration for this example only. The
implementation is not described here.

3.7.1.3.1 Step 1: Creating a Navigation Connector Node
Your navigation connector is, essentially, a supplier of navigation nodes. Each navigation
node is an INavigationConnectorNode object, and you must create a class that
determines the values of navigation attributes.

Procedure
...

1. Create a new class that extends AbstractNavigationConnectorNode.

2. Implement the INavigationConnectorNode methods that return attribute values for
the navigation connector node – methods that start with get and is.

3. Implement listBindings(), which returns a
javax.naming.NamingEnumeration of nodes related to the current node, for
example, the children of the current node. The mode parameter determines the type of
nodes to return, which can be one of the following:

○ Children of the current node

○ First child of the current node

○ Dynamic navigation iViews for the current node

○ Drag&Relate targets for the current node

○ Related links for the current node

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 769

The following is a sample implementation, in which the navigation connector node class
holds the relevant nodes in several local variables and returns the relevant set of nodes
depending on the mode. For example, childrenNodeBindings is a List that holds
the children of the current node.

The mode constants are defined by the INavigationConnectorNode interface.
public NamingEnumeration listBindings(String binding, String mode,
 Hashtable filterParameters)
 throws NamingException {

 if (mode.equals(NAVIGATION_GET_CHILDREN))
 return new NavigationEnum(childrenNodeBindings);
 if (mode.equals(NAVIGATION_GET_RELATED_SEE_ALSO))
 return new NavigationEnum(relatedSeeAlsoNodeBindings);
 if (mode.equals(NAVIGATION_GET_RELATED_DR_TARGETS))
 return new NavigationEnum(relatedTargetNodeBindings);
 if (mode.equals(NAVIGATION_GET_FIRST_CHILD)){
 return new NavigationEnum(
 Collections.singletonList(childrenNodeBindings.get(0)));
 }
 else throw new NamingException("Unknown mode named "+mode);
}

The following values are passed into listBinding() via the Hashtable parameter:

○ User (NavigationPrincipal key)

○ Navigation target (NavigationTarget key)

3.7.1.3.2 Step 2: Creating a Navigation Connector
The navigation connector implements methods that define the following:

● The initial (top-level) nodes of the connector. Once the navigation connector returns the
initial nodes, the navigation service can query the nodes themselves for each one’s
children and related nodes.

● The mapping between a navigation URL and the nodes defined by the connector.

For example, if the connector prefix is myPrefix, a navigation URL for the connector
could be myPrefix://myParentNode2/myChildNode5. The connector must
determine what INavigationConnectorNode object to return for this URL.

Procedure
...

1. Create a new class that extends AbstractNavigationConnector.

2. Implement the method getInitialNodes(), which returns a
javax.naming.NamingEnumeration of the initial nodes. The method could return
the nodes only if a condition is true, for example, the user is part of specific role.

The following returns the initial nodes if the user is part of the Java developer role:
public NamingEnumeration getInitialNodes(Hashtable environment) {
 if (isUserInJavaDeveloperRole(environment))
 return new NavigationEnum(initialNodes);
 else
 return NavigationEnum.EMPTY_ENUM;
}

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 770

3. Implement the method getNode(), which returns a INavigationConnectorNode
based on a navigation URL passed into the method.

You can implement any logic for returning the INavigationConnectorNode object.
One method is to store all the nodes in a Map with the navigation URL as the key. To
implement this, you could do the following:

a. Store the nodes in a Map. You can add code for this in an initialization method.

One implementation is to create a method that recursively traverses the
navigation nodes that you created and store them in a map with the fully
qualified name (navigation URL) as the key for each one, as follows:

private void recursivelyFillNamesToNodesMap(NamingEnumeration enum)
 throws NamingException {
 while (enum.hasMoreElements()) {
 Binding b = (Binding) enum.nextElement();
 myConnectorNode node = (myConnectorNode) b.getObject();
 String nodeName = node.getName();
 namesToNodes.put(nodeName, node);
 atomicNamesToNames.put(node.getAtomicName(),nodeName);
 recursivelyFillNamesToNodesMap(node.listBindings(
 "", INavigationConnectorNode.NAVIGATION_GET_CHILDREN));
 }
}

You could then call recursivelyFillNamesToNodesMap from the
initialization method, passing in the initial nodes.

b. Look up the node in the Map based on the navigation URL. The following returns
a node in the namesToNodes Map if the user is a member of the Java developer
role:

public INavigationConnectorNode getNode(
 Hashtable environment, String connectorNodeURL) {
 boolean memberOfRole = isUserInJavaDeveloperRole(environment);
 if (memberOfRole)
 return (myConnectorNode) namesToNodes.get(connectorNodeURL);
 else
 return null;
}

4. Implement the method getNodes(), which returns a
javax.naming.NamingEnumeration of INavigationConnectorNode
objects based on a set of navigation URLs passed into the method, as follows:

public NamingEnumeration getNodes(
 Hashtable environment, Vector connectorNodeURLs) {
 myConnectorNode node;

 int size = connectorNodeURLs.size();
 List nodeBindings = new ArrayList(size);

 for (int i = 0; i < size; i++) {
 node = (myConnectorNode) getNode(
 environment, (String)
connectorNodeURLs.get(i));
 if (node != null) nodeBindings.add(
 new Binding(node.getName(), node));
 }

 return new NavigationEnum(nodeBindings);

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 771

}

5. Implement the method getNodeByQuickLink() in order to map quick links strings to
specific navigation nodes.

For more information, see Quick Links [Page 33].

6. Implement getConnectorCacheDiscriminator(), which assigns a unique key to
each unique set of initial nodes. This enables the portal to cache navigation nodes,
improving performance.

7. By default, nodes from the navigation connector are cacheable. Override
isCachable() to indicate whether the nodes from the navigation connector are
cacheable.

For more information, see Navigation Cache [Page 33].

3.7.1.3.3 Step 3: Registering the Connector
You must register the connector with the navigation service for the navigation service to
include your navigation nodes in the portal.

Generally, you create a new service whose only function is to register your connector.

Procedure
...

1. Create a portal service, which must implement IService.

2. Define a constant for the prefix.
public static String NAV_CONNECTOR_PREFIX = "myPrefix";

3. In the service’s init() method, create an instance of your INavigationConnector
class.

public void init(IServiceContext serviceContext) {
 mm_serviceContext = serviceContext;
 myConnector = new myConnector();
}

4. Register the navigation connector in the service’s afterInit() method.
public void afterInit() {
 INavigationConnectorRegistration service =
 (INavigationConnectorRegistration)
 getContext().getService(INavigationService.KEY);
 if (service != null) {
 service.registerConnector(
 NAV_FILE_CONNECTOR_PREFIX, myConnector);
 }
}

5. Create a service entry in portalapp.xml for the service, similar to the one shown
below:

<service name="myConnectorService">
 <service-config>
 <property name="className" value="myConnectorService"/>
 <property name="startup" value="true"/>
 </service-config>
</service>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 772

3.7.1.3.4 Redirectors
The portal enables you to create redirectors that automatically translate all navigation targets
with a specific prefix into different navigation targets.

For example, the roles connector includes a redirector (that is, a class that implements
INavigationRedirector) that translates any navigation target with the pcd prefix into the
same navigation target but with a ROLES prefix. This enables users or applications to navigate
to role-based navigation nodes by specifying a target with a pcd prefix.

You do not have to implement a redirector for your navigation connector.
However, you can only register a redirector at the same time you register a
navigation connector.

Procedure
The following describes how to write and deploy a redirector:
...

1. Create a new class that implements INavigationRedirector.

2. Implement the method redirect(), which has the following signature:
public INavigationRedirectorResult redirect(
 String atomicName, Hashtable hashtable) throws
NamingException {
}

The original navigation target is passed as a string, without a prefix or separator.

The method provides the logic for translating this string into the new navigation target,
including a prefix and separator. The method returns an object of type
INavigationRedirectorResult. You must create a class that implements this
interface.

3. Package this class with the PAR file that contains your navigation connector.

4. Register the redirector in the same call that registers your navigation connector, as
follows

a. Create an instance of your redirector.

b. Create a Map for holding your redirectors.

c. Register your redirector when registering your connector.
private myConnectorRedirector myConnectorRedirector;

// Create instance of redirector.
public void init(IServiceContext serviceContext) {
 myConnectorRedirector = new myConnectorRedirector();
}

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 773

// Register redirector.
public void afterInit() {

 INavigationConnectorRegistration service =
 (INavigationConnectorRegistration) getContext().
 getService(INavigationService.KEY);
 if (service != null) {
 Map redirectors = new HashMap();
 redirectors.put("myRedirectPrefix",myConnectorRedirector);

 service.registerConnector(
 "myRedirectPrefix",myConnector,null,redirectors);
 }
}

3.7.1.4 Triggering Navigation
The following describes the methods for creating links to other navigation nodes:

● Navigation Tag Library (JSP)

The navigation tag library provides access to navigation nodes and can create
navigation links from them.

For example, the following exposes the navigation node
ROLES://portal_content/myRole/myIView and creates a link for navigating to
the node:

<nav:navNode navTarget="ROLES://portal_content/myRole/myIView">
 <nav:navNodeAnchor navigationMethod="byURL"
 urlParameters="<%=urlParameters%>"
 anchorAttributes="class='myCSSstyle'"/>
</nav:navNode>

The tag library is for portal components built from a JSP page.

For more information, see Navigation Tag Library [Page 33].

● Client-Side Eventing (EPCM)

The portal’s client-side eventing mechanism (EPCM) provides a JavaScript function for
navigating to a specific navigation node.

The following creates a link for navigating to the
ROLES://portal_content/myRole/myIView node:

<A HREF="myLink"
 onclick="return EPCM.doNavigate
 ('ROLES://portal_content/myRole/myIView')">
This is an HTML Link

For more information, see Client-Side Eventing [Page 33]

Instead of writing the code for the EPCM.doNavigate call, you can get the code by
calling NavigationEventsHelper.addClickEvent(), which creates the code and
stores it as a StringBuffer in one of the function’s parameter, as shown in the
following:

import com.sapportals.htmlb.Link;
import com.sapportals.portal.navigation.NavigationEventsHelper;;

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 774

import
com.sapportals.portal.navigation.NavigationEventsHelperService;

NavigationEventsHelperService service =
(NavigationEventsHelperService)
 PortalRuntime.getRuntimeResources().getService(
 NavigationEventsHelperService.KEY);

NavigationEventsHelper helper =
 service.getNavigationEventsHelperInstance();

INavigationNode currNode = service.getCurrentContextNavNode(request);

Link titleLink = new Link(
 currNode.getName(), currNode.getTitle(request.getLocale()));

StringBuffer scriptTarget = new StringBuffer();

helper.addClickEvent(
 currNode, scriptTarget, request, false, null);

titleLink.setReference("javascript:void(0)");
titleLink.setOnClientClick(scriptTarget.toString());
titleLink.setLinkDesign(LinkDesign.DRAGRELATE);

● Portal Runtime Link (PRT)

You can create a link to a specific portal component instead of to a node in the
navigation hierarchy. Use the PRT API to create a link, as follows:

IPortalComponentURI componentURI =
request.createPortalComponentURI();
componentURI.setContextName("myApplication.myComponent");
myUrl = componentURI.toString();

Embed the myURL string in an HTML anchor tag.

For more information on portal components, see Portal Runtime [Page 2].

3.7.2 Creating Custom Layouts
You can create a custom page layout to display content in a way not possible with the
standard layouts provided with the portal.

A layout is defined in a JSP page that is packaged as a component in a PAR file and
deployed to the portal. Once deployed, an administrator can create a layout template based
on the component, and then create pages based on the layout template.

Prerequisites
● You are familiar with how portal pages are rendered, as described in Portal Page at

Runtime [External].

● You are familiar with how to write JSP pages in the portal, as described in Writing JSP
Pages [Page 33].

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 775

3.7.2.1 How to Create a Custom Layout
A layout consists of a layout JSP page and a portalapp.xml file. The files are packaged in
a portal application (PAR file) and deployed to the portal.

You can define several layouts in a single PAR by providing for each layout a JSP page and a
<component> element in the portalapp.xml file.

Procedure
...

1. With the help of the layout tag library, create a JSP page that defines the following:

○ One or more containers on the page in which iViews can be placed.

○ The iView tray, or frame, in which each iView is placed. If you do not specify a
tray, the portal displays the default tray, which provides links to standard tray
functions, such as hiding, refreshing or personalizing the iView.

You can specify one tray for each container. The tray is displayed for all iViews
in the container.

○ Additional HTML that appears on each page.

For more information on creating a layout JSP page, see Layout Tag Library [Page 33].

2. Create a <component> element in a portalapp.xml file for the PAR and set the
name attribute. Create one <component> element for each layout defined in the PAR.

In the <component> element’s <component-config> element, create the following
<property> elements:

Property Mandatory Description/Value
ClassName Yes com.sapportals.portal.pb.layout

.PageLayout

ResourceBundleName Yes pagebuilder_nls

In the <component> element’s <component-profile> element, create the following
<property> elements:

Property Mandatory Description/Value
ComponentType Yes com.sapportals.portal.layout

com.sap.portal.pcm.Title No The display name of the layout
com.sap.portal.pcm
.Description

No A layout description

com.sap.portal.reserved
.layout.TemplateFile

Yes The name of the JSP page that defines the
layout (relative to the PORTAL-INF\jsp
directory)

com.sap.portal.reserved
.layout.Cont1,
com.sap.portal.reserved
.layout.Cont2,

and so forth

Yes Each container defined in the JSP must
have a property in the portalapp.xml.

The names of these properties should end
in ContX, where X is a sequence number
starting at 1.

The value is a name for the container.
com.sap.portal.reserved
.layout.TagLibLayout

Yes /SERVICE/com.sap.portal
.pagebuilder/taglib/layout.tld

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 776

com.sap.portal.reserved
.layout.TagLibHtmlb

Yes /SERVICE/com.sap.portal.htmlb/
taglib/htmlb.tld

Only required if using the default iView tray
or adding HTMLB tags to the JSP page.

For each container profile property described above, you can include the following meta-
properties:

Property Mandatory Description
plainDescription Yes The display name of the container
orientation Yes Container orientation, which must be set to

vertical

designClass No A CSS class for the HTML table created
by the container (<table
class="...">)

3. Create a PAR file with your JSP pages and deployment descriptor. Place the JSP
pages in the PORTAL-INF/jsp directory.

4. Deploy the PAR file.

3.7.2.1.1 Layout Tag Library

Purpose
A layout is defined in a JSP page, in which you specify where on the page to display the
page’s iViews. These locations are called containers.

Each of a page’s iViews are assigned to one of the page’s containers, and are displayed in
that container during runtime. Within each container, each iView is displayed withion a tray, or
frame. You can use the portal’s default tray or create a custom tray for all the iViews in a
container.

The layout tag library helps you to create custom page layouts by providing tags that enable
you to:

● Specify where on the page to place containers.

● Define a custom iView tray. For a custom tray, tags enable you to create links for
invoking standard tray functions, such as refreshing the iView or displaying help for the
iView.

For a sample layout JSP page, see Sample Layout [Page 33].

It may be easiest to take an existing layout and modify it. The default layouts are
contained in the com.sap.portal.layouts.default application.

3.7.2.1.1.1 Types of Tags
This section describes the different groups of layout tags.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 777

Basic Layout Tags
The following tags enable you to specify the location of the containers within the JSP page.

● template [Page 33]: Specifies the start and end of the layout.

● container [Page 33]: Creates a layout container whose iViews use the standard tray.

The tag is nested in the template tag.

● containerWithTrayDesign [Page 33]: Creates a layout container whose iViews use the
tray defined in the body of the tag. In the body of this tag, use the tags described in
Custom Tray Tags below.

The tag is nested in the template tag.

Custom Tray Tags
All of the following tags, nested in the containerWithTrayDesign tag, are used to define
a custom iView tray for the iViews displayed in the container.

● IViewContent [Page 33]: Indicates where to display the iView’s content within the tray.

● IViewTitle [Page 33]: Displays the iView’s title.

○ IfIViewNameAvailable [Page 33]: Includes its body if the iView is set to display
its title in its tray.

○ IfNotIViewNameAvailable [Page 33]: Includes its body if the iView is set to not
display its title in its tray.

● IViewToggleOpen [Page 33]: Creates a link that shows the iView’s contents.

● IViewToggleClose [Page 33]: Creates a link that hides the iView’s contents.

● IfShowTray [Page 33]: Includes its body if the current iView is set to be displayed in a
tray.

● IfNotShowTray [Page 33]: Includes its body if the current iView is set to not be
displayed in a tray.

● IViewFamily [Page 33]: Displays the value of the iView’s Family attribute, which
indicates the type of content to be displayed in the iView.

● IViewTrayColor [Page 33]: Displays the color value for the iView’s Family attribute,
which is generally used for the iView tray background color.

Tray Function Tags
The tag library includes a set of tags to create links for executing standard tray functions. For
each type of link, there is one tag for creating the link anchor (for example, IViewAbout) and
another for displaying the default link text translated for the current user (for example,
IViewAboutTitle).

The following tags are available:

● IViewAbout, IViewAboutTitle: Creates a link that displays information about the iView.

● IViewExpand, IViewExpandTitle: Creates a link that opens the iView in a new
window.

● IViewHelp, IViewHelpTitle: Creates a link that displays help for the iView.

● IViewPersonalize, IViewPersonalizeTitle: Creates a link that displays the personalize
dialog for the iView.

● IViewRefresh, IViewRefreshTitle: Creates a link that refreshes the iView.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 778

● IViewRemove, IViewRemoveTitle: Creates a link that removes the iView from the
current page.

For each type of link, there are also tags that enable you to check if the administrator has set
the link to be displayed for the iView. There is one tag whose body is included if the link is set
to be displayed, and another whose body is included if the link is set to not be displayed.

The following tags are available:

● IfIViewAboutAvailable, IfIViewAboutNotAvailable

● IfIViewExpandAvailable, IfIViewExpandNotAvailable

● IfIViewHelpAvailable, IfIViewHelpNotAvailable

● IfIViewPersonalizeNotAvailable, IfIViewPersonalizeNotAvailable

● IfIViewRefreshAvailable, IfIViewRefreshNotAvailable

● IfIViewRemoveAvailable, IfIViewRemoveNotAvailable

For more information on these tags, see Tray Function Tags [Page 33].

3.7.2.1.1.2 How to Use the Tag Library
This section describes the steps for creating from scratch a layout JSP page.

It may be easiest to take an existing layout and modify it. The default layouts are
contained in the com.sap.portal.layouts.default application.

Procedure
...

1. Add a taglib directive for the layout tag library. JSP pages for the portal’s default layouts
use the tag name prefix lyt.

<%@ taglib
uri="prt:taglib:com.sap.portal.reserved.layout.TagLibLayout"
prefix="lyt" %>

If the JSP page includes HTMLB tags, add a reference to the HTMLB tag library.

2. Add a template tag, which indicates the start and end of the layout.
<lyt:template>

...

</lyt:template>

3. In the template tag, add HTML to divide the page into sections.

4. In the layout tag, add container or containerWithTrayDesign tags to indicate
where you want iViews to be placed.

For example, the following uses HTMLB tags to divide the page into two equal columns
and to add containers to each column.

<hbj:content id="myContext" >
 <hbj:page title="Portal Page">
 <hbj:gridLayout id="GridLayout1" width="100%"
cellSpacing="2">

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 779

 <hbj:gridLayoutCell rowIndex="1" columnIndex="1"
width="50%"
 verticalAlignment="top">
 <lyt:container id="column1" />
 </hbj:gridLayoutCell>
 <hbj:gridLayoutCell rowIndex="1" columnIndex="2"
width="50%"
 verticalAlignment="top">
 <lyt:container id="column2" />
 </hbj:gridLayoutCell>
 </hbj:gridLayout>
 </hbj:page>
</hbj:content>

The container tag creates a container that displays iViews with the default iView
tray. The containerWithTrayDesign tag enables you to create a custom tray for
the iViews within the container.

5. For the containerWithTrayDesign tag, add HTML inside the tag’s body to create a
tray. Within the tray, indicate with the iViewContent tag where to place the iView’s
contents, and use other layout tags to create links to invoke tray functions.

For an example of a layout JSP page that creates a simple iView tray, see Sample
Layout [Page 33].

3.7.2.1.1.3 Tag Reference
This section lists all the tags in the layout tag library.

3.7.2.1.1.3.1 container
Creates a container that displays the default HTMLB-based tray for all iViews in the container.

Attributes
Name Mandatory Description

id Yes The ID of the container.

In the portalapp.xml for the PAR that includes the layout, this ID
must be specified in a profile property called
com.sap.portal.reserved.layout.Cont<X>. For more
information, see How to Create a Custom Layout [Page 33].

Coordinating Tags
The tag must be nested in the following tag:

● template [Page 33]

Example
The following creates a layout with two columns of equal size. All iViews in the containers are
displayed with the default iView tray.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 780

<%@ taglib
uri="prt:taglib:com.sap.portal.reserved.layout.TagLibHtmlb"
 prefix="hbj" %>
<%@ taglib
uri="prt:taglib:com.sap.portal.reserved.layout.TagLibLayout"
 prefix="lyt" %>

<lyt:template>
 <hbj:content id="myContext" >
 <hbj:page title="Portal Page">
 <hbj:gridLayout id="GridLayout1" width="100%"
cellSpacing="2">
 <hbj:gridLayoutCell rowIndex="1" columnIndex="1"
 width="50%" verticalAlignment="top">
 <lyt:container id="column1" />
 </hbj:gridLayoutCell>
 <hbj:gridLayoutCell rowIndex="1" columnIndex="2"
 width="50%" verticalAlignment="top">
 <lyt:container id="column2" />
 </hbj:gridLayoutCell>
 </hbj:gridLayout>
 </hbj:page>
 </hbj:content>
</lyt:template>

See Also
● containerWithTrayDesign [Page 33]

3.7.2.1.1.3.2 containerWithTrayDesign
Creates a container and enables you to create a custom tray for all iViews displayed in the
container.

If you want the same tray for all iViews in all containers in the layout, place the
code that defines the tray (that is, the body of the
containerWithTrayDesign tag) in an include file, and then include the file in
all your containers.

Attributes
Name Mandatory Description

id Yes The ID of the container.

In the portalapp.xml for the PAR that includes the layout, this ID
must be specified in a profile property called
com.sap.portal.reserved.layout.Cont<X>. For more
information, see How to Create a Custom Layout [Page 33].

Coordinating Tags
The tag must be nested in the following tag:

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 781

● template [Page 33]

Example
The following creates a container with a custom tray that displays the title of the iView at the
top, and then a set of links for invoking built-in tray functions. The iView’s content is displayed
after the links.
<lyt:containerWithTrayDesign id="column1">
 <TABLE border=1 cellspacing=10 cellpadding=10 style='WIDTH=100%;
 font-size:8.5pt;font-family:Tahoma;border-collapse:collapse;
 border:none;'>
 <TR>
 <TD>
 <lyt:IViewTitle/>

 <lyt:IViewExpand>Open in New
Window</lyt:IViewExpand> |
 <lyt:IViewRefresh>Refresh</lyt:IViewRefresh> |
 <lyt:IViewToggleOpen>Open</lyt:IViewToggleOpen>

<lyt:IViewToggleClose>Close</lyt:IViewToggleClose> |
 <lyt:IViewAbout>About</lyt:IViewAbout> |
 <lyt:IViewHelp>Help</lyt:IViewHelp> |
 <lyt:IViewRemove>Remove</lyt:IViewRemove> |
 <lyt:IViewPersonalize>Personalize</lyt:IViewPersonalize>

 <lyt:IViewContent/>
 </TD>
 </TR>
 </TABLE>
</lyt:containerWithTrayDesign>

See Also
● container [Page 33]

3.7.2.1.1.3.3 IfIViewNameAvailable, IfNotIViewNameAvailable
Includes its body if the current iView’s Show Object Name in Tray property is set to true.
This property is set by a content administrator.

Coordinating Tags
The tag must be nested in the following tag:

● containerWithTrayDesign [Page 33]

See Also
● IViewTitle [Page 33]

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 782

3.7.2.1.1.3.4 IfShowTray, IfNotShowTray
Includes its body if the current iView’s Show Tray property is set to true. This property is set
by a content administrator.

If you use these tags, make sure to include both an IfShowTray and
IfNotShowTray tag. In addition, make sure to include the iViewContent tag
in both the IfShowTray and IfNotShowTray tag, or outside either tag;
otherwise, the iView’s content may not be displayed in all cases.

Coordinating Tags
The tag must be nested in the following tag:

● containerWithTrayDesign [Page 33]

Example
The following displays a custom iView tray if the current iView is set to be displayed in a tray.

Note that the IViewContent tag is outside both the IfShowTray and IfNotShowTray
tags.
<lyt:containerWithTrayDesign id="column1">
 <TABLE border=1 cellspacing=10 cellpadding=10
style='WIDTH=100%;HEIGHT:100%;font-size:8.5pt;font-
family:Tahoma;border-collapse:collapse;border:none; '>
 <TR>
 <TD>
 <lyt:IfShowTray>
 <lyt:IViewTitle/>

 <lyt:IViewExpand>Open in New
Window</lyt:IViewExpand>
 |
 <lyt:IViewRefresh>Refresh</lyt:IViewRefresh>
 |
 <lyt:IViewToggleOpen>Open</lyt:IViewToggleOpen>

<lyt:IViewToggleClose>Close</lyt:IViewToggleClose>
 |

<lyt:IViewAbout>About</lyt:IViewAbout> |
 <lyt:IViewHelp>Help</lyt:IViewHelp> |

<lyt:IViewRemove>Remove</lyt:IViewRemove> |

<lyt:IViewPersonalize>Personalize</lyt:IViewPersonalize>
 </lyt:IfShowTray>

 <lyt:IfNotShowTray>

 ...

 </lyt:IfNotShowTray>

 <lyt:IViewContent/>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 783

 </TD>
 </TR>
 </TABLE>
</lyt:containerWithTrayDesign>

3.7.2.1.1.3.5 IViewContent
Indicates where to display the iView’s content within a custom tray.

Coordinating Tags
The tag must be nested in the following tag:

● containerWithTrayDesign [Page 33]

Example
The following creates a container with a custom tray that displays the title of the iView at the
top, and then a set of links for invoking built-in tray functions. The iView’s content is displayed
after the links.
<lyt:containerWithTrayDesign id="column1">
 <TABLE border=1 cellspacing=10 cellpadding=10 style='WIDTH=100%;
 font-size:8.5pt;font-family:Tahoma;border-collapse:collapse;
 border:none;mso-border-alt: solid navy .75pt;mso-yfti-
tbllook:480;
 mso-padding-alt:0in 5.4pt 0in 5.4pt;
 mso-border-insidev:.75pt solid navy'>
 <TR>
 <TD>
 <lyt:IViewTitle/>

 <lyt:IViewExpand>Open in New
Window</lyt:IViewExpand> |
 <lyt:IViewRefresh>Refresh</lyt:IViewRefresh> |
 <lyt:IViewToggleOpen>Open</lyt:IViewToggleOpen>

<lyt:IViewToggleClose>Close</lyt:IViewToggleClose> |
 <lyt:IViewAbout>About</lyt:IViewAbout> |
 <lyt:IViewHelp>Help</lyt:IViewHelp> |
 <lyt:IViewRemove>Remove</lyt:IViewRemove> |
 <lyt:IViewPersonalize>Personalize</lyt:IViewPersonalize>

 <lyt:IViewContent/>
 </TD>
 </TR>
 </TABLE>
</lyt:containerWithTrayDesign>

3.7.2.1.1.3.6 IViewFamily
Displays the value of the iView’s Family attribute.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 784

The Family attribute is generally used to indicate the type of content contained in the iView,
such as Human Resources or Sales, and to assign a color to the iView tray via the
iViewTrayColor tag.

Coordinating Tags
The tag must be nested in the following tag:

● containerWithTrayDesign [Page 33]

Example
<lyt:template>
 <lyt:containerWithTrayDesign id="column1">
 <div style="HeaderBox">
 <table><tr><td bgcolor=<lyt:IViewTrayColor/>>
 <lyt:IViewToggleOpen><lyt:IViewFamily/> -
 <lyt:IViewTitle/></lyt:IViewToggleOpen>
 <lyt:IViewToggleClose><lyt:IViewFamily/>
 </lyt:IViewToggleClose> <lyt:IViewExpand>
 <img src="<%=expand%>"></lyt:IViewExpand>
 </td></tr></table>
 </div>
 <lyt:IViewContent/>
 </lyt:containerWithTrayDesign>
</lyt:template>

See Also
● iViewTrayColor [Page 33]

3.7.2.1.1.3.7 IViewTitle
Displays the value of the com.sap.portal.pcm.Title property of the iView.

Coordinating Tags
The tag must be nested in the following tag:

● containerWithTrayDesign [Page 33]

Example
The following creates a container with a custom tray that displays the title of the iView at the
top, and then a set of links for invoking built-in tray functions.
<lyt:containerWithTrayDesign id="column1">
 <TABLE border=1 cellspacing=10 cellpadding=10 style='WIDTH=100%;
 font-size:8.5pt;font-family:Tahoma;border-collapse:collapse;
 border:none;mso-border-alt: solid navy .75pt;mso-yfti-
tbllook:480;
 mso-padding-alt:0in 5.4pt 0in 5.4pt;
 mso-border-insidev:.75pt solid navy'>
 <TR>
 <TD>
 <lyt:IViewTitle/>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 785

 <lyt:IViewExpand>Open in New
Window</lyt:IViewExpand> |
 <lyt:IViewRefresh>Refresh</lyt:IViewRefresh> |
 <lyt:IViewToggleOpen>Open</lyt:IViewToggleOpen>

<lyt:IViewToggleClose>Close</lyt:IViewToggleClose> |
 <lyt:IViewAbout>About</lyt:IViewAbout> |
 <lyt:IViewHelp>Help</lyt:IViewHelp> |
 <lyt:IViewRemove>Remove</lyt:IViewRemove> |
 <lyt:IViewPersonalize>Personalize</lyt:IViewPersonalize>

 <lyt:IViewContent/>
 </TD>
 </TR>
 </TABLE>
</lyt:containerWithTrayDesign>

See Also
● IfIViewNameAvailable, IfNotIViewNameAvailable [Page 33]

3.7.2.1.1.3.8 IViewToggleOpen, IViewToggleClose
Creates a link to hide or display the iView’s contents.

The link for hiding the contents is only displayed if the contents are currently displayed. The
link for displaying the contents is only displayed if the contents are currently hidden.

Coordinating Tags
The tag must be nested in the following tag:

● containerWithTrayDesign [Page 33]

Example
The following creates a container with a custom tray that displays the title of the iView at the
top, and then a set of links for invoking built-in tray functions.

Note that only the Open or Close link will be created, and only one separator is written for
both tags.
<lyt:containerWithTrayDesign id="column1">
 <TABLE border=1 cellspacing=10 cellpadding=10 style='WIDTH=100%;
 font-size:8.5pt;font-family:Tahoma;border-collapse:collapse;
 border:none;mso-border-alt: solid navy .75pt;mso-yfti-
tbllook:480;
 mso-padding-alt:0in 5.4pt 0in 5.4pt;
 mso-border-insidev:.75pt solid navy'>
 <TR>
 <TD>
 <lyt:IViewTitle/>

 <lyt:IViewExpand>Open in New
Window</lyt:IViewExpand> |
 <lyt:IViewRefresh>Refresh</lyt:IViewRefresh> |
 <lyt:IViewToggleOpen>Open</lyt:IViewToggleOpen>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 786

<lyt:IViewToggleClose>Close</lyt:IViewToggleClose> |
 <lyt:IViewAbout>About</lyt:IViewAbout> |
 <lyt:IViewHelp>Help</lyt:IViewHelp> |
 <lyt:IViewRemove>Remove</lyt:IViewRemove> |
 <lyt:IViewPersonalize>Personalize</lyt:IViewPersonalize>

 <lyt:IViewContent/>
 </TD>
 </TR>
 </TABLE>
</lyt:containerWithTrayDesign>

3.7.2.1.1.3.9 IViewTrayColor
Displays the color value for the iView’s Family attribute.

The color values are generally defined in the portal core iView on which all iViews are based
(Portal Content → Content Supplied by SAP → Core Objects → Core iView, or by object ID
portal_content → com.sap.pct → default_objects → com.sap.portal.default_iView).

This core iView defines the attribute Family (com.sap.portal.iView.family).

For the Family attribute, the following meta-attributes are defined:

● validvalues: A list of values for this attribute (Group_0, Group_1, and so forth)

● validvalueTitle<n>: The display title for each valid value. One validvalueTitle meta-
attribute is defined for each valid value in the validvalues meta-attribute
(validvalueTitle0, validvalueTitle1, and so forth)

● Color<n>: The color for each valid value. One Color meta-attribute is defined for each
valid value in the validvalues meta-attribute (Color0, Color1, and so forth)

● To set the display name of each iView family name, set the validvalueTitle meta-
attribute for each family name.

● To set the color for each iView family name, set the Color meta-attribute for each family
name.

Setting Color for iView Family
● For example, to create a group for human resources iViews, and to display these

iViews with a red iView tray, set the following meta-attributes for the Family attribute of
the core iView:

● validvalues: Designate one of the valid values, such as Group_4, for human resources
iViews.

By default, values Group_0 to Group_9 are defined. If you need, add additional
values, such as Group_10, Group_11 and so forth.

● validvalueTitle4: Set to Human Resources.

● Color4: Set to #FF0000.

● Use the PCD Inspector tool to set the values. For more information on the PCD
Inspector, see PCD Inspector [External].

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 787

Coordinating Tags
The tag must be nested in the following tag:

● containerWithTrayDesign [Page 33]

Example
<lyt:template>
 <lyt:containerWithTrayDesign id="column1">
 <div style="HeaderBox">
 <table><tr><td bgcolor="<lyt:IViewTrayColor/>">
 <lyt:IViewToggleOpen><lyt:IViewFamily/> -
 <lyt:IViewTitle/></lyt:IViewToggleOpen>
 <lyt:IViewToggleClose><lyt:IViewFamily/>
 </lyt:IViewToggleClose> <lyt:IViewExpand>
 <img src="<%=expand%>"></lyt:IViewExpand>
 </td></tr></table>
 </div>
 <lyt:IViewContent/>
 </lyt:containerWithTrayDesign>
</lyt:template>

See Also
● IViewFamily [Page 33]

3.7.2.1.1.3.10 template
Indicates the start and end of the layout.

Variables
● epPageVariables: Enables you to get information about the current client, and

whether the layout is being used in design time or runtime.

The variable has the following two methods:

○ epPageVariables.getRunMode(): Returns either RunMode.RUN_TIME or
RunMode.DESIGN_TIME

○ epPageVariables.getUserAgent(): Returns an object of type
IUserAgent, which enables you to find out about the client, such as the
browser type and version.

For more information, see User Agent Service [Page 33].

The scope of epPageVariables is from the beginning of the template tag to the
end of the JSP page.

Example
The following is a layout with one container that executes unspecified code if the layout is
displayed in runtime and other code if the client is Internet Explorer.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 788

<%@ taglib
uri="prt:taglib:com.sap.portal.reserved.layout.TagLibHtmlb"
prefix="hbj" %>
<%@ taglib
uri="prt:taglib:com.sap.portal.reserved.layout.TagLibLayout"
prefix="lyt" %>

<%@ page import="com.sapportals.portal.useragent.IUserAgent" %>
<%@ page import="com.sapportals.portal.useragent.IUserAgentConstants"
%>
<%@ page import="com.sapportals.portal.pb.layout.taglib.variabledef
.RunMode" %>

<%
RunMode pageRunMode;
IUserAgent pageUserAgent;
String pageUserAgentType;
%>
<lyt:template>
<%
 //Resolve page RunMode
 pageRunMode = epPageVariables.getRunMode();

 //Resolve page UserAgent
 pageUserAgent = epPageVariables.getUserAgent();
 pageUserAgentType = pageUserAgent.getType();
%>
 <hbj:content id= "myContext">
 <hbj:page title="Portal Page">
<%
 if(pageRunMode == RunMode.RUN_TIME) {

 ...

 }

if(pageUserAgentType.equals(IUserAgentConstants.UA_TYPE_MSIE)) {

 ...

 }
%>
 <lyt:container id="the_container_id" />
 </hbj:page>
 </hbj:content>
</lyt:template>< /p>

3.7.2.1.1.3.11 Tray Function Tags
The layout tag library provides tags for creating links for invoking tray functions, such as
refreshing or personalizing the iView.

For each type of link, the following types of tags are available (an example is shown in
parentheses):

• Anchor Tag (IViewAbout): Creates a link to invoke a tray function. The tag’s body
is the text or image for the link.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 789

• Anchor Text Tag (IViewAboutTitle): Displays default and localized text for the
link to invoke a tray function. This tag is generally included in the body of the anchor
tag.

• Conditional, Administrator Setting is On (IfIViewAboutAvailable): The body
of the tag is included if the iView’s properties are set to display the specific link. For
each iView, the administrator can choose whether to display links to specific tray
functions.

• Conditional, Administrator Setting is Off (IfIViewAboutNotAvailable): The
body of the tag is included if the iView’s properties are set not to display the specific
link. For each iView, the administrator can choose whether to display links to specific
tray functions.

Tray Functions
Tags are available for the following tray functions (available tags are listed after each
function):

● About: Displays information about the iView.

○ IViewAbout

○ IViewAboutTitle

○ IfIViewAboutAvailable

○ IfIViewAboutNotAvailable

● Expand: Opens the iView in a new window.

○ IViewExpand

○ IViewExpandTitle

○ IfIViewExpandAvailable

○ IfIViewExpandNotAvailable

● Help: Displays help for the iView.

○ IViewHelp

○ IViewHelpTitle

○ IfIViewHelpAvailable

○ IfIViewHelpNotAvailable

● Personalize: Displays the personalize dialog for the iView.

○ IViewPersonalize

○ IViewPersonalizeTitle

○ IfIViewPersonalizeNotAvailable

○ IfIViewPersonalizeNotAvailable

● Refresh: Refreshes the iView.

○ IViewRefresh

○ IViewRefreshTitle

○ IfIViewRefreshAvailable

○ IfIViewRefreshNotAvailable

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 790

● Remove: Removes the iView from the current page.

○ IViewRemove

○ IViewRemoveTitle

○ IfIViewRemoveAvailable

○ IfIViewRemoveAvailable

Coordinating Tags
These tags must be nested in the following tag:

● containerWithTrayDesign [Page 33]

Example
The following is a section of a layout JSP page that displays a link for each tray function if the
administrator has set that link to be displayed for the current iView. The code must be nested
in a containerWithTrayDesign tag.
<lyt:IfIViewExpandAvailable>
 <lyt:IViewExpand><lyt:IviewExpandTitle/>
 </lyt:IViewExpand> |
</lyt:IfIViewExpandAvailable>

<lyt:IfIViewRefreshAvailable>
 <lyt:IViewRefresh><lyt:IViewRefreshTitle/>
 </lyt:IViewRefresh> |
</lyt:IfIViewRefreshAvailable>

<lyt:IfIViewAboutAvailable>
 <lyt:IViewAbout><lyt:IViewAboutTitle/>
 </lyt:IViewAbout> |
</lyt:IfIViewAboutAvailable>

<lyt:IfIViewHelpAvailable>
 <lyt:IViewHelp><lyt:IViewHelpTitle/>
 </lyt:IViewHelp> |
</lyt:IfIViewHelpAvailable>

<lyt:IfIViewRemoveAvailable>
 <lyt:IViewRemove><lyt:IViewRemoveTitle/>
 </lyt:IViewRemove> |
</lyt:IfIViewRemoveAvailable>

<lyt:IfIViewPersonalizeAvailable>
 <lyt:IViewPersonalize><lyt:IViewPersonalizeTitle/>
 </lyt:IViewPersonalize>
</lyt:IfIViewPersonalizeAvailable>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 791

3.7.2.2 Sample Layout
The following is a sample JSP page and portalapp.xml file for a PAR file that defines a
custom layout.

The layout includes one container whose iViews are displayed with a custom tray. The tray
shows the title of the iView at the top, and then a link to either hide or display the contents.

A set of links is displayed just below the title for invoking standard tray functions. Each button
is only displayed if the administrator has set the link to be displayed in the iView’s properties.
The iView’s content is displayed just below.

JSP Page
<%@ taglib
uri="prt:taglib:com.sap.portal.reserved.layout.TagLibHtmlb"
prefix="hbj" %>
<%@ taglib
uri="prt:taglib:com.sap.portal.reserved.layout.TagLibLayout"
prefix="lyt" %>
<lyt:template>
 <hbj:content id="myContext" >
 <hbj:page title="Portal Page">
 <lyt:containerWithTrayDesign id="the_container_id">

 <TABLE border=1 cellspacing=10 cellpadding=10
style='WIDTH=100%;font-size:8.5pt;font-family:Tahoma;border-
collapse:collapse;border:none;'>
 <TR>
 <TD>
 <lyt:IViewTitle/> |

 <lyt:IViewToggleOpen>>>></lyt:IViewToggleOpen>

 <lyt:IViewToggleClose><<<</lyt:IViewToggleClose>

 <lyt:IfIViewExpandAvailable>
 <lyt:IViewExpand><lyt:IviewExpandTitle/>
 </lyt:IViewExpand>

 |
 </lyt:IfIViewExpandAvailable>
 <lyt:IfIViewRefreshAvailable>

 <lyt:IViewRefresh><lyt:IViewRefreshTitle/>
 </lyt:IViewRefresh>

 |
 </lyt:IfIViewRefreshAvailable>
 <lyt:IfIViewAboutAvailable>
 <lyt:IViewAbout><lyt:IViewAboutTitle/>
 </lyt:IViewAbout>

 |
 </lyt:IfIViewAboutAvailable>
 <lyt:IfIViewHelpAvailable>
 <lyt:IViewHelp><lyt:IViewHelpTitle/>
 </lyt:IViewHelp>
 |
 </lyt:IfIViewHelpAvailable>
 <lyt:IfIViewRemoveAvailable>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 792

 <lyt:IViewRemove><lyt:IViewRemoveTitle/>
 </lyt:IViewRemove>

 |
 </lyt:IfIViewRemoveAvailable>
 <lyt:IfIViewPersonalizeAvailable>

 <lyt:IViewPersonalize><lyt:IViewPersonalizeTitle/>

 </lyt:IViewPersonalize>

 </lyt:IfIViewPersonalizeAvailable>

 <lyt:IViewContent/>
 </TD>
 </TR>
 </TABLE>

 </lyt:containerWithTrayDesign>
 </hbj:page>
 </hbj:content>
</lyt:template>

portalapp.xml
The text in bold is customizable. You can also add references to other portal services, if
necessary.

The value for the property called com.sap.portal.reserved.layout.Cont1 is the
same as the value for the id attribute for the container or containerWithTrayDesign
tag for that column in the JSP page.
<application>
 <application-config>
 <property name="SharingReference" value="com.sap.portal.htmlb,
 com.sap.portal.pagebuilder"/>
 </application-config>
 <components>
 <component name="myFullWidthLayout">
 <component-config>
 <property name="ClassName"

value="com.sapportals.portal.pb.layout.PageLayout"/>
 <property name="ResourceBundleName"
 value="pagebuilder_nls"/>
 </component-config>
 <component-profile>
 <property name="ComponentType"
 value="com.sapportals.portal.layout" />
 <property name="com.sap.portal.pcm.Title"
 value="My 1 Column Layout (Full Width)"/>
 <property name="com.sap.portal.pcm.Description"
 value="Layout displaying one full-width column"/>
 <property

name="com.sap.portal.reserved.layout.TagLibLayout"

value="/SERVICE/com.sap.portal.pagebuilder/taglib/layout.tld"/>

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 793

 <property
name="com.sap.portal.reserved.layout.TagLibHtmlb"
 value="/SERVICE/com.sap.portal.htmlb/taglib/htmlb.tld "/>
 <property

name="com.sap.portal.reserved.layout.TemplateFile"
 value="myFullWidth.jsp"/>
 <property name="com.sap.portal.reserved.layout.Cont1"
 value="the_container_id">
 <property name="title" value="my container"/>
 <property name="orientation" value="vertical"/>
 </property>
 </component-profile>
 </component>
 </components>
 <services/>
</application>

The HTMLB sharing reference is only needed if you use the default iView tray or you add
HTMLB code to the JSP page.

3.7.3 Object-Based Navigation

Purpose
To provide the knowledge necessary for portal content developers to create iViews using the
capabilities of object-based navigation.

Object-based navigation (OBN) offers portal users an additional method of navigation, which
is role-dependent and based on business objects from productive back-end systems.

OBN is based on a structure of business objects having one or more operations attached to
them, where each operation can have one or more iViews to implement it. Each operation has
a priority, and selecting an OBN link in an iView does one of the following:

● executes the default operation, the one with the highest priority (if the operation has an
implementing iView for the role of the user)

● presents a context menu displaying all of the operations attached to the main business
object of the source iView (where those operations have implementing iViews for the
role of the user)

The primary capability offered by OBN is that the iView returning data to the user, during
navigation, is accessed dynamically during runtime, based on the user’s role. In other words,
two different users may perform the same navigation operation, clicking the same link from
the same iView, and the data returned to each of them will be different because of role
dependency.

Familiarity with the standard documentation of object-based navigation is
recommended. See help.sap.com/nw04 → <language> → SAP Library → SAP
NetWeaver → People Integration → Portal → Admnistration Guide → Content
Administration → Navigation → Object-Based Navigation.

Use Case
This use case deals with the implementation of the default operation.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 794

iView 1
(Source)

iView 2
P=10

iView 3
P=20

iView 4
P=30

Sales Manager Role
Sales Rep. Role

Accounts

Account Details (P=30)

List of Opportunities (P=20)

Two users in a company with separate roles, a sales representative and a sales manager,
each choose a link in an iView representing a specific account, based on the same business
object. This business object has several operations attached to it, one of which is Account
Details, another being List of Opportunities. The sales representative only has permission to
see an iView that implements Account Details. The sales manager is authorized to see the
iViews implementing both operations. However, for the Sales Manager role, the operation List
of Opportunities has a higher priority.

3.7.3.1 Glossary
Glossary of terms related to object-based navigation

Business Object A Portal Platform entity representing a business objects of a
back end system

Source iView The iView from which an OBN operation is activated

Implementing iView / Page Any iView or page attached to a business object operation

Priority A value specifying the default operation to be implemented for a
specific business object (The higher value has the higher
priority.)

Business Object Operation
(operation)

A portal entity used by an administrator to define a connection
between a business object and implementing iViews

Role The largest semantic unit within the portal content objects, a
role is a folder hierarchy comprising other content objects
(worksets, pages, iViews). Roles are assigned to users,
meaning that users can only access the content of their specific
role or roles

Relation A defined logical link between two business objects, usually
manifested by identical properties

HRNP Link A UI reference that, when activated (for example, by a mouse
click), implements the Hyperrelational Navigation Protocol
(HRNP), which enables Drag&Relate navigation

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 795

3.7.3.2 Defining the End-User Experience
There are two ways for the end user to activate OBN during runtime, an iView link and a
context menu.

iView Link
A link, representing an OBN call, is developed on top of a business object operation and
appears in the source iView. Clicking the link opens the default implementing iView, in other
words, the iView implementing the business object operation with the highest priority in the
user role.

To display the default implementing iView, the object-based navigation service searches as
follows:

● First for the operation with the highest priority, if more than one operation is associated
with the main object of the source iView.

● If the high-priority operation has associated with it more than one implementing iView,
the OBN service selects the iView for which the current operation has the highest
priority.

Information for the Developer
Create an OBN call on the client side using the API doObjBasedNavigate, which is
available from Enterprise Portal Client Manager (EPCM), or encapsulate this call in Java in
the iView code. For more information, see The OBN Call [Page 33].

Context Menu
It is also possible to access a context menu on top of a business object operation.

In this case, there are several operations associated with the main object of the source iView
and choosing the OBN arrow icon in the iView displays a subset of the operations. Upon
choosing the desired operation, the relevant implementing iView is displayed.

Logic behind the Context Menu
● An operation can appear in a context menu only once; therefore, in the event that

several iViews in the user roles implement the same operation, the operation instance
appearing in the context menu is the one whose iView-based priority is the highest (as
assigned in the OBN Editor).

Only operations whose implementing iViews are contained in one of the user roles are
displayed in the context menu.

● Using the Object-Based Navigation Editor, an administrator may customize the name of
a specific operation. In such a case, the customization provided by the implementing
iView appears in the context menu, overwriting the original name of the operation.

Although the content developer may use the supplied APIs to implement the context menu as
desired, the logic described here cannot be changed.

Information for the Developer
Two levels of APIs are available for the content developer to create context menus for object-
based navigation iViews.

● A high-level API is available for automatically creating context menus with the SAP
standard UI look and feel.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 796

● Lower level APIs may be used as well to create context menus for which the UI is not
supplied. Essentially, the content developer can create a context menu for any UI
element and associate an OBN call with each operation to be include in the context
menu list. The UI can be created as required by specific organizational standards.

An example of the use of the lower level APIs would be in BW reports, where the
implementation of the context menu suits the appearance of the native interface.

3.7.3.3 Business Object Operation

Purpose
To explain the process of creating and configuring the business object operation.

The core element of OBN is the business object operation. The operation defines the
connection between the business object and the iView that implements it. Multiple operations
may be defined for the source business object and multiple implementing iViews may be
attached to each operation. The operation may also be customized for any specific iView.

Prerequisites
● At least one portal system has been defined to represent back-end systems.

● Business objects have been imported to the Portal Content Directory (PCD). For
detailed information, see the documentation for object-based navigation at
help.sap.com → <language> → SAP Library → SAP NetWeaver → People Integration
→ Portal → Administration Guide → Content Administration → Navigation → Object-
Based Navigation.

Workflow for Defining an Operation
Operation Definition for the Content Administrator

Step 1

Create operation

OBN starts with the creation of an operation for a business object
using the Business Object Editor, available from the context menu
of any business object in the Content Catalog tree.

● Once defined, the operation ID cannot

be changed.

● The priority value must be a non-
negative integer.

Once the operation has been created and the business object
saved, the business object can be considered as an OBN source
object. iViews displaying data of such business objects may contain
OBN calls.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 797

Step 2

Implement operation

In order to complete the OBN definition we must implement the
operation by providing an iView to be launched when an OBN call is
activated. Operations and iView are connected to each in two ways:

● When the Business Object Editor is open, attach iViews to
operations, using the context menu of any iView in the Portal
Content Catalog.

● Or, for the modification of operations for specific iViews:
when the Object-Based Navigation Editor for the iView is
open, attach operations to the iView, using the context menu
of any operation available in the Business Object folder.

The administrator is in responsible for creating operations and
attaching implementing iViews.

Step 3

Modify an operation from
an iView (optional)

If it is necessary to override the existing priority or change the
display name of an operation for a specific role, these modifications
may be made in the Object-Based Navigation Editor for the specific
iView.

Step 4

Add OBN calls to OBN
source iViews

The next step in the OBN definition is the embedding of OBN calls
into iViews that are intended to activate operations. These calls
activate object-based navigation at runtime.

iView developers are responsible for creating these calls in their
iViews. For more information, see The OBN Call [Page 33].

3.7.3.3.1 Implementing iViews
Implementation of operations is done by the attachment of iViews to operations. Each iView
attached to an operation is the implementing iView of the operation.

Role of implementing iViews in OBN
The ability to have specific navigation customizations for different users according to their
roles is a key feature of OBN. All portal users are assigned their roles according to their
business interests and permissions. Since permissions to iViews are granted only those
contained within the role of the user, OBN-specific customizations are achieved using role
maintenance for the implementing iViews, and modifying the priorities of the business object
operations to which they are attached.

Priorities of implementing iViews in OBN
Access to portal content is role-based, and a user may have more than one role. Additionally,
an iView may have multiple operations associated with it, and an operation may be
implemented by multiple iViews. In this situation, a user launching an iView may have quite a
large pool of implementing iViews, presenting the portal runtime with conflicts as to which
iView to implement.

The ability to edit the priority of these operations is provided within the context of
implementing iViews. The operation priority defined within from implementing iView takes
precedence over the priority assigned to it from the Business Object Editor.

Example
The following example is valid for the iView link scenario in which the default operation is
activated.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 798

In the illustration, there are two users with two corresponding roles: Sales Representative and
Sales Manager. The Sales Representative role has permissions for iViews 1 and 2, but not to
3 or 4. The Sales Manager Role has permissions for all iViews.

Note the following:

● iView 1 is the source iView containing the OBN call.

● iView 1 is based on the business object Accounts.

● The operations attached to the business object Accounts are Account Details and List
of Opportunities; each operation displays the priority it was defined for it in the
Business Object Editor.

● The P value represents the operation priority.

● iViews 2, 3, and 4 are implementing iViews, each displaying the modified priority value
for the associated operations, in accordance with the role of the user.

Error! Objects cannot be created from editing field codes.

When the Sales Representative role chooses the OBN link in iView 1, only iView 2,
implementing Account Details, is displayed, even though the priority of the Account Details
operation was modified within the context of the iView, to be lower than the original priority
assigned to the operation. This is the only available iView to this role for this operation.

When the Sales Manager Role chooses the OBN link in iView 1, iView 4, implementing List of
Opportunities, is displayed. Even though this operation has a lower priority assigned to it
originally, the priorities of the operations have been modified within the context of the iViews,
so that for this role iView 4 takes precedence over iView 3.

It needs to kept in mind that the search pattern of the object-based navigation
service first to look for the operation with the highest priority, and then to look for
the implementing iView (if the high-priority operation has associated with it more
than one), for which the current operation has the highest priority.

3.7.3.3.2 The OBN Call
OBN calls retrieve only the implementing iView of the default operation; they do not
implement the context menu UI. OBN calls may be embedded in the source code of the
iViews in order to activate object-based navigation functionality. These calls can either be
written to the client in JavaScript or wrapped within the code of the iView.

JavaScript OBN Call
The Enterprise Portal Client Manager (EPCM) offers an API named doObjBasedNavigate
that serves as an OBN call and is embedded in iViews from which OBN to be activated.

To activate the API from your JavaScript write the following:
EPCM.DoObjBasedNavigate (systemAlias, businessObjName, objValue,
Operation)

Parameters of doObjBasedNavigate

Parameter Optional Description

systemAlias False System alias of business object

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 799

businessObjName False Name of the business object for which the operation has
been defined.

Note that businessObjName and systemAlias
together define the Distributed Query Engine (DQE)
name of the business object.

objValue True Data to pass into target iView if the iView resulting from
navigation should represent relative data.�The
objValue parameter can be any string that is added to
the target iView URL after “?”. Thus the writer of the
target iView can access the objValue from the iView
request.

Operation True Specifies the operation to produce in case several
operations are available for the business object.

Java OBN Call
Java content developers may use createObjectNavigateClientCall API exposed by
com.sapportals.portal.navigation.NavigationService. The purpose of the
createObjectNavigateClientCall API is to encapsulate the
EPCM.DoObjBasedNavigate(…) call for Java developers so that they need not be familiar
with details of its syntax (which may also be subject to change). The parameters list for
createObjectNavigateClientCall is identical to that of DoObjBasedNavigate of
EPCM.

Script for Modification of objValue Parameter
The portal content administrator can modify the string value passed to the objValue
parameter. This is done using the OBNObjValueManipulation(objValue) JavaScript
function, which is executed before the implementing iView is called. The function body is
exposed in the Object-Based Navigation Editor of the implementing iView.

Adapting Externally Developed Content
External components, which include OBN calls, were developed in a different portal against
system aliases different from those used by the destination portal. These may be integrated
by defining for the relevant systems additional aliases identical to those of the imported
content.

Note that system alias is used to identify the system from which the business objects come.

3.7.3.4 Getting Started: OBN Examples

Use
This section describes the steps required to run the object-based navigation code samples
provided with the PDK.

There is the com.sap.portal.unification.OBNExamples PAR file available in the
Portal Platform. This PAR file contains examples that illustrate different uses of OBN and the
steps for implementing them.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 800

Prerequisites
A running portal.

Procedure
In order to make the examples work, perform the following steps that follow.
...

1. Deploy the com.sap.portal.unification.OBNExamples PAR file. The PAR file
comes as a part of OBN PDK.

2. Create a system and its alias.

a. Create a JDBC Connector System on top of an SQL Server pubs database.

b. Define an alias for the system.

For our purposes, the alias name must be OBNTestSysAlias.

c. Make sure there is user mapping for this alias.

3. In the portal, open the Business Object Importer and import the authors, titles, and
titleauthor business objects form the OBNTestSysAlias.

4. Create an OBNExamples folder in the portal content tree.

You can use any name for the folder instead of OBNExamples mentioned above.

This folder will hold iViews imported from the
com.sap.portal.unification.OBNExamples PAR file.

5. Import all the iViews from the PAR file into the folder.

The iViews are:

○ WelcomeOp_iView

○ ParamPassOp_iView

○ ParamScriptOp_iView

○ DfltOpAuthors_iView

○ RelationOpAuthors_iView

○ ParamDisplay_iView

○ Titles_iView

6. Assign your user to eu_role (relevant for Sample 1 only).

7. Create the roles OBNExamSrcRole and OBNExamplRole, and assign the roles to
your user.

8. Create an OBNSrcIViews workset for OBNExamSrcRole.

This workset will contain iViews from which to activate OBN for all the examples
available in the com.sap.portal.unification.OBNExamples PAR file.

9. Add all the iViews listed below from the OBNExamIViews folder to the workset. Add
them as Delta Links:

○ WelcomeOp_IView

○ ParamPassOp_iView

○ ParamScriptOp_iView

○ DfltOpAuthors_iView

○ RelationOpAuthors_iView

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 801

10. Create the workset OBNImplViews workset for OBNExamplRole.

Place all operation-implementing iViews supplied by the
com.sap.portal.unification.OBNExamples PAR file in this workset.

○ ParamDisplay_iView

○ Titles_iView

Set the Entry Point property of both the worksets to ‘Yes’ in order to permit
seeing it at runtime.

11. Create operations and attach the implementing iViews to them as determined by the
examples included in the PAR.

Create an operation under the authors business object of OBNTestSysAlias for each
example available in the OBNExamples PAR file.

It is important to place the operation in the right place in the portal Content Catalog,
and to keep their names as they appear the examples included in the PAR.

3.7.3.4.1 Example 1: Basic OBN

Use
Show object-based navigation based on the
com.sap.portal.unification.OBNExamples PAR.

Sample Details:

Description Activates the Welcome KM iView of the portal upon button-click

Operation name WelcomeOp - defined for authors business object

Source iView WelcomeOpIView

Target iView com.sap.portal.welcome_iView

Procedure
...

1. Using the Business Object Editor, create an operation with the name WelcomeOp for
the authors business object.

2. Attach the created operation to com.sap.portal.km_welcome_iView.

Operations and iViews may be attached to one another from either the Business Object
Editor or the Object-Based Navigation Editor of a specific iView. In this case, however,
since this iView does not appear in the Content Catalog, but is only accessible from the
role of the user, the procedure is performed as follows, using the Object-Based
Navigation Editor of the iView:

a. In the Content Catalog tree, go to Portal Content → Portal Users → Standard
Portal Users → Standard Users Role.

b. From the context menu, choose Edit Object.

c. In the editor, expand the Welcome workset.

d. Select the Welcome page and choose the Edit button at the bottom of the editor.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 802

e. Select the Knowledge Management & Collaboration iView and click the Edit
button for it.

f. In the editor drop-down list choose Object-Based Navigation to open the OBN
Editor for this iView.

g. In the Content Catalog, navigate to the desired operation as follows: Business
Objects → OBNTestSysAlias → dbo → authors → WelcomeOp operation.

h. From the context menu of the operation, choose Add Operation to iView.

i. Save the iView changes.

To activate these steps at runtime:
...

1. Go to the OBNSrcIViews workset and choose the WelcomeOpIView.

2. Choose the Activate OBN button.

The Knowledge Management & Collaboration iView is displayed as a result of the
WelcomeOp operation.

3.7.3.4.2 Example 2: OBN with Parameter

Use
Show object-based navigation, including passing a parameter value to the implementing
iView, based on the com.sap.portal.unification.OBNExamples PAR.

Sample Details:

Description Opens implementing iView upon button-click in source iView

OBN call of passes value entered by user to the implementing iView.
The implementing iView displays the parameter.

Operation name ParamPassOp

Source iView ParamPassOp_iView

Target iView ParamDisplay_iView

Procedure
...

1. Create an operation with the name ParamPassOp for the authors business object.

2. Attach the created operation to ParamDisplay_iView.

Operations and iViews may be attached to one another from either the Business Object
Editor or the Object-Based Navigation Editor of a specific iView. In this case, however,
since this iView does not appear in the Content Catalog, but is only accessible from the
role of the user, the procedure is performed as follows, using the Object-Based
Navigation Editor of the iView:

a. In the Content Catalog tree, go to Portal Content → OBNExamIViews →
OBNExamRoles → OBNExamImplRole.

b. From the context menu, choose Edit Object.

c. In the editor, expand the OBNImplIViews workset.

d. Select the ParamDisplay_iView and choose the Edit button at the bottom of the
editor.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 803

e. In the editor drop-down list choose Object-Based Navigation to open the OBN
Editor for this iView.

f. In the Content Catalog, navigate to the desired operation as follows: Business
Objects → OBNTestSysAlias → dbo → authors → ParamPassOp operation.

g. From the context menu of the operation, choose Add Operation to iView.

h. Save the iView changes.

To activate these steps at runtime:
...

1. Go to the OBNSrcIViews workset.

2. Choose ParamPassOp_iView.

3. Enter some string in the Parameter to pass item.

4. Click the Activate OBN button.

ParamDisplay_iView represents the typed-in “ParamPassOp_iView” string.

3.7.3.4.3 Example 3: OBN with Parameter Modification

Use
Show object-based navigation, including passing a parameter value to the implementing
iView, based on the com.sap.portal.unification.OBNExamples PAR.

Sample Details:

Description Opens implementing iView on button-click in source iView.

OBN call passes value entered by user to the implementing iView and
the parameter is changed in OBNObjValueManipulation() script
method.

The implementing iView displays the updated parameter.

Operation name ParamScriptOp

Source iView ParamScriptOp_iView

Target iView ParamDisplay_iView

Procedure
...

1. Create an operation with the name ParamScriptOp for the authors business object.

2. Attach the created operation to ParamDisplay_iView.

Operations and iViews may be attached to one another from either the Business Object
Editor or the Object-Based Navigation Editor of a specific iView. In this case, however,
since this iView does not appear in the Content Catalog, but is only accessible from the
role of the user, the procedure is performed as follows, using the Object-Based
Navigation Editor of the iView:

a. In the Content Catalog tree, go to Portal Content → OBNExamIViews →
OBNExamRoles → OBNExamImplRole.

b. From the context menu, choose Edit Object.

c. In the editor, expand the OBNImplIViews workset.

Core Development Tasks March 2006

Modifying the Desktop and Navigation

Running an Enterprise Portal 804

d. Select the ParamDisplay_iView and choose the Edit button at the bottom of the
editor.

e. In the editor drop-down list choose Object-Based Navigation to open the OBN
Editor for this iView.

f. In the Content Catalog, navigate to the desired operation as follows: Business
Objects → OBNTestSysAlias → dbo → authors → ParamPassOp operation.

g. From the context menu of the operation, choose Add Operation to iView.

h. Save the iView changes.

i. Update the OBNObjValueManipulation() method of the ParamScriptOp.

j. Select ParamScriptOp in the Operations table of the iView.

k. Change the existing script to the following JavaScript, which adds asterisks to
the parameter passed into the function.

var paramStr;

var array = objValue.split("=");

if (array .length != 2)

{

 //Error: Unknown parameter format => leave the
parameter without any change

 paramStr=objValue;

}

else

{

 var paramName = array[0];

 var paramVal = "***_";

 paramVal += array[1];

 paramVal +="_***";

 paramStr = paramName + "=" + paramVal;

}

return paramStr;

l. Choose Set.

m. Save the iView changes.

The JavaScript is set to the OBNObjValueManipulation() function of the
ParamScriptOp operation.

To activate these steps at runtime:
...

1. Go to the OBNSrcIViews workset.

2. Choose ParamScriptOp_iView.

3. Enter some string in the Parameter to pass item.

4. Click the Activate OBN button.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 805

5. The ParamDisplay_iView represents the ParamPassOp_iView string, enclosed with
asterisks.

3.8 Connecting to Backend Systems
This section describes how to connect to back-end systems and applications, and includes
the following:

● Application Integrator [Page 33]

● Connector Framework [Page 33]

● Dynamic System Resolution [Page 33]

3.8.1 Application Integrator

Purpose
With the application integrator service you can integrate remote Web applications into the
portal. The service creates portal components that serve as template for iViews which
represent the remote application.

Features
The application integrator service provides portal components, focused on SAP applications:

● SAP Transactions (SAP backend transactions)

● Internet Application Components (IAC)

● Business Server Pages (BSP)

● BEx Web Applications (former BW Report)

● Crystal Reports

● Workplace 2.x MiniApps

● HTTP based web applications

If you just want to integrate one of these application types, please refer to the administration
manuals. If the application type you need is not in the list, you can implement your own
integrator component.

Implementation Considerations
An application integrator iView creates HTML content that loads the remote application. This
is done in three steps:

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 806

Loading an application integrator iView

The loading procedure requires that the content included into the portal with the application
integrator is accessable from the client computer. The application integrator infrastructure
creates the HTML commands to load the remote application. After the application has been
loaded, the iView usually stops interaction with the portal.

Deriving iViews from existing portal components is easy:
...

1. Log in to the portal with a user account that has administrator rights.

2. Select in the top level navigation Content Administration->Portal Content.

3. Use one of the wizards (many of them create AppIntegrator iViews) by selecting a
folder with the right mouse key and choosing the option 'Create iView', or:

a. Right click a folder of your choice in the Portal Content tree and select New
From Portal Archive->iView.

b. Search for the com.sap.portal.appintegrator.sap row and select it. Choose Next.

c. Select the component of your choice. Choose Next.

d. Specify name, id and prefix of your iView. Choose Next.

e. On the summary page, choose Finish.

Your iView is displayed in the Portal Content tree and the detail panel will show the property
page of your iView. Every component you create your iView from is designed for one remote
application. The properties settings of the iView depend on the remote application.

Security Considerations
For security reasons, the following is recommended:

● Requests from the Application Integrator should not include user IDs and passwords for
remote systems that the portal user should not see. Otherwise, malicious but otherwise
legitimate users with an HTTP sniffer could determine the user IDs and passwords to
which they are mapped.

For example, do not map all portal users to a single administrator or super user.

● Use SSL and HTTP POST for communication between systems.

3.8.1.1 Creating an Application Integrator Component

How an Application Integrator Component Works
An application integrator component is a subtype of a portal component. On request to an
iView derived from this component, the component implementation reads the property
‘TopLayer’ from its profile. The property value points to a layer descriptor file. This layer
descriptor file describes a single layer of the component. A layer is a Java subclass of class
AbstractIntegrationLayer that evaluates the portal request object and parameters.
While the layer is processed, it changes and/or creates parameters. After the layer is
processed, it looks for the next layer descriptor file and if there is one, processes it. When all
layers are processed, every layer is called to send the content to the client. Usually only the
last layer of the processing chain will creates content.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 807

Passing Parameters between Layers
Every layer implementation retrieves its parameters from a map-like structure and passes its
calculated parameters back to the same map instance again. Before a layer is processed, the
map is filled with parameters from its layer descriptor file. The map is accessible from the
layer implementation with methods from the layer base class
AbstractIntegrationLayer.

Parameter Sources and Priority
The following list shows the parameters available for the layer implementation, sorted by
priority.
....

1. Parameters set by the current layer.

2. The layer's layer descriptor file.

3. Parameters set by the preceding layer.

4. Parameters contained in the portal component request object (hence, also HTTP
request parameters are available).

5. Parameters contained in the portal node object.

6. Parameters contained in the portal component profile.

If none of these parameter sources has a value, the parameter parameterName.default
is searched in the sources. The order shown above is maintained so you can set a default
value in the layer descriptor file without overwriting the value from a source with a lower
priority.

End of Layer Processing
The value in the map stored under the name 'NextLayer' is the name of the next layer
property file. The processing chain ends when the parameter 'NextLayer' has the value
'NoLayer' (case-insensitive) or is undefined.

Layer Descriptor File
The layer descriptor file has the Java properties format and must contain the following
properties:

● ClassName

The name of the layer implementation class.

● OptionalParameters

Optional parameters for the layer implementation, separated by a comma.

● MandatoryParameters

Mandatory parameters for the layer implementation, separated by a comma.

Creating the Component
An application integrator component is a portal component that has following parts:

● The portal component archive descriptor file PORTAL-INF/portalapp.xml with a
SharingReference entry to application com.sap.portal.appintegrator.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 808

● A 'starter' class that inherits from
com.sapportals.portal.appintegrator.AbstractIntegratorComponent.
The starter class will be specified as the component class in the portalapp.xml file.
The implementation of the class will be empty.

● Each layer used in your component needs a corresponding PORTAL-
INF/property/layername.properties file. Each property file provides properties
for one layer. The file content must comply to the Java property file syntax.

Implementing Your Own Layer
You extend the existing layers by implementing the Java class
com.sapportals.portal.appintegrator.layer.IIntegrationLayer or
AbstractIntegrationLayer. This IIntegrationLayer interface has plenty of methods
to implement. The class AbstractIntegrationLayer provides the basic functionality
needed to implement a layer and is therefore more convenient to use.

AbstractIntegrationLayer Methods
The AbstractIntegrationLayer class provides the following methods:

init(..)

This method initializes the layer class to handle a single request. You do not have to
override this method. The AbstractIntegrationLayer class implementation stores
the parameters in object (member) attributes. These attributes are used in other
implementations of AbstractIntegrationLayer, therefore your layer
implementation class should call super.init(..) once, in case you override this
method.

getNextLayer()

With this method you return the name of the properties file that describes the layer that
should be processed next. Your implementation can decide the next layer at runtime
but you can also put a 'NextLayer' property into the property file of the layer that
specifies the next layer and not override this method.

render(IPortalComponentResponse)

This method generates the output. The AbstractIntegrationLayer
implementation of this method generates also HTML-comments if the property '
WriteComments' in the layer property file is set to true.

The following methods should not be overwritten:

epilog

prolog()

processLayer()

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 809

The methods in your layer implementation class are called in the following sequence:
...
...

1. Constructor with no argument of your layer class

2. init(..)

3. prolog()

4. processLayer()

5. epilog()

6. getNextLayer()

7. render(IPortalComponentResponse)

When the processing chain contains more than one layer, the calling sequence is as follows:
...
...

1. Constructor with no argument of first layer

2. init(..) of first layer

3. processLayer() of first layer

4. getNextLayer() of first layer

5. Constructor with no argument of the next layer

6. init(..) of the next layer

7. processLayer() of the next layer

8. getNextLayer() of the next layer

9. render(IPortalComponentResponse) of first layer

10. render(IPortalComponentResponse) of the next layer

During the first processing step each layer is initialized, processed and checked if there is a
next layer. Rendering is done in a second processing step where every layer in the
processing chain has the opportunity to output something. However, it is good practice to
produce output only from the final layer in the processing chain.

3.8.1.2 Component com.sap.portal.appintegrator.sap.Generic
With the com.sap.portal.appintegrator.sap.Generic component any HTTPbased
Web application can be integrated very flexible. For example, parameters can be exchanged
and SSO can be performed.

As already mentioned before, the Web application is called directly by the client
(isolation level URL). Since the portal does not serve as content proxy, the Web
application has to be accessible from the client computer, this means that the
firewall has to grant a direct connection from the client browser to the
application.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 810

Iview/Component Parameters
ApplicationParameter

Defines name-value pair parameters that are passed on to the application.

Example: appParam1=value1&appParam2=value2

Multiple name-value pairs have to be separated with the ampersand character (&).

DebugMode

In debug mode, setting this parameter to true, returns a screen with debugging output
before launching the application. false disables debugging mode.

Id

Defines name-value pair parameters that are passed on to the application. It is used as
placeholder and can be useful to define settings for delta links and iView templates.

LAF

Defines the theme (look and feel) subset (for example,. ur (unified rendering), controls).

SSO2Template

Defines a template that is used for SSO parameter <Authentication> (if the system
defines logon with SAP Logon Tickets). See the Single Sign-on description later in this
document for more details.

System

Name of the system alias.

URLTemplate

Defines a template that is processed by the template processor in order to generate the
application url. See the Template Processor description later in this document for more
details.

.

UserMappingTemplate

Defines a template that is used in SSO parameter <Authentication> when the
system defines logon with user mapping. See the Template Processor description later
in this document for more details.

RequestMethod

Overwrites the default behaviour for retrieving the request method of the redirect (GET
or POST). For SSO with user mapping, the default is "POST". "POST" is also used if
the parameter list is longer than 1024 characters.

Remark: In EP SP2 Patch 1 this property has to be added manually to the deployment
descriptor of the application.

Template Processor
The template processor parses a template (for example, URLTemplate for the
com.sap.portal.appintegrator.sap.Generic component) and replaces the tag
expressions that match the context names, with values stored in contexts.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 811

Definitions
Template

A template is a string containing text and tags.

Example: This is a template with a simple <tag>.

Tag

A tag is a variable expression followed by an optional modifier sequence in angle
brackets.

Example: Enclose tags always in <angle.brackets>

Tag expression

A tag expression (or variable expression) is a set of variables separated by dots.

Example: <tag.expression.with.multiple.variables>

Context

A context is a data structure that stores name-value pairs, similar to
java.util.Hashtable. Contexts can be nested.

Variable

A variable is an identifier that matches entries in the context. If a variable name equals
a context entry name, the tag is replaced with the value of the context entry.

Example: <context1.variable1> is replaced with the value of variable1 in
context1.

Modifier sequence

A modifier sequence contains one or more modifiers in square brackets separated by
blanks. Modifiers are applied to the substitute in the order of the occurrence.

Example: This is a template with <modified.tag[URL_ENCODE
UPPERCASE]>

Substitute

A substitute of a tag expression is the result of a processed/substituted tag expression.

Example: <User.Name> is the tag expression and Blair Pascal is the substitute.

Use of Templates
Nested contexts are accessed with tag expressions. The variables in the tag expression
specify the "path" in the context tree, for example,. <x.y>. If a variable does not match a
context, the tag is replaced by an empty string.

Processed tag expressions can be automatically URLEncoded using the URL_ENCODE
modifier.

Example:
<this.will.be.Urlencoded[URL_ENCODE]>

The slash (/) represents the “escape” character in templates. When you put a slash before an
angle bracket it is not treated as tag.

Example:

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 812

Find car: Mileage /< 50000 and Year />

Template grammar:

template ::= (plain | tag)*
plain ::= unreserved*
unreserved ::= ... all characters except the reserved ones
tag ::= "<" tagexpr ">" | "<" tagexpr (modif_seq)">"
tagexpr ::= simpletagexpr ("." simpletagexpr)*
simpletagexpr ::= alpha alphanum*
modif_seq ::= (alphanum+ " ")+
alpha ::= "A" | ... | "Z" | "a" | ... | "z" | "_"
alphanum ::= alpha | "0" | ... | "9"
reserved ::= "<" | ">"

Example:

<Protocol>://<HostAddress>:<Port>/some/path?user=<User.Name[UPR_CASE]
>&
 url= <HomeServer.url[URL_ENCODE UPPERCASE]>

The question mark (?) marks the parameter section in an HTTP/S url.

Resolution of Expressions
We have the following expressions:

● Expressions with Variables

Expressions with variables have the format <x>. They are resolved by a custom
provider, the request and the iView profile, in this order, in two iterations. The first
iteration looks for the variable name, for example, "x", and the second iteration looks
for the default variable name, for example, "x.default".

● Expressions Using a Context

Expressions using a context, like <x.y>, offer data retrieval from data providers such
as the system landscape or user management. With a context, it is possible to access
a specific property. This could be necessary to overcome the resolution rules.

Example:

The same property exists in the profile and in the request. In order to access this
property from the profile, you have to explicitly access the property with the name
<Profile.property>. Accessing it with name <property> only, would return the
property from the request. The resolution of expressions can be performed either
indirectly or directly:

○ Directly

If the context is known, an expression like <User.UserID> is resolved directly.

○ Indirectly

An expression like <System.url> is resolved indirectly since the name for the
system is not known. It has to be retrieved from the iView profile first before the
system landscape can be accessed.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 813

Available Variables
The following variables are available:

● All properties according to the rules given in iViewParameterName

● User mapping user. Variable: <MappedUser>

● User mapping password. Variable: <MappedPassword>

● Authentication string. Variable: <Authentication>

● User ID used for accessing applications. Variable: <LogonUserId>

This variable contains the portal user ID if no user mapping is maintained. If user
mapping exists the variable contains <MappedUser>.

Available Contexts
The following contexts are available:

● Look and Feel Context (LAF)

This context provides the following information:

○ Current theme. Variable: <LAF.Theme>

○ Base URL of current theme. Variable: <LAF.BaseUrl>

○ Full qualified stylesheet url. Variable: <LAF.StylesheetUrl>

● Portal Component Profile Context (Profile)

This context provides information from the iView profile.

○ Property name from the iView profile. Variable: <Profile.[id]>

● Portal Context (Portal)

This context provides the following portal information:

○ Portal Runtime version. Variable: <Portal.Version>

○ Root url of portal: <Portal.RootComponent>

● Request Context (Request)

This context provides the following information from the servlet request:

○ Language. Variable: <Request.Language>

○ Locale. Variable: <Request.Locale>

○ Protocol. Variable: <Request.Protocol>

○ Server name. Variable: <Request.Server>

○ Port. Variable: <Request.Port>

○ Server plus port. Variable: <Request.ServerPort>

○ SSO2 ticket. Variable: <Request.SSO2Ticket>

○ Any request parameter. Variable: <Request.[ParameterName]>

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 814

● System Landscape Context (System)

This context provides all the properties of the system landscape. The possible variable
names are defined by the system landscape itself:

○ System property value. Variable: <System.[SystemPropertyName]>

● User Context (User)

This context provides the following user information:

○ Accessibility level. Variable: <User.Accessibility>

○ Logon ID. Variable: <User.LogonUid>

○ Logon ID. Variable: <User.UserID>

○ User attribute. Variable: <User.[AttributeName]>

Available Modifiers
Following modifiers are available:

● BASE64

Performs base64 encoding.

● HTML_ESCAPE

Escapes the result so that it can be put in HTML documents.

● LOWERCASE

Converts all characters to lower case.

● MD5

Performs MD5 encoding.

● SAP_BOOL

Converts boolean values to SAP notation (true/1 -> 'X', false/0 -> '').

● SAP_ITS_NAMESPACE

Replaces '/' with '-' (used for IACs)

● TRIM

Removes all leading and trailing whitespaces.

● UPPERCASE

Converts all characters to upper case.

● URL_DECODE

Performs url decoding

● URL_ENCODE

Performs url encoding

● PROCESS_RECURSIVE

Forces recursive resolution of templates. If the result of a template is also a template,
another recursive step of template processing is performed.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 815

Single Sign-On
Component com.sap.portal.appintegrator.sap.Generic allows you to perform a
Single Sign-On to HTTP Web applications by including the tag <Authentication> in the
URL template. Prerequisite is a system with a system definition that includes the following
properties:

● User mapping type, if user mapping is used.

● Logon method

The tag <Authentication> returns the result of the <UserMappingTemplate> or
the <SSO2Template>.

UserMappingTemplate:

For user mapping you can set the UserMappingTemplate as follows:

○ Basic authentication
<MappedUser>:<MappedPassword>@

The URLTemplate would then look like this:
http://<Authentication>protectedserver.com/xyz

The parameters user and password are application-specific. They need to be
retrieved from, for example, the HTML source code of the logon form. The
URLTemplate would then look like this:
http://protectedserver.com/xyz?<Authentication>

○ HTTP form-based login

user=<MappedUser>&password=<MappedPassword>.

SSO2Template:

If you use SAP logon tickets for authentication, you can specify an authentication
template in parameter SSO2Template like:

MYSAPSSO2=<Request.SSO2Ticket>

3.8.2 Connector Framework

Purpose
The connector framework provides the infrastructure to create platform independent
connectors. Connectors are connectivity providers for Web applications. The framework
provides the information that is necessary for the connector to gain access to its data source,
the Enterprise Information System (EIS). The connectors comply with the Java 2 Platform
Enterprise Edition (J2EE) standard and its J2EE Connector Architecture (JCA 1.0)
specifications. The JCA 1.0 refers to connectors also as resource adapters.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 816

Use
The Portal Runtime (PRT) runs as a servlet on the Web application server (WAS). The PRT
supplies different services to SAP Enterprise Portal users, such as user management and
security. These and other services of the PRT are provided to portal applications, which use
connectors deployed on the application server (J2EE Engine) to communicate with a back-
end application (EIS). The portal applications, also referred to here as portal content, can be
created automatically. The wizard framework is a PRT service for creating such applications
automatically. The wizard framework requires system connectivity parameters. These
parameters are provided by a system template, which is supplied together with each
connector for its respective EIS. However, portal content may also be developed with code,
using any of the public portal APIs in general, and the Connector Framework API in particular.
These APIs can be used for connecting the content that populates the portal to back-end
systems, for creating new connectors for additional systems.

The connector framework is a J2EE service that offers advantages when connectors are
implemented and used in a managed environment, such as JNDI lookup and connection
pooling. However, working in non-managed mode [Page 33] is also possible. The
implementation and deployment of a connector is affected accordingly. See Connector
Deployment [Page 33] for more details.

Connector Framework as a Web Service
The connector framework is also available as a Web service, using the SOAP protocol, to
transfer requests and responses between applications, such as portal applications and
specific connectors.

Integration
The connector framework consists of the connector framework API, the connector wizard for
new connectors (to conveniently create a connector project in NetWeaver Development
Studio), the connector Web service, and documentation, including examples.

The connector framework extends the JCA 1.0 standard, to meet the requirements of SAP
Enterprise Portal users.

The documentation contains the developer guide, which describes the concepts of the
connector framework structure, management, and functionality, as well as installation
information, development environment prerequisites, and information about the deployment of
connectors created with the generic API.

The reference guide uses standard Javadoc, supplying the detailed technical information
necessary to implement the generic connector API. For detailed reference information about
the interfaces mentioned here, see the Javadocs for the portal and portal runtime APIs,
located on the SAP Developer Network (SDN) at www.sdn.sap.com/irj/sdn/javadocs.

3.8.2.1 J2EE Connector Architecture (JCA)
The J2EE Connector Architecture (JCA) is a specification that defines the standard
architecture for connecting the Java 2 Platform, Enterprise Edition (J2EE) platform to
heterogeneous Enterprise Information Systems (EIS’s), which may include, for example, ERP
and database systems. The mechanisms that the connector architecture defines are scalable
and secure and enable integration of the EIS with application servers and enterprise
applications.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 817

Standard connectors, called resource adapters in the JCA specification, can be supplied by
any given EIS. The connectors are software drivers used by an application to connect to an
EIS. The connectors can be plugged into an application server, such as SAP Web AS Java,
and provide connectivity between an EIS, the application server, and the enterprise
application.

Once an application server supports the connector architecture it provides seamless
connectivity to multiple EIS’s. Likewise, an EIS vendor provides one standard resource
adapter and it has the capability to plug into any application server that supports the
connector architecture. JCA 1.0 defines standard Java interfaces for simplifying the
integration of enterprise applications with J2EE-based Java applications. The connector is a
component library that can be used in Java from the developer.

The Connector Framework supports the latest version of JCA, although its
implementations and extensions are based on JCA 1.0.

JCA 1.0 Specification
The Connector Framework extends the J2EE Connector Architecture, so you should be
familiar with the specification to understand the implementation of connectors, their use and
the environment in which the connector works.

The JCA 1.0 specification document deals with the various aspects of the standard connector
architecture:

● Standard client API, as defined by the Common Client Interface, for enabling
interactions between application components and heterogeneous EIS.

● Defines the requirements that architecture-compliant connectors, together with the
application server, support the system contracts. Detailed requirements are specified
for every system.

● Discusses the connector architecture for roles. Scenarios are included to illustrate the
concepts.

● Specifies the responsibilities on system level for connection management between an
application server and a connector. The description also explains deployment and
illustrates scenarios of the connection management.

● The specification relates how to create a connection in a non-managed environment,
for example, Java applications and applets.

● Specifies the transaction management on system level between an application server
(and supported transaction manager) and an EIS.

● Discusses security architectures for the integration of EIS with the J2EE platform,
adding EIS-specific security details to the security requirements specified in other J2EE
specifications.

● Describes the security contract between the application server and the EIS, specifying
the responsibilities of the connector and the application server in support of the security
contract.

● Specifies requirements for packaging and deploying a resource adapter.

● Specifies the Java API that a J2EE-compliant application server (and its containers)
must provide for a connector at runtime.

● Describes standard exceptions for errors that may occur in the connector architecture.

You can download the Sun Microsystems J2EE Connector architecture specification at:
java.sun.com/j2ee/download.html#connectorspec.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 818

Advantages of a Generic Connector API
A standard provides the guidelines to develop connectors for different applications and
different connectors for the same applications, with the same language and technology.

Main advantages are:

● Depending on the EIS, the connectors support standard subsets of interfaces specified
in the connector framework. Guidelines exist for the service types provided by
connectors.

● Third parties can independently develop the application-specific connectors with the
connector framework.

● The connector is platform independent.

● The connector (including related services) is the only access layer for the application.

● The connector API is provided as a Web service. This allows http access to the EIS
using the SOAP protocol.

● The Java code can be generic and therefore be developed only once for any EIS.

● Integration of projects is possible.

● Reduced training and maintenance costs.

Using the Connector Architecture
All applications that need to access data from the EIS are users of the connector service (for
example, iViews in the Enterprise Portal).

The user needs to do the following:

● establish a connection to the EIS

● retrieve connector metadata and its supported capabilities

● data access (query execution and function execution) to a specific EIS

● get EIS metadata and business models

● call EIS-specific methods (for example, running SAP transactions)

3.8.2.2 Connector Framework Structure
The connector framework consists of interfaces described by the JCA 1.0 specification and
additional interfaces, defined by the connector framework, which extend the JCA. The
connector framework extensions are the focus of this document.

The information described in this section is intended both for the developers of connectors
and for the developers of applications that consume existing connectors already deployed on
the WebAS.

In addition to the connector metadata and capabilities information, see also:

Connection Interfaces [External]

Metadata Retrieval [Page 33]

Interface IStructure [Page 33]

Data Access and Method Execution [Page 33]

Functions and Queries [External]

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 819

Connector Metadata
The connector metadata contains basic JCA 1.0 parameters and connector framework
extension parameters.

JCA parameters are:

● EIS version

● Vendor name

● Description

Connector framework parameters are:

● Default Date and Time Format

● Maximum number of connections allowed

● Default timeout for the connection and queries

Capabilities Manifest
The connector framework IConnectorMetadata interface uses the method
getCapabilities to retrieve an ICapabilities object. The ICapabilities
interface returns the capabilities of a specific connector. The basic connector has a generic
interface to find out what the connector is capable of doing, such as multi-language support,
query cancel support, or returning results in chunks of data for higher performance. A specific
connector may support only some of the capabilities supported by the connector framework; it
can also extend the list of capabilities.

The connector framework has an ICapabilities interface that reflects the capabilities of
a connector. The interface ICapabilities defines the connector capabilities.
ICapabilities has two methods by which it is possible to retrieve all capabilities
supported with the current connector (getAllSupportedCapabilities), and whether or
not a specific capability is supported (supports).

A connector has to implement the ICapabilities interface for a specific capability. The
method (supports) will return true to indicate that the connector supports a specific
capability.

For more details, refer to the Javadocs for the portal and portal runtime APIs, which are
located on the SAP Developer Network (SDN) at www.sdn.sap.com/irj/sdn/javadocs.

3.8.2.2.1 Interface ICapabilities
The interface ICapabilities defines the connector capabilities. Icapabilities has two
methods by which it is possible to retrieve all capabilities supported with the current connector
(getAllSupportedCapabilities), and whether or not a specific capability is supported
(supports).

Connector Framework: Supported Capabilities

Connector Capability Description of Supported Capability

CONNECTION_METADATA_PROPERTY_GROUPS Retrieval of connection property groups other
than the default

DELETE DELETE operations through queries

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 820

INSERT INSERT operations through queries

INTERACTION_EXECUTION JCA Interaction interfaces, meaning support for
EIS function execution

INTERACTION_EXECUTION_OUTPUT_INDEXE
D

Output format of the Interaction.execute()
function as an indexed record

INTERACTION_EXECUTION_OUTPUT_MAPPED Output format of the Interaction.execute()
function is a mapped record

METADATA_FUNCTIONS Retrieval of function metadata from EIS

METADATA_FUNCTIONS_REG_EXP Retrieval of function metadata from EIS using
regular expressions; for example, the
connector implements -
Set getFunctions(String
functionNameRegularExpression,
String
functionGroupRegularExpression)

METADATA_OPERATORS_EQUAL Retrieval of conditions with the equal operator -
Equal conditions are conditions of type: A.x =
value object A attribute x is equal to value

METADATA_OPERATORS_GREATER_THAN Retrieval of conditions with the greater than
operator - Greater than conditions are
conditions of type: A.x GREATERTHAN value
object A attribute x is greater than value

METADATA_OPERATORS_GREATER_THAN_OR_
EQUAL

Retrieval of conditions with the greater than or
equal operator - Greater than or equal
conditions are conditions of type: A.x
GREATERTHANOREQUAL value object A
attribute x is greater than or equal to value

METADATA_OPERATORS_LESS_THAN Retrieval of conditions with the less than
operator - Less than conditions are conditions
of type: A.x LESSTHAN value object A
attribute x is less than to value

METADATA_OPERATORS_LESS_THAN_OR_EQU
AL

Retrieval of conditions with the less than or
equal operator Less than or equal conditions
are conditions of type: A.x
LESSTHANOREQUAL value - object A attribute x
is less than or equal to value

METADATA_OPERATORS_LIKE Retrieval of conditions with the like operator -
Like conditions are conditions of type: A.x
LIKE value object A attribute x is like to value

METADATA_OPERATORS_NOT_EQUAL Retrieval of conditions with the not equal
operator - Not equal conditions are conditions
of type: A.x NOTEQUAL value object A
attribute x is not equal to value

MULTILANGUAGE Multilanguage - input/output values can be
multilanguage

NATIVE INative interface,

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 821

QUERY Queries

QUERY_BLACKBOX_JOIN Execution of queries that contain blackbox
relation

QUERY_CANCEL Cancellation of queries during the execution

QUERY_CRITERIA_LOGICAL_AND Compound criteria using AND as operator in the
WHERE clause

QUERY_CRITERIA_LOGICAL_NOT Logical criteria using NOT as operator in the
WHERE clause

QUERY_CRITERIA_LOGICAL_OR compound criteria using OR as operator in the
WHERE clause

QUERY_CRITERIA_PREDICATE_ATTRIBUTE_
EQUALS_CONSTANT

Only predicate criteria of the following types in
the WHERE clause: businessObject.attribute =
CONSTANT Blackbox relation

QUERY_CRITERIA_PREDICATE_ISNULL IS NULL predicate criteria in the WHERE clause

QUERY_CRITERIA_PREDICATE_SET IN () predicate criteria in the WHERE clause

QUERY_FROM_ALIAS Aliases for business objects in the FROM clause
of the query statement

QUERY_FROM_INNERJOIN inner joins in the FROM clause of the query
statement

QUERY_FULLSCAN Full-scan query – where full scan is not
supported, only query statements where the
field attributes participating in the WHERE
clause are indexes will be supported (WHERE
clause is mandatory)

QUERY_NATIVE INativeQuery interface - can execute native
SQL queries

QUERY_RESULT_CHUNK_SUPPORT Retrieval of query resultSets in chunks -
where the size of a chunk is defined by the
number of records returned— retrievial chunks
is done consecutively, one by one

QUERY_SELECT_AGGREGATION_AVG AVG (attribute) or AVG (DISTINCT attribute)
aggregation function in the SELECT clause

QUERY_SELECT_AGGREGATION_COUNT COUNT (attribute) or COUNT
(DISTINCT attribute) aggregation
function in the SELECT clause

QUERY_SELECT_AGGREGATION_COUNT_STAR COUNT (*) or COUNT (DISTINCT *)
aggregation function in the SELECT clause

QUERY_SELECT_AGGREGATION_DISTINCT DISTINCT keyword in the aggregation
function in the SELECT clause

QUERY_SELECT_AGGREGATION_MAX MAX (attribute) or MAX (DISTINCT
attribute) aggregation function in the
SELECT clause

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 822

QUERY_SELECT_AGGREGATION_MIN MIN (attribute) or MIN (DISTINCT
attribute) aggregation function in the
SELECT clause

QUERY_SELECT_AGGREGATION_SUM SUM (attribute) or SUM (DISTINCT
attribute) aggregation function in the
SELECT clause

QUERY_SELECT_ALIAS aliases in the SELECT clause

QUERY_SELECT_DISTINCT DISTINCT keyword in the SELECT clause

QUERY_SELECT_LEAF_BUSINESS_OBJECT_A
TTRIBUTE

Query statement where the FROM clause is a
join tree—primary-foreign key joins

QUERY_SELECT_SINGLE_BUSINESS_OBJECT
_ATTRIBUTE

Queries where the SELECT clause contains
attributes from a single business object

QUERY_SORT ORDER BY clause in the query statement

TRANSACTIONS Transactions

UPDATE UPDATE operations through queries

3.8.2.2.2 Interface IStructure
The interface IStructure defines the data type of a parameter or attribute. This interface
extends the JCA 1.0 standard by defining additional complex data types as well as the
primitive data structure, like, string, integer, byte, Boolean, date and so on. The additional
data types and their descriptions are:

Data type Description

Recordset Array of records

Array Array of fields which are of the same data type.

Record Array of fields each of which is a member of a different column

Field A data structure having only a primitive type.

Data Output Structure Description

For queries It is defined by interface IRecordSet and is a subset of
java.sql.resultset of the current chunk. It is the part of the
total record set, defined by a minimum and maximum number of
records, returned at one time.

For functions What is expected in the output parameters of the specific
function.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 823

3.8.2.2.3 Interface ConnectionSpec
The primary task of the connector framework is to create the basic connection. The
ConnectionSpec interface is a collection of properties that have to be specified to connect
to a back-end application.

A connection property consists of:

● System-parameter or user-parameter

The system-parameter is shared among all users, while a default value for the user-
parameter may be overridden by the user mapping.

● Is the parameter mandatory

● The data type of the parameter

● The default value of the parameter

● A list of valid values for the parameter

The ConnectionFactory gets an instance of the connection based on the given
ConnectionSpec collection.

The Connection interface is the entry point for the connector to perform an operation like
getting metadata, launching a query, or getting a native interface. Once the basic connection
has been established, additional functions can be enabled.

3.8.2.2.4 Metadata Retrieval
The metadata retrieval extends the JCA 1.0 standard. It may include functions, objects,
and/or relations.

Metadata type Description

Business Objects Group Namespace entities that have nested groups
or objects.

Business Object Represents the business object of the back-
end application. It is a combination of
methods, attributes and relations.

Attributes Composite elements of business objects of a
certain type. It can also provide information
on indices to prevent time consuming
queries.

Methods Methods are independent of any business
object or group. It is a list of all functions
existing in the application. Operative
elements of objects and groups behave in the
same manner as predefined application
functions.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 824

Relations Relations are elements describing the
connections between different entities in an
application.

Relations are possible between business
objects, attributes, or a group of attributes.

All relations are one-directional; a bi-
directional relation is a particular case in
which one-directional relations between the
entities already exist.

Relations are presented to the user of the
connector as string object.

There are following relation types:

● Not editable

The application does not permit to add
or extend the relation.

● Editable - Default Implementation.

Obj1.AttrX = Obj2.AttrY

● Editable - Custom Implementation

When a relation is represented by a
function call or some other connector-
specific logic.

3.8.2.2.5 Data Access and Method Execution
In addition to metadata retrieval, the connector framework provides additional features for
data access and method execution.

The connector allows data access with following functions:

Feature Description Provided by

Native queries

(INativeQuery)

The connector accepts commands and queries stated in
the application language, for example, SQL and MDX.
The returned data type is Java.lang.Object and the
connector passes it on to the user application as it is,
without parsing or interpretation.

Connector
Framework

Function or
interaction

(IInteraction)

The connector invokes a given function, that exists in
the application as follows:

Every parameter supports data type, owner, valid
values, in/out direction, default value (if optional), and
so on. See section Interface ConnectionSpec [Page 33]
for more details.

JCA

Native API
Access

(INative)

The native module wraps the interface visible to the
application. The connector returns a reference to a
requested native interface and from this point on, the
user of the connector interacts with the EIS directly
through that interface.

Connector
Framework

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 825

The Java Connector client (JCO) service is an example
of this. The JCO client service implements the
connectivity to SAP back-end systems. The JCO client
service gets an SAP back-end system connection from
of the connector framework first and then calls for the
JCO interface to get a native function.

An example of this for a relational database
management system would be
java.sql.Connection.

3.8.2.3 Using Existing Connectors
Whether they come with the installation of SAP Enterprise Portal or are developed separately
and installed for portal users, the connectors to back-end systems are deployed on the J2EE
application server level. This offers distinct advantages for connector consumers in a
managed environment, which is typically the case for NetWeaver users. Among the primary
advantages are:

● JNDI lookup

Instead of having to create a connection factory instance, the content developer need
only implement the connector gateway service of the portal. This is exemplified by the
samples in the section about the JDBC Connector [Page 33].

● Connection pooling

The application server manages connections, reusing already open ones for new
requests, instead of the performance-reducing opening and closing of connections for
each request for an EIS connection.

The main task of the developer of portal content, such as iViews that retrieve information from
a back-end system (EIS), is to open a connection to that system.

The SAP NetWeaver portal comes with the following ready-to-use connectors. See the
samples for help with using them:

● a JDBC Connector [Page 33] for universal database connectivity

● an SAP System connector [Page 33] for connectivity to back-end SAP systems

● a Web Service connector [Page 33] for interacting with any Web service

Prerequisites
Following are the prerequisites for using connectors that are deployed in the portal.

File/Environment Description Source

GenericConnector.jar Required to test the application Comes with SAP
Enterprise Portal

ExtendedConnector.jar Adds functionality to generic
connector

Comes with J2EE
application server.

Connector.jar Contains the JCA 1.0 API Comes with J2EE
application server

JAAS.jar Required by the connector framework. Comes with J2EE

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 826

(Java Authentication
and Authorization
Service)

application server

JTA.jar

(Java Transaction API)

Required by the Connector
Framework.

Comes with J2EE
application server

EIS

(Enterprise Information
System)

Required to test the application. Has to be installed
separately

Java Application
Server

Any J2EE JCA 1.0-compliant WAS to
work with servlets without the SAP
Enterprise Portal.

Recommendation:

SAP Web AS 6.40 Java

Has to be installed
separately

PRT

(Portal Run Time)

Required to test the application in the
SAP Enterprise Portal environment

Comes with SAP
Enterprise Portal

Portal Wizard
Framework

The portal wizard framework is an
effective tool to create a portal
application that uses a connector.

Comes with SAP
Enterprise Portal

Connector Web
Service

Necessary to communicate between
application and connector as Web
service, using http calls and SOAP.

Comes with SAP
Enterprise Portal

3.8.2.3.1 Using the SAP System Connector
The SAP System adapter for the SAP Enterprise Portal 6.0 is a connector framework
implementation based on the J2EE Java Connectivity Architecture (JCA 1.0), the SAP RFC
library, and the SAP Java Connector (JCO). It enables connectivity to SAP ERP systems,
CRM (Customer Relations Management) and BI (Business Intelligence).

The connector framework has connection management. This overcomes a common problem
that occurs when using the JCo client service, where the developer hat to take care about
connection management himself. Therefore it is strongly recommended not to use JCo client
service any more and migrate existing EP 5.0 applications that use the JCo client service to
Connector Framework.

The Connector Framework BAPI Example in the PDK

See also

JCO Client Service

 [External]Prerequisites for using a connector [Page 33]

Connector Gateway Service
Example for a connection to a SAP system using the connector gateway service:
IConnection connection = null;
try { // get the Connector Gateway Service

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 827

 Object connectorservice = PortalRuntime.getRuntimeResources().get
Service(IConnectorService.KEY);
 IConnectorGatewayService cgService =(IConnectorGatewayService) co
nnectorservice;
 if (cgService == null) {
 response.write("Error in get Connector Gateway Service
");
 }
 try {
 connection = cgService.getConnection(sapsystem, request);
 } catch (Exception e) {
 response.write("Connection to SAP system failed
");
 }
 if (connection == null) {
 response.write("No connection
");
 }
 else {
 response.write("Connection succesful");
 }
} catch (Exception e) {
 response.write("Exception occurred");
}

Executing a BAPI Function
In the following example we execute a BAPI function. The result is a returned RecordSet
object. A RecordSet object has a pointer that points to its current data row. Initially, the
pointer is positioned before the first row. The method next moves the pointer to the next row.
If there are no more rows, the method next returns false.
try {
 // Get the Interaction interface for executing the command
 IInteraction ix = connection.createInteractionEx();
 // Get interaction spec and set the name of the command to run
 IInteractionSpec ixspec = ix.getInteractionSpec();
 // the well known example BAPI SALESORDER
 String functionName = "BAPI_SALESORDER_GETLIST";
 // Put Function Name into interaction Properties.
 ixspec.setPropertyValue("Name", functionName);
 // return structure
 String function_out = "SALES_ORDERS";
 RecordFactory rf = ix.getRecordFactory();
 MappedRecord input = rf.createMappedRecord("input");
 // put function input parameters
 input.put("CUSTOMER_NUMBER", new String("0000001172"));
 input.put("SALES_ORGANIZATION", new String("1000"));
 MappedRecord output = (MappedRecord) ix.execute(ixspec, input);
 Object rs = null;
 try {
 Object result = output.get(function_out);
 if (result == null) {
 rs = new String(" ");
 } else if (result instanceof IRecordSet) {
 rs = (IRecordSet) result;
 }
 // result object returned
 else {
 rs = result.toString();

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 828

 }
 } catch (Exception ex) {
 printException(ex);
 }
 return rs;
} catch (Exception e) {
 printException(e);
}

Connecting to an SAP System on WebAS 6.20 without the
Connector Service
You can connect to a SAP system directly by providing the username and the password, for
example for testing purposes. The EISConnection can be initialized directly with JNDI
support.

// physical connection
IConnection mm_con = null;
//connection factory of the SAP connector to get the connection
IConnectionFactory connectionFactory;
Context initctx = null;

try {
 //get the initial JNDI context
 Hashtable env = null;
 initctx =
 new com.sapportals.portal.prt.jndisupport.InitialContext(env);
 // perform JNDI lookup to get the connection factory
 connectionFactory =
 (IConnectionFactory) initctx.lookup("EISConnections/SAPFactory"
);
} catch (Exception e) {
}

try {
 // retrieve the ConnectionSpec and set the values
 IConnectionSpec spec = connectionFactory.getConnectionSpec();

/*
 * set connection properties according to SAP JCO javadoc:
 * static String[][] login_params = {
 *{ "client" , "000" },
 *{ "user" , "timtaylor" },
 *{ "passwd" , "binford" },
 *{ "language", "EN" },
 *{ "ashost", "mymachine.mycompany.com"};
 *...
 *};
*/
// set properties
 spec.setPropertyValue("client", "000");
 spec.setPropertyValue("user", "timtaylor");
 spec.setPropertyValue("passwd", "binford");
 spec.setPropertyValue("lang", "EN");
 spec.setPropertyValue("ashost", "myserver.mycompa??/Ad??Yd??Rny.
corp");

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 829

 spec.setPropertyValue("sysnr", "00");

 // Retrieve the connection handle
 mm_con = connectionFactory.getConnectionEx(spec);
 mm_con.close();

} catch (Exception e) {
}

Connecting to an SAP System on WebAS 6.40 without the
Connector Service
The connector JDNI name was changed from WebAS 6.20 to 6.40. In 6.20, as shown in the
above sample, look for "EISConnections/<connector_name>" to get a connector factory
instance.

When migrating code with such a hard-coded look-up string to WebAS 6.40, the JNDI lookup
name for the connector needs to be changed to the following format:

deployedAdapters/<connector_name>/shareable/<connector_name>

For example:
 ...

 ...

 ...

try {
 //get the initial JNDI context
 Hashtable env = null;
 initctx =
 new com.sapportals.portal.prt.jndisupport.InitialContext(env);
 // perform JNDI lookup to get the connection factory
 connectionFactory =
 (IConnectionFactory) initctx.lookup("deployedAdapters/SAPFactory
/
 shareable/SAPFactory for SAP connector");

 deployedAdapters/SAPFactory/shareable/SAPFactory for SAP
connector

 ...

 ...

 ...

It is highly recommended that content developers use the portal connector
gateway service, as described above, to establish a connection to the back end.
Code that uses this service doesn't require any change when migrating to
WebAS 6.40.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 830

See also:
Using a JCO Client for Several Portal Requests [External]

Using Connectors with the Distributed Query Engine [External]

Using the JDBC Connector [Page 33]

3.8.2.3.2 Using the JDBC Connector
The JDBC adapter for the SAP Enterprise Portal 6.0 is a connector framework
implementation based on JDBC.

There are two basic ways to get a connection using the JDBC Connector:

● Via the Connector Service—this approach being faster, simpler, and benefits from the
portal’s user mapping from the system

● Direct connection using the J2EE JNDI

Connecting via the Connector Service
Example for a connection to a JDBC system using the connector service:

IConnection connection = null;
// get the Connector Gateway Service

String jdbcSystem = "pubs";
IConnectorGatewayService cgService = (IConnectorGatewayService)

PortalRuntime.getRuntimeResources().getService(IConnectorService.KEY)
;

ConnectionProperties cp = new
ConnectionProperties(portalRequest.getLocale(),

 portalRequest.getUser());

try {
 connection = cgService.getConnection(jdbcsystem, cp);

} catch (Exception e) {
} finally {

 try {

 if (connection != null) {

 connection.close();

 }

 } catch (ResourceException re) {

 }

}

Connecting via J2EE
Example for a connection to a JDBC system using the J2EE JNDI:

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 831

// physical connection
IConnection connection = null;
//connection factory of the JDBC connector to get the connection
IConnectionFactory connectionFactory;
Context initctx = null;
try {
 //get the initial JNDI context
 Hashtable env = new Hashtable();

 env.put("domain", "true");
 initctx = new com.sapportals.portal.prt.jndisupport.InitialContex
t(env);
 // perform JNDI lookup to get the connection factory
 connectionFactory = (IConnectionFactory)

initctx.lookup("deployedAdapters/JDBCFactory/shareable/JDBCFactory");
 // retrieve the ConnectionSpec and set the values
 IConnectionSpec spec = connectionFactory.getConnectionSpec();
 // set properties
 spec.setPropertyValue("UserName", "sa");
 spec.setPropertyValue("Password", "admin");
 spec.setPropertyValue("driver",
"com.sap.portals.jdbc.sqlserver.SQLServerDriver");
 spec.setPropertyValue("url","jdbc:sap:sqlserver://localhost:1433;
DatabaseName=Northwind");
 // Retrieve the connection handler
 connection = connectionFactory.getConnectionEx(spec);
} catch (Exception e) {
} finally {

 try {

 if (connection != null) {

 connection.close();

 }

 } catch (ResourceException re) {

 }

}

See also

Prerequisites for using a connector [Page 33]

3.8.2.3.3 Using the Web Service Connector
The Web Service Connector, supplied by SAP with EP 6.0 on WebAS 6.40, is an
implementation of the NetWeaver portal connector framework API. It provides the ability to
interact with any Web services, regardless of source, with the following advantages over
connecting to Web services by other means:

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 832

● As part of the portal connector framework, it uses the UME (user management engine)
for authtentication and user mapping.

● Enables the use of automatic tools (such as the portal iView Wizard and Visual
Colmposer) for the creation of iViews.

● No offline proxy generation and deployment are required.

Technologies Used
● WSDL (Web Service Definition Language)

● SOAP (Simple Object Access Protocol)

● SAAJ (SOAP with Attahments for Java) – integrated with J2EE Engine

Connectivity
The only connection property that is mandatory for using the Web Service Connector is the
WSDL URL for the specific Web service.

Authentication
The Web Service Connector supports basic authentication, SSO, and no authentication.

No Proxy Client Generation
Using the connector to consume Web services does not involve the use of any Web service
client automatically created and deployed on the user machine. The need to create classes to

● create SOAP requests

● sending them

● receiving responses

● parsing the responses

is made unnecessary because the Web Service Connector implements the portal connector
framework API, and because it uses the JAAS standard. It can supply input and output
variables on-the-fly without the need of a proxy client generation.

Supported Capabilities
The following are supported by the Web Service Connector:

WSDL-SOAP Binding Parameters
● All valid value combinations of the WSDL style and use parameters, which indicate how

to translate a WSDL binding to a SOAP message.

○ Style values are RPC and document.

○ Use values are encoded and literal.

The binding possibilities are:

○ RPC/encoded

○ RPC/literal

○ Document/encoded (Not in use: It is legal WSDL, but this style is not WS-I
compliant.)

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 833

○ Document/literal

● Inclusion of other WSDLs in the WSDL of the target Web service (for example:
<import location = <some_URL>>).

● If the Web service WSDL is of the document style, the Web Service Connector will
support an associated schema, and also tags imported from other schemas (for
example: <import namespace = <some_URL>>).

J2EE Dynamic Proxy
The Web Service Connector supports the use of the J2EE dynamic proxy (a component of
the J2EE Web Services Security service). The dynamic proxy URL property can be defined to
a WSIL URL, in addition to a WSDL URL, thereby extending the capabilities of the Web
Service Connector.

The dynamic proxy can also be configure to an SAP Web service.

Creating and configuring the dynamic proxy in the J2EE Visual Administrator:
...

1. Launch the Visual Administrator and select the service Web Services Security.

2. Expand Web Service Clients → sap.com and select DynamicWSProxies.

3. Choose Create and set a name for the destination.

4. Configure the proxy parameters under the Transport Security tab.

○ For configuring the proxy to a WSIL URL, just enter the desired URL in the URL
field.
http://myserver:50000/inspection.wsil

If any authentication is required, choose the authentication type in the Logon
Data section and enter the appropriate values.

○ For configuring to an SAP system WSIL, for example for ESA (Enterprise
Service Architecture), enter the URL as follows:

http://<server>:<port> where the <server> is the R/3 server and the
port is 50000 + <SAP application instance number>

Enter the appropriate values for the System ID, Client, and Language
parameters and then configure authentication in the Logon Data section.

For more information, see Web Services Security [External] and Security Configuration
[External].

Constraints
The following are not supported by the Web Service Connector:

● Ignores SOAP headers, whether in request or response.

● Fault messages are treated as CF RuntimeException with the fault message text as the
Exception message

● SOAP attachments are not supported whether in the request or response

● If the Web service WSDL is of the style document/literal, schema elements must follow
these rules to work with the connector framework:

○ Does not use unsupported tags: <any>, <choice>, <union>, <group>,
<attributeGroup>

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 834

○ Schema must not contain recursive element definitions (an element may not
include itself in its definition)

Data Handling
The data returned by means of the Web Service Connector can be rendered as viewable
content in the NetWeaver portal either by means of Java code written by the content
developer, or by automatic tools, such as the iView wizard. The automatic tools create Web
Service iViews based on an iView template provided with the portal and uses iView wizard
runtime code, which handles all function iViews for all connector framework connectors. (For
more information about the system template, see the System Landscape [External] section of
the Portal Administration Guide.)

If content is to be provided by means of the automatic tools, it is important to be aware of how
complex data types are handled by the Web Service Connector. For detailed information
about this, see Data Type Handling by the Web Service Connector [Page 33].

3.8.2.3.3.1 Data Type Handling by the Web Service Connector
How the Web Service Connector handles the various possible data types sent to/returned
from a Web service depends on the means by which the data is to be rendered in the portal:

● by writing Java code, in which case the developer decides how to implement the
display of the data returned

● by means of automatic tools, such as the iView wizard

In either case, attention must be first turned to the properties of the Web Service system
template within the system administration framework of the portal.

Mapping WSDL Schema Elements to Connector Framework Data
Types
The following table shows how the Web Service Connector maps WSDL schema elements to
connector framework data types.

WSDL to Connector Framwork Data Type Mapping

XSD Schema Element Connector Framework
Datatype

Sample/Remarks

<xsd:element> with xsd
primitive type attribute value

Field <xsd:element name="Name"
type="xsd:string"/>

<xsd:all> Record

<xsd:element> with 1 or more
attributes <xsd:attribute>

Record Where the first field of the
record represents the element
and all the element attributes
are the following record fields

<xsd:sequence> Recordset

Portal Properties of the Web Service System
The Web Service system in the portal has, under category Web Service, three properties:

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 835

Web Service System Properties

Parameter Values Description

Force SAP UI Parameter
Management

Y/N

Default value: Y

Declares whether or not the
Web Service Connector will
rearrange input/output
parameters of the specific
Web service in order to adhere
to the SAP UI Parameters
standard.

WSDL Caching Days none/1/30/infinite

Default value: 1 (day)

Caching period of the WSDL
file

WSDL URL A valid URL The URL of the Web service
WSDL

Forcing SAP UI Parameter Management
Regarding how the connector deals with the data types of Web service input/output
parameters, it is this system property that concerns the content developer.

Value ‘N’ Chosen
If this flag is off (the value selected is N), the Web Service Connector does nothing while
processing the Web service WSDL file. The connector framework supports all input/output
data structures:

● field – of primitive type (for example, int, String, double, etc.)

● array – such as a column in a table (not currently supported by the Web Service
Connector)

● record – a set of fields

● recordset – collection of records (table structure)

When one of the fields of a record, or one of the columns of recordset contains data of type
record, or recordset, automatic UI tools will not be able to create iViews displaying
parameters returned by the Web Service Connector, if their data structure is non-compliant or
“nearly flat” (explanation below). The developer can use the connector framework API as
desired. (See the code sample using the Google Web service.)

Value ‘Y’ Chosen
The Web Service Connector is capable of passing all data returned to automatic SAP UI
tools. However, it is not capable of passing nested data as nested data. The connector is only
able to pass data that is “flat,” or “nearly flat.”

If the Force SAP UI Parameter Management flag is on (Y is selected), the Web Service
Connector will manipulate the metadata it will parse from the WS WSDL so that it will appear
as flat. The next section describes the supported data structures.

SAP UI-Supported Data Structures
The data structure of input/output parameters that the Web Service Connector supports, for
consumption by SAP UI tools, are flat or “nearly flat.” This means that an input/output
parameter may be either:
...

1. a primitive data type (byte, short, int, long, float, double, char, boolean)

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 836

We call this a flat data structure.

2. a record whose fields:

○ contain data of primitive types—also called a flat data structure

or

○ contain records, the fields of which contain primitive types, or more records that
comply with this definition recursively—called a nearly flat data structure

3. a recordset (table), the columns of which comply with these rules, as described in (1,
flat) and (2, nearly flat)

In order to emphasize for the sake of clarity:

1 Field Containing primitives: this is flat and complies with (1)—above

2 Record A set of fields that comply with (1), in which case it is flat, or (2),
in which case it is nearly flat

3 Recordset () A table, the columns of which comply with (1), in which case it is
flat, or (2), nearly flat

Non-Compliant Data Structures
The following are data structures that do not comply with SAP UI parameter management:

● Records, one or more fields of which are of type recordset

● Recordsets, one or more columns of which are of type recordset

Web Service Connector Handling of Data Structures
In the event that the Force SAP UI Parameter Management property value is T, the
possibilities of how variable parameters are handled by the Web Service Connector depends
on the compliance of the data structure type, as defined here.

Parameter data structure is “flat”
If the parameter values returned are of flat data type, no special handling is required of the
connector.

Parameter data structure is “nearly flat”
The Web Service Connector converts the “nearly flat” parameters to “flat.” It does this by
parsing the non-primitive structures (record fields, recordset columns) into their constituent
primitives, and concatenating the names, which are displayed as “flat.”

For example:

A table, Employees, has a record for each employee that comprises the fields: Employee
Name (string), Employee ID (int), and Address (record).

Address, one of the columns returned by the Employee recordset, is a record
comprising three fields: City (string), Street (string), HouseID. (int).

The Web Service Connector exposes the metadata from this Web service in a flat list as
follows:

○ Name (string)

○ ID (int)

○ Address_City

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 837

○ Address_Street (string)

○ Address_HouseID (int)

Parameter data structure contains is not “flat” or “nearly flat”
In the event that:

● a record contains a field, the data structure of which is of type recordset

or

● a recordset contains a column, the data structure of which is of type recordset

… the Web Service Connector extracts the nested (child) recordset from the record/recordset,
and presents it as a new, separate input/output parameter value, and reduces 1 from the
number of the record fields/recordset columns.

For example:

Taking another look at the above example of the Employees table, if the Address field were of
type recordset, instead of record, the result returned would be:

● The Employees table with two columns:

○ Name (string)

○ ID (int)

and

● a new parameter of type recordset, with the name ‘Employees_Address’, which is an
Address table with three columns:

○ City

○ Street (string)

○ HouseID (int)

It should be noted that the linkage between these to recordsets is lost. In some cases, this
might be useful, where the output of one of the recordsets has no business value. If, however,
it is important to keep this linkage, then the Force SAP UI Parameter Management flag in the
portal Web service system properties should be turned off (N is selected), Java code must be
written to display the data.

When consuming such a Web service, in most cases, an automatic UI tool, such as the portal
iView wizard, would support the display of only one of the output tables. The iView wizard
allows you to choose which to display. Other tools may allow the display of more than one
output parameter.

Reminder: In the event that the Force SAP UI Parameter Management property value is N,
there are no non-compliant data types. The Web Service Connector handles all connector
framework data types, except arrays.

3.8.2.4 Portal Destination Service
The Portal Destination service can be called by portal applications for obtaining connections
to any available back end which can be consumed by means of connectors deployed on the
NetWeaver portalConnector Framework. It is not limited only to systems in the portal system
landscape (for which the Connector Gateway service is used).

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 838

The back-end connection definitions to may be stored in various system landscape
repositories. As a result it brings all available connectivity landscapes within the range of the
portal Connector Framework.

The Portal Destination service contains out-of-the-box implementations for connecting to: the
J2EE Destination Service, WebDynpro, JCo Destinations.

● Portal System Landscape

● J2EE Destination Service

● J2EE Web Service Security Service (Dynamic Proxy)

● WebDynPro JCo Destinations

Each one of these back-end definition sources can connect to more than one type of back
end. For example, the Portal System Landscape can hold connection definitions to a SAP
system, a relational database system, and a Web Service. The Portal Destination service
enables the client to get a list of destination names (filtered by their source and type). The
client can also retrieve information for a given destination name, such as its source and type.
The service also enables the client to get a Connector Framework connection to a given
destination name.

The following table shows the relationship between back-end system definition sources and
the Connector Framework connectors that can access them by means of the Portal
Destination service.

Connector – Source Chart

Connector Type

Source

SAP Web Service JDBC

Portal System
Landscape

J2EE Destination

Dynamic Proxy

WebDynPro JCo

In addition to the mapping in the table, an additional connector that may be
deployed to the J2EE would be mapped only to the application for which it was
created.

Extending the Service
The destination service is extensible and it is possible to write and register your own
implementation of system landscape repositories. See the
com.sap.portal.connectivity.destinations package in the Javadocs for more
details.

Essential Information
The Portal Destination service API is exposed as a J2EE library and therefore can be
consumed from any J2EE component type. To retrieve this service instance from a portal
application, add com.sap.portal.ivs.connectorservice in the portalapp.xml
references list and use:

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 839

IDestinationsService destinationsService = (IDestinationsService)
PortalRuntime.getRuntimeResources().getService(IDestinationsService.K
EY);

To retrieve this service from another type of component, add to your component a reference
to J2EE library com.sap.portal.services.api and use:

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sapportals.portal.prt.registry.PortalRegistryFactory");

InitialContext context = new InitialContext(env);

IDestinationsService destinationsService = (IDestinationsService)
context.lookup(IDestinationsService.SERVICE_JNDI_NAME);

Code sample for using this service:
String[] destinationNames;

String destinationName;

IDestinationWrapper destinationWrapper;

IConnection connection = null;

DestinationFilter destinationFilter1 = new
DestinationFilter(IDestinationWrapper.SOURCE_PORTAL_SYSTEM_LANDSCAPE_
SERVICE, IDestinationWrapper.TYPE_ALL);

DestinationFilter destinationFilter2 = new
DestinationFilter(IDestinationWrapper.SOURCE_J2EE_DESTINATION_SERVICE
, IDestinationWrapper.TYPE_SAP);

DestinationFilter[] destinationFilters = new DestinationFilter[]
{destinationFilter1, destinationFilter2};

destinationNames = destinationsService.getDestinationNames(myUser,
destinationFilters);

boolean hintAreCredentialsSet;

for (int i = 0; i < destinationNames.length; i++) {

destinationName = destinationNames[i];

try {

destinationWrapper =
destinationsService.getDestinationWrapper(myUser, destinationName);

hintAreCredentialsSet =
destinationWrapper.hintAreCredentialsSet(myUser);

if (hintAreCredentialsSet) {

connection = destinationsService.getConnection(myUser,
destinationName);

} else {

// get credential (e.g. popup a logon window)

connection = destinationsService.getConnection(myUser,
destinationName, "myUserName", "myPassword");

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 840

}

// consume the back-end

} catch (Exception e) {

// error handling

} finally {

if (connection != null) {

try {

connection.close();

} catch (ResourceException e1) {

// error handling

3.8.2.5 Developing a Connector
The developer of a connector to a EIS is likely to be familiar with the functionality and
methods of connecting and interacting with that system. The EIS-specific implementation,
therefore, is up to the developer. Additional requirements are:

● The connector developer must be familiar with the JCA standard.

● The developer must gain familiarity with, and implement, the packages and interfaces
of the portal connector framework, which extends the JCA standard.

For more information and details, see the sections under Connector Framework
Structure [Page 33] and see the Javadocs for the portal and portal runtime APIs,
located on the SAP Developer Network (SDN) at www.sdn.sap.com/irj/sdn/javadocs.

● The connector needs to be deployed on the WebAS.

See Connector Deployment [Page 33].

For working with the Enterprise Portal:

● The connector developer must create and deploy, in the portal, a system template for
the EIS, upon which portal system objects, which represent the back-end system, will
be based.

See System Template [External].

For developing connector code, though optional, it is recommended to take
advantage of the new connector wizard. For details, see Connector Wizard
[Page 33].

Prerequisites
Following are the file and envirionment prerequisites for the development of connectors
compliant with JCA and the Enterprise Portal connector framework.

File/Environment Description Source

GenericConnector.jar Required to test the connector. Comes with SAP

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 841

Enterprise Portal.

ExtendedConnector.jar Adds functionality to generic
connector

Comes with J2EE
application server.

ConnectorHelper.jar Contains utilities that support the
developer.

Comes with SAP
Enterprise Portal.

Connector.jar Contains the JCA API. Comes with J2EE
application server.

JAAS.jar

(Java Authentication
and Authorization
Service)

Required by the connector framework. Comes with J2EE
application server.

JTA. JAR

(Java Transaction API)

Required by the connector framework. Comes with J2EE
application server.

EIS

(Enterprise Information
System)

Required to test the connector. Has to be installed
separately.

Java Application
Server

Any J2EE JCA 1.5-compliant WAS to
work with servlets without the SAP
Enterprise Portal.

Recommendation:

SAP Web AS 6.40 Java

Has to be installed
separately.

PRT

(Portal Runtime)

Required to test the connector in the
SAP Enterprise Portal environment

Comes with SAP
Enterprise Portal.

IDE

(Integrated
Development
Environment)

SAP NetWeaver Developer Studio

See also Connector Wizard [Page
33].

Has to be installed
separately.

Connector Wizard The connector wizard is a plug-in for
SAP NetWeaver Developer Studio /
Eclipse IDE. It creates a project that
contains a template for a connector.

Comes with the PDK.

Location: Java Developer
tab -> Development ->
Downloads

Connector Web
Service

Required to test the connector in the
SAP Enterprise Portal environment

Comes with SAP
Enterprise Portal.

Additional Documentation
See also, in the Development Manual, Connectivity and Interoperability [External], J2EE
Connector Architecture [External], Implementing A 1.0 Resource Adapter [External].

Another potentially useful source of helpful information is the SAP J2EE Development
Manual. See SAP Web AS for Java Applications on the help portal.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 842

3.8.2.5.1 Connector Wizard

The connector wizard is a plug-in for the SAP NetWeaver Developer Studio IDE. The
connector wizard generates a new project for a connection to an EIS in the IDE that is
adjusted to the capabilities of the EIS.

For more information about the plug-in installation and use, see the Installation [Page 33]
section and Using the Connector Wizard [Page 33].

3.8.2.5.1.1 Installation
Obtain the file EclipseConnectorWizard.zip and extract it to the plugins folder,
located under the SAP NetWeaver Developer Studio or Eclipse home directory and then
restart the IDE. The connector wizard creates a new entry, called SAP Connector Framework
Wizard, in the new project wizard of the IDE.

For the latest information about portal connectivity and the availability and location files for
download, see SAP Note 913483.

3.8.2.5.1.2 Using the Connector Wizard

Procedure
Start the SAP NetWeaver Developer Studio or Eclipse. The connector wizard is started with
the following steps:

4. From the IDE file command menu choose New → Project. The new project wizard
dialog window is displayed.

5. Select SAP Connector Framework Wizard from the left pane of the new project wizard
dialog window.

6. Select Connector Wizard from the right pane and choose Next.

The following dialog window is displayed:

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 843

The connector wizard expects the following user input before it can create the project:

Field Name Description

Connector Name Name of the connector/project. This name also serves as the
base for the names of some of the classes created for the project
so the name must be in accordance with the Java class naming
conventions.

Connector
Package

Base name for the connector packages. See the list of packages
[Page 33] created by the connector wizard. The specified name
must be in accordance with the Java package naming
conventions.

Connector Root
Folder

Root folder in which the project is stored.

7. Select the appropriate checkboxes according to the capabilities of the target EIS.

Option Description Created Packages
(see also list of packages [Page 33])

Function
Metadata
Retrieval

The connector will
retrieve metadata
functions from the

metadata.functions
metadata.primitives
metadata.structures

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 844

target application, The class

<c_name>InteractionSpecProperty

in package execution.functions will be
generated also if the function execution
checkbox is not selected.

Function
Execution

The connector will
execute functions
of the target
application

execution.functions
execution.structures

Native Query
Launching

The connector will
implement the
execution of native
queries in the
target application.

<connector_name>NativeQuery in
package execution.objects is created.

API Querying
and Object
Model
Metadata
Retrieval

The connector will
retrieve the object
model of the target
application and
implement the
execution of
queries.

<connector_name>Execution in package
execution.objects is created.
Packages created:
metadata.objects
execution.structures
metadata.primitives
metadata.structures

Object Model
Relations

The connector will
implement the
resolution of
relationships of
target application
objects.

metadata.relations

Native
Interface to
Target
Applications

The connector will
retrieve a native
handle to the target
application API.

<connector_name>Query in the package
execution.objects and function
newQuery() is created in class
<connector_name>Connection.

8. Choose Finish to confirm the input and to start the project generation.

A new project with the specified name and packages is created on the workbench of the IDE.
The project is ready for use and can be adjusted or extended.

3.8.2.5.1.2.1 Packages Created by the Connector Wizard
Following packages and classes are created by the connector project wizard:

The names listed in <> refer to the names specified in the connector wizard
dialog window.

<c_package> refers to the Connector Package.

<c_name> refers to Connector Name.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 845

Package Class

<c_package>.metadata Capabilities.java
<c_name>MetaData.java

<c_package>.connection <c_name>Connection.java
<c_name>ConnectionFactory.java
<c_name>ConnectionManager.java
<c_name>ConnectionMetaData.java
<c_name>ManagedConnectionMetaData.java
<c_name>Native.java
<c_name>ManagedConnection.java
<c_name>ManagedConnectionFactory.java
<c_name>ConnectionSpec.java
<c_name>ConnectionProperty.java
<c_name>ConnectionSpecMetaData.java
<c_name>DefaultConnectionPropertyGroup
.java

<c_package>.execution.functi
ons

<c_name>IndexedRecord.java
<c_name>Interaction.java
<c_name>InteractionSpec.java
<c_name>MappedRecord.java
<c_name>RecordFactory.java
<c_name>InteractionSpecMetaData.java
<c_name>InteractionSpecProperty.java

<c_package>.execution.object
s

Query.java
NativeQuery.java
<c_name>Execution.java

<c_package>.execution.struct
ures

RecordSetWrapper.java
RecordWrapper.java
ResultSetMetaDataWrapper.java

<c_package>.metadata.functio
ns

Function.java
FunctionException.java
FunctionsMetaData.java
FunctionParameter.java

<c_package>.metadata.objects Attribute.java
BusinessObject.java
BusinessObjectGroup.java
Method.java
ObjectsMetaData.java
ObjectParameter.java
Index.java

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 846

<c_package>.metadata.primiti
ves

BigDecimalType.java
BooleanType.java
ByteType.java
CharType.java
DateType.java
DoubleType.java
FloatType.java
IntType.java
LongType.java
NumberType.java
ShortType.java
StringType.java

<c_package>.metadata.structu
res

ArrayStructure.java
FieldStructure.java
RecordSetStructure.java
RecordStructure.java

<c_package>.metadata.relatio
ns

BlackBoxRelation.java
DefaultRelation.java
Relation.java
RelationsMetaData.java

T connector wizard supplies a default implementation which may not necessarily
suit the requirements of your EIS in every detail. It is important that you examine
the logic of the generated classes to see if they meet the requirements.

3.8.2.5.2 Connector Deployment
Connectors, also known as resource adapters, are deployed as Java resource archives, or
RAR files. The connector deployment depends on the Web application server.

SAP Enterprise Portal installation provides the following connectors:

● a JDBC connector [Page 33] for universal database connectivity

● an SAP System connector [Page 33] for connectivity to back-end SAP systems

● a Web Service connector [Page 33] for interacting with any Web service

These connectors are ready to use upon installation of the portal and do not require separate
deployment.

Connector Archive
The Resource Adapter Archive (.RAR) file contains the following objects:

● .jar files that contain the connector classes – Java standard.

● ra.xml deployment descriptor file—which is Java standard and contains the
connector metadata. See section Deployment Descriptor Example [Page 33].

● manifest.mf file that contains general version information—Java standard for RAR
files. (This file is generated automatically.)

● connector-j2ee-engine.xml file that contains deployment information, such as
component type and version, so that the application server (J2EE Engine) knows

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 847

where to deploy—for example, on portal or the J2EE server itself. This file is specific to
SAP and not the Java standard for RAR’s.

For information about deploying a standalone RAR file, see Stand-Alone Deployment
as RAR [External].

See important additional information in the Reference Manual under J2EE Engine
Reference [External] → Deployment Descriptors [External] → connector-j2ee-
engine.dtd [External].

Additional Documentation
For a useful source of information on RAR deployment see, in the Development Manual,
Connectivity and Interoperability [External] → J2EE Connector Architecture [External] →
Deploying the Resource Adapter [External].

3.8.2.5.2.1 Non-Managed Mode
In the examples for the SAP Web AS Java, which supports JCA, the connection factory is
obtained with a command such as the following:

IConnectionFactory conFactory =

(IConnectionFactory) context.lookup("(IConnectionFactory)
initctx.lookup("deployedAdapters/JDBCFactory/shareable/JDBCFacto
ry");

The non-managed mode has no JNDI context to obtain a connection factory so the connector
has to create a manager connection factory instance to generate a client connection factory
(CCI) with the following commands:

JDBCManagerConnectionFactory mcf = new
JDBCManagedConnectionFactory();

IConnectionFactory conFactory =

 (IConnectionFactory) mcf.getConnectionFactory();

Deployment
The GenericConnector.JAR file for the connector and all other JAR files required by the
connector must be copied into the global library folder of the application server.

3.8.2.5.2.2 Deployment Descriptor Example
The name for the connector deployment descriptor file is ra.xml. The ra.xml file contains
the implementation information and the connector metadata.

External libraries, that contain methods the connector references, must be placed in the
classpath of the application server. The SAP backend system connector, for example, needs
the JCo libraries.

ra.xml file example:
<?xml version="1.0" encoding="UTF-8"?>

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 848

 <!DOCTYPE connector PUBLIC '-//Sun Microsystems, Inc.//
 DTD Connector 1.0//EN' 'http://java.sun.com/dtd/connector_1_0.dtd'>
 <connector>
 <!--Basic metadata of the connector-->
 <display-name>SAP Connector</display-name>
 <vendor-name>SAP</vendor-name>
 <spec-version>1.0</spec-version>
 <eis-type>SAP</eis-type>
 <version>1.0</version>
 <resourceadapter>
 <!--Implementation of the managed connection factory interface-->
 <managedconnectionfactoryclass>
 com.sap.SAPConnector.connection.SAPConnectionFactory
 </managedconnectionfactory-class>
 <!--Interface of the connector connection factory -->
 <connectionfactoryinterface>
 javax.resource.cci.ConnectionFactory
 </connectionfactoryinterface>
 <!--Implementation of the connector connection factory interface-->
 <connectionfactory-impl-class>
 com.sap.SAPConnector.connection.CCIConnectionFactory
 </connectionfactory-impl-class>
 <!--Interface of the connector connection -->
 <connection-interface>javax.resource.cci.Connection</connection-
interface>
 <!--Implementation of the connector connection interface-->
 <connection-impl-class>
 com.sap.SAPConnector.connection.CCIConnection
 </connection-impl-class>
 <!--Connection support offered by the connector-->
 <transaction-support>NoTransaction</transaction-support>
 <authentication-mechanism>
 <authentication-mechanism-type>
 BasicPassword
 </authentication-mechanism-type>
 <credential-interface>
 javax.resource.security.PasswordCredential
 </credential-interface>
 </authentication-mechanism>
 <reauthentication-support>
 false
 </reauthentication-support>
 </resourceadapter>
 </connector>

3.8.2.6 Connector Web Service
The connector Web service is part of the SAP Enterprise Portal. The Connector Web service
provides synchronous procedures, which represent the business functions, to access external
clients. The Connector Web Service uses the Java API for XML-based Remote Procedure
Calls (JAX-RPC) that communicates with the client over the Simple Object Access Protocol
(SOAP).

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 849

You have to be familiar with these technologies to develop a client application that uses the
Connector Web service. This document includes some coding examples.

You can test the Connector Web service functions with the Test Connector Web Service
Utility provided by the PDK.

Connector Web Service Architecture
To call a remote procedure, the client application invokes a method on a stub, which is a local
object that represents the remote service. The stub invokes routines in the JAX-RPC runtime
system of the referenced implementation. The runtime system converts the remote method
call into a SOAP message and transmits the message as an HTTP request.

When the server receives the HTTP request, the JAX-RPC runtime system extracts the
SOAP message from the request and translates it into a method call. The JAX-RPC runtime
system invokes the method on the tied object. The tied object invokes the method on the
implementation of the Connector service.

The connector service is provided by the connector framework. The Stubs and ties are
generated by the xrpcc tool that comes with JAX-RPC. JAX-RPC comes with the WAS.

Using the Connector Web Service
The connector client is a stand-alone program that calls the ExecuteCommand method of the
ExecuteCommand service. It makes this call over a stub, a local object which acts as a proxy
for the remote service. The client application can be written in any language that is supported
by SOAP messaging.

Client Application Workflow
9. Create the URL endpoint.

10. Create the SOAP message with header and set the method name and input
parameters.

11. Send the message and a receiving reply.

12. Parse and extract the output.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 850

See section Client Application Coding Example [Page 33].

Deployment of Web Services

The Connector Web Service is a PRT service and installed with the SAP Enterprise Portal.

3.8.2.6.1 Client Application Coding Example
// Establish the URL endpoint which is the connector Web service.

 to = reqBase + "/irj/servlet/prt/soap/ConnectorWebService";
 URLEndpoint urlEndpoint = new URLEndpoint(to);
 int id = Integer.parseInt(id_msg);

// Construct the SOAP message.
 SOAPMessage msg = constructMessage(id);

// Send the message to the provider using the connection.
 SOAPMessage reply = con.call(msg, urlEndpoint);

// Constructing the headers of the SOAP message.
// (according to your requirements).
// A common header declaration, as shown here, is defining namespaces
.
// Create a message factory.
 MessageFactory mf = MessageFactory.newInstance();

// Create a message from the message factory.
 SOAPMessage msg = mf.createMessage();

// Message creation takes care of creating the SOAPPart,
// a required part of the message as per the SOAP 1.1 specification.
 SOAPPart sp = msg.getSOAPPart();

// Retrieve the envelope from the soap part to start building the
// soap message.
 SOAPEnvelope envelope = sp.getEnvelope();

// Create a soap header from the envelope.
 SOAPHeader hdr = envelope.getHeader();

// get a soap body from the envelope.
 SOAPBody bdy = envelope.getBody();

 bdy.setEncodingStyle("http://schemas.xmlsoap.org/soap/encoding/");
 bdy.addNamespaceDeclaration("wn0", wn0URI);
 bdy.addNamespaceDeclaration("wn1", "http://www.w3.org/2001/XMLSche
ma");
 bdy.addNamespaceDeclaration("wn2",
 "http://www.w3.org/2000/10/XMLSchema")
;
 bdy.addNamespaceDeclaration("wn3", "http://www.w3.org/1999/XMLSche
ma");

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 851

 bdy.addNamespaceDeclaration("prt", "http://prt.java.soap/schemas")
;
 bdy.addNamespaceDeclaration("wn4",
 "urn:com.sap.ConnectorWebService");
 bdy.addNamespaceDeclaration("xsi", xsiURI);

// You generate the rest of the SOAP message according to the method
// you want the Web server to run. (Note: Only one method per request
.)
// For example: getting connector capabilities.
 Name childName = null;

// Create a Name object for the method.
 Name methodName = envelope.createName("getCapabilities", "wn4", nu
ll);

// Add a soap body element to the soap body.
 SOAPBodyElement service = bdy.addBodyElement(methodName);

 childName = envelope.createName("JNDIName");
 SOAPElement param0 = service.addChildElement(childName);
 Name typeName = envelope.createName("type", "xsi", xsiURI);
 param0.addAttribute(typeName, "wn1:string");
 param0.addTextNode("EISConnections/JDBCFactory");

 childName = envelope.createName("connectionString");

 SOAPElement param1 = service.addChildElement(childName);
 typeName = envelope.createName("type", "xsi", xsiURI);
 param1.addAttribute(typeName, "wn1:string");
 param1.addTextNode("driver=com.sap.jdbc.sqlserver.SQLServerDriver,
 url=jdbc:sap:sqlserver://localhost:1433;
 user=sa;password=sa;databaseName=Northwind,");

// Example for launching a query:
 private void executeQuery(SOAPEnvelope envelope, SOAPBody bdy)
 throws Exception
 {
 Name childName = null;
 Name methodName = envelope.createName("executeQuery", "wn4", null
);

// Add a soap body element to the soap body.
 SOAPBodyElement service = bdy.addBodyElement(methodName);

 childName = envelope.createName("JNDIName");
 SOAPElement param0 = service.addChildElement(childName);
 Name typeName = envelope.createName("type","xsi",xsiURI);
 param0.addAttribute(typeName,"wn1:string");
 param0.addTextNode("EISConnections/JDBCFactory");

 childName = envelope.createName("connectionString");
 SOAPElement param1 = service.addChildElement(childName);
 typeName = envelope.createName("type","xsi",xsiURI);
 param1.addAttribute(typeName,"wn1:string");

 param1.addTextNode("driver=com.sap.jdbc.sqlserver.SQLServerDriver
,

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 852

 url=jdbc:sap:sqlserver://localhost:1433;
 user=sa;password=sa;databaseName=Northwind,");

 childName = envelope.createName("queryString");
 SOAPElement param2 = service.addChildElement(childName);
 typeName = envelope.createName("type","xsi",xsiURI);
 param2.addAttribute(typeName,"wn1:string");
 param2.addTextNode("select * from [dbo].[Customers]");

 childName = envelope.createName("startFromRecord");
 SOAPElement param3 = service.addChildElement(childName);
 typeName = envelope.createName("type","xsi",xsiURI);
 param3.addAttribute(typeName,"wn1:int");
 param3.addTextNode("1");

 childName = envelope.createName("recordsNumberToRetrive");
 SOAPElement param4 = service.addChildElement(childName);
 typeName = envelope.createName("type","xsi",xsiURI);
 param4.addAttribute(typeName,"wn1:int");
 param4.addTextNode("10");
 }

3.8.2.6.2 Test Connector Web Service Utility
The Test Connector Web Service Utility is a PDK tool to test the connector Web service
functions by running connectivity tests to existing systems. The tool can launch a function call
or an SQL query, whatever the selected system supports. The tool displays the SOAP
request and the returned response in separate areas. The returned response is either the
expected output or an appropriate message.

Using the Test Connector Web Service Utility

Testing a Function
...

1. From the PDK top level navigation choose Java Developer and than the following
commands:

Development → Support Desk

The support desk iView is opened in the content area.

2. From the Connection Testing area in the support desk choose Connector Web Service.

The Test Connector Web Service Utility is displayed in a separate browser window and
has the following user interface:

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 853

3. Under Select test system choose an existing system or installed connector in the
System/Connector Name dropdown list box.

If you choose a connector, a Connection String input field is displayed that contains the
connection parameters. The correct parameters have to be provided manually.

Exampe of a connection string for SAPFactory_LoadBalancing:

Group=,User=,client=,Language=,gwserv=,mshost=,tphost= ...

Example of a connection string for the JDBC connector:

driver=com.sap.portals.jdbc.sqlserver.SQLServerDriver.
 url= jdbc:sap:sqlserver:

//<server>:1433;databaseName=Northwind,User=sa,Password=adm
in,

4. From the Function dropdown list box choose the Web service function you want to test.
The Web Service function you choose must be supported by the system chosen
before.

Availabel Web service functions

Function Discription

Get Capabilites Gets the meta data of the system or
connector.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 854

Get Root Business Object Group Gets the name of the business tree object
root.

Get All Business Objects Gets all bottom level nodes of the business
object tree, for example, from a database
table.

Get Business Object Tree Gets all groups and objects from the
business object tree.

Get Business Object Gets the meta data of the business object, for
example a field of a database.

Get Root Business Object Group Children Gets the content of a specific business object
group.

Execute Query Launches an SQL query.

Get Function List Database:

Get all stored procedures.

Backend system:

Get all RFC

Get Function Gets the parameters for the specified
function.

Execute Function Tests the execution of the spcified function.

5. If the choosen function does not parameters, the message No parameters for this
function is displayed.

If the function chosen requires parameters, the parameters have to be entered with the
appropriate values in the following format:

<par1_name>=<par1_value>,<par2_name>=<par2_value>, ...

Testing a Query
...

1. Choose Execute Query from the Function dropdown list box and enter a valid SQL
query in the Query String text area.

2. Enter the row number where the returned RecordSet should start.

3. Enter the number of rows to be returned.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 855

Start the Test
Choose the Test button and wait for a response. The request is dispplayed in the SOAP
Request area and the test response or message is displayed in the SOAP Response area.

3.8.3 Dynamic System Resolution

Purpose
The Dynamic System Resolution feature enables you to create a service that selects at
runtime the system to which an iView connects.

Generally, an iView connects to a system that is defined at design time. With dynamic system
resolution, an iView can select at runtime from among several systems, based on the location
of the current user, network traffic or any other logic.

For example, for a specific iView, you may want users in Europe to connect to a system in
Germany while users in the United States connect to a similar system in New York.

How System Resolution Works
An iView that needs to connect to a back-end system contains a reference to a system alias.
The iView — via the Connector Gateway or other service — calls the system landscape
service method getSystemId() in order to resolve the alias to a specific system defined in
the Portal Content Directory (PCD). By default, the system landscape service simply queries
the PCD for the system that is associated with that alias, and returns the PCD path to that
system.

In the PCD, a system alias is associated with only one system.

In order to resolve an alias to a different system, you can create a system resolving service
for a specific alias. When an iView calls getSystemId() to resolve the alias, the system
landscape service first checks if a custom service exists for the alias. If one exists, the system
landscape service calls the resolving service — instead of querying the PCD — in order to get
the corresponding system.

The resolving service — which receives from the system landscape service the name of the
alias and a reference to the current user — can resolve the alias to any system based on any
logic.

This section contains the following information:

● Dynamic System Resolution Workflow [Page 33]: Describes what happens when an
iView requests a system via an alias that must be resolved dynamically.

● Writing a System Resolving Service [Page 33]: Describes how to write a system
resolving service.

● Checking Deployment [Page 33]: Describes how to check the deployment of a system
resolving service.

● Removing a System Resolving Service [Page 33]:Describes how to remove a system
resolving service.

3.8.3.1 Dynamic System Resolution Workflow
The following describes the process for resolving any system alias:
...

1. A portal component calls the getSystemId() method in the system landscape
service in order to resolve an alias to the PCD path for a system.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 856

2. The system landscape service checks the portal registry under
/ROOT/runtime/alias.mappers for an entry with the same name as the alias.
This entry contains the name of the service for resolving the alias.

3. If there is an entry, the system landscape service instantiates the service listed in the
registry for the specified alias, and calls the getAlternateSystem() method,
providing to the method the current user as an IUser object and the name of the alias
as a string. The method returns a string that represents the PCD path of a system.

If there is no entry, the system landscape queries the PCD for the system to which the
alias is associated.

4. The system landscape service returns the PCD path as a string to the portal
component.

The following figure illustrates the process for a case when:

● An iView tries to connect to a system with alias ABC.

● A resolving service named ABCservice is created and uploaded to the portal.

● A registry entry is created called ABC with a value of ABCservice, which is the name
of the service for resolving the ABC alias.

iView

System Landscape Service

PCD

System
Alias:
ABC

1. Retrieve system by calling
getSystemId(“ABC”).

System name: myR3;
alias: ABC

ABCservice
(Resolving Service for Alias ABC)

Portal
Registry

/runtime/alias.mappers/ABC:
ABCservice

2. Get name of service
listed in registry for
alias ABC.

3a. If registry entry exists for
alias ABC, instantiate
ABCservice and call its
getAlternateSystem()
method, which returns the
PCD path of a system.

4. Return the PCD
path for the
selected system.

3b. If registry entry
does not exist,
get the system
that is defined in
the PCD for this
alias.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 857

3.8.3.2 Writing a System Resolving Service
A portal component that contains a system resolving service is composed of two parts:

● A java class that implements the following interfaces:

○ IService: The standard interface for all services

○ IDynamicSystemService: The interface for a system resolving service. This
interface exposes one method, getAlternateSystem(), which returns a
string that represents the PCD path to a system defined in the PCD.

● A portalapp.xml file that defines the following:

○ The entries in the portal registry to create in order to indicate to the system
landscape service for which aliases to invoke this service

○ The application properties that allow the service to function as a resolving
service

○ The name of the resolving service and the class within the PAR that implements
the service

A portal component can contain more than one system resolving service, if the component
PAR file contains several java classes that implement the IDynamicSystemService interface.

A system resolving service can resolve more than one alias, if the portalapp.xml file creates
several registry entries for the service.

3.8.3.2.1 IDynamicSystemService
Every system resolving service must implement IDynamicSystemService, which exposes
a single method, getAlternativeSystem().

IDynamicSystemService

Method Description Arguments Return value

getAlternativeSystem Returns as a string the PCD
path for the given alias

(IUser user,
String alias)

Java.lang.String

Example
The following shows the class declaration and the getAlternativeSystem() method for
implementing the IDynamicSystemService interface.

The methods for implementing the IService interface are not shown.
public class MyAliasMapping implements IDynamicSystemService, IServi
ce {
 .
 .
 .
 public String getAlternativeSystem(IUser user, String alias)
 {
 String system = "pcd:portal_content/systems/db2_us";
 return system;
 }
}

The getAlternativeSystem() method provides the logic for resolving an alias to the PCD
path of a system. Generally, this logic is based on the user and the system alias that are
passed to the method.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 858

The user object that is passed into the getAlternativeSystem() method is of type
IUser. You can query the IUser object for such things as the user’s groups and roles. For
more information on the IUser interface, see the User Management Engine documentation
in the Portal Development Kit.

3.8.3.2.2 portalapp.xml
The portalapp.xml file for a system resolving service contains the following sections:

● Registry: Creates entries in the portal registry to indicate to the system landscape
service the aliases for which to invoke this service.

● Application Configuration: Specifies the properties that allow the service to function
as a resolving service.

● Services: Specifies the name of the resolving service and the class within the PAR that
implements the service.

The following is an example of a portalapp.xml file for a system resolving service:
<?xml version="1.0" encoding="utf-8"?>
<application>
 <registry>
 <entry path="/runtime/alias.mappers/pubs" name="pubs_srv"
type="service"/>
 </registry>
 <application-config>
 <property name="releasable" value="false"/>
 <property name="startup" value="true"/>
 <property name="ServicesReference"
value="com.sap.portal.ivs.api_dynamicSystemService"/>
 </application-config>
 <components/>
 <services>
 <service name="pubs_srv">
 <service-config>
 <property name="className"
value="com.sap.portal.dynamicsystem.sample.MyAliasMapping"/>
 <property name="startup" value="true"/>
 </service-config>
 </service>
 </services>
</application>

Registry Element
The <registry> element of the portalapp.xml file specifies the aliases for which the
services defined in this PAR will be invoked.
<registry>
 <entry path="/runtime/alias.mappers/pubs" name="pubs_srv"
type="service"/>
</registry>

The <registry> element contains one or more <entry> elements. Each <entry> element
contains the following attributes:

● path: A key to create in the portal registry. The key name should be the name of a
system alias to be resolved. The key should always be placed in the registry under

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 859

/ROOT/runtime/alias.mappers. In the above example, the alias pubs is
specified.

● name: The name of the service to invoke when a system is requested for the alias
referred to in the path attribute. The names of the services included in the PAR are
defined in the <services> element.

● type: Always set to service.

Application Configuration Element
The <application-config> element sets the properties of the PAR file so that the
services defined in the PAR can function as system resolving services. The section should
always be written as it appears below.
 <application-config>
 <property name="releasable" value="false"/>
 <property name="startup" value="true"/>
 <property name="ServicesReference"
value="com.sap.portal.ivs.api_dynamicSystemService"/>
 </application-config>

The <application-config> element contains the following <property> elements:

● releasable: Prevents the service from being dropped by the system, for example, if the
system runs low of memory.

● startup: Specifies that the application is initialized at startup and deployed locally,
improving performance.

● ServicesReference: References the dynamic system service, which provides the API
for this feature.

Services Element
The services element specifies the system resolving services defined in the PAR.
 <services>
 <service name="pubs_srv">
 <service-config>
 <property name="className"
value="com.sap.portal.dynamicsystem.sample.MyAliasMapping"/>
 <property name="startup" value="true"/>
 </service-config>
 </service>
 </services>

Each service is described by a <service> element, whose name attribute specifies the
name of the service.

Each <service> element contains a <service-config> element, which contains the
following <property> elements:

● className: The implementing class for the system resolving service.

● startup: Indicates to start the service when the portal runtime is started. Always set this
property to true.

3.8.3.2.3 User Mapping
When connecting to a system, an iView must provide a user name and password. The iView
queries the PCD for the default alias of the system to which it wants to connect, then retrieves
the user name and password mapped for the current user for this alias.

Core Development Tasks March 2006

Connecting to Backend Systems

Running an Enterprise Portal 860

With dynamic system resolution, a resolving service is allowed to select any valid system
defined in the PCD, even one without an alias. However, a system without an alias cannot
have a user mapping and, therefore, no iView could connect to such a system.

Even with dynamic system resolution, make sure that all the systems in the PCD
that are required by your content have aliases and user mappings for their
respective back-end systems.

3.8.3.3 Checking Deployment
After deploying a resolving service to the portal, you can check whether the service is
properly registered and started and whether the aliases to be resolved by this service are
properly registered.

Checking a Resolving Service
To check that a service is registered and started, navigate to the Portal Runtime Application
Console as follows:

● System Administrator → Support → Support Desk → Port Runtime → Application
Console

From the dropdown list, select a PAR that contains resolving services and click Show. The
console shows the services contained in the PAR, and whether each service is started.

Checking Registered Aliases
To check that an alias is registered to be resolved by a resolving service, navigate to the
Portal Registry Browser as follows:

● System Administrator → Support → Support Desk → Port Runtime → Portal
Registry Browser

In the registry browser, navigate to /ROOT/runtime/alias.mappers. The browser shows the
aliases that are registered for dynamic system resolution. For each alias, the fully qualified
name of the service (that is, the name of the service preceded by the name of its PAR) is
displayed.

3.8.3.4 Removing a System Resolving Service
To remove a system resolving service, remove from the portal the PAR that contains the
service.

When you remove a PAR, you remove all resolving services defined in that
PAR.

If a PAR contains a service that resolves more than one alias or a PAR defines more than
one service, you may need to modify the PAR and then redeploy it instead of simply removing
the PAR.

Removing a Service
To remove a service from a PAR that contains two services, do the following:
...

1. Remove from the PAR the class file that defines the resolving service that you want to
remove.

Core Development Tasks March 2006

Specialities in the Portal

Running an Enterprise Portal 861

2. Modify the portalapp.xml file for the PAR by doing the following:

○ Remove the <service> element for the service that you want to remove.

○ Remove the <registry> elements for the aliases that were to be resolved
using the service that you want to remove.

3. Redeploy the PAR.

Removing an Alias for a Service
A service can be configured to resolve two or more aliases. To prevent the service from
resolving one of the aliases, do the following:
...

1. Modify the portalapp.xml file for the PAR by removing the <registry> element for the
alias that you no longer want resolved by the service.

2. Redeploy the PAR.

3.9 Specialities in the Portal
This section contains special topics about developing for the portal.

3.9.1 Implementing an External-Facing Portal

Purpose
The portal includes a set of features that enable the use of the portal as an external-facing
portal, that is, a public Web site. These features provide for the following:

● Improved performance over the internet by reducing the number of resources
required for each request. An external-facing portal avoids the use of resource-heavy
HTMLB and client-side eventing (EPCM).

● Web-like behavior, including the use of standard browser buttons, such as Back,
Forward and Refresh, for navigation.

● Easy customization of the portal look and feel with the use of tag libraries for
creating navigation iViews and page layouts with custom iView trays.

● For more information on implementing an external-facing portal, see Implementing an
External-Facing Portal [External] in the Portal Administration Guide.

Developer Tasks
The following portal features are relevant to developers when implementing an external-facing
portal:

● Light Framework Page: The portal provides a light framework page with the following
characteristics:

○ Includes light navigation iViews that do not use HTMLB or client-side eventing
(EPCM) JavaScript, reducing the resources required for rendering the page.

○ Renders the portal in a single frame, which enables Web-like behavior, such as
the use of the browser navigation buttons. The single frame also eliminates the
need for JavaScript to enable communication between frames.

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 862

○ For more information on building your own light navigation iViews, see Creating
Navigation iViews [Page 33].

● Resource-Sensitive Page Builder: The page builder can prevent the downloading of
client-side eventing JavaScript if an iView indicates it does not need eventing. The
need for eventing is specified by a component’s EPCFLevel profile property.

For more information on this property, see Components [Page 11] in the developer
documentation.

● JSP Tag Libraries: The portal provides tag libraries for easily developing navigation
iViews and page layouts from JSP pages. The following tag libraries are provided:

○ Navigation Tag Library: Enables you to develop iViews that access the current
user’s navigation hierarchy. The tag library is generally used for top-level and
detailed navigation iViews.

For more information, see Navigation Tag Library [Page 33].

○ Framework Tag Library: Enables the creation of links for various portal
functions, such as logging off or personalizing the portal. The tag library is
generally used for masthead and page title bar iViews.

For more information, see Framework Tag Library [Page 33].

○ Layout Tag Library: Enables you to develop page layouts, and to develop
custom iView trays.

For more information, see Layout Tag Library [Page 33].

● Navigation Cache and Quick Links: You can implement navigation caching and quick
links for navigation hierarchies that your navigation connectors create.

For more information, see Creating Navigation Connectors [Page 33].

4 Ensuring Quality
Purpose
This section provides information about how to improve the quality of your portal applications,
and includes the following:

● Developing Well Performing Portal Applications [Page 33]

● General Rules and Guidelines for Managing Exceptions [Page 33]

4.1 Developing Well Performing Portal Applications

Purpose
The SAP NetWeaver Developer Studio provides tools for the development of portal
applications and services for the SAP Enterprise Portal. However the complexity of the Java
language still leaves a lot of room to create applications that affect the overall performance of
the portal significantly.

This guide discusses performance issues of portal applications and also gives an inside view
of the general nature of the Java execution environment. It can be used as an anti-pattern

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 863

reference during development and as a handbook for code reviews. After
bottlenecks/hotspots have been identified, the different topics can be inspected for matching
anti-patterns that may help to solve the issues.

This document can be used as follows:

● Before you start developing, to get suggestions for certain tasks.

● During the development phase, to avoid performance problems later.

● After the development phase, when applications do not have the expected
performance.

The hints in this guide are highlighted with the hint symbol. First important hint:

Do not create Threads yourself

This guide also contains additional rules for the JLin plug-in in the SAP Netweaver
Development Studio. These rules will help you to spot places in your code that need
improvement. The performance issues found in the various applications now in use at the
different customers of the portal are similar.

The JLin rules are marked as follows:

Use JLin rule … to spot suspicious coding.

Automatic source code inspection and to use the options properly is delicate job. Depending
on the very individual circumstances not every warning is justified and it is necessary to
bypass and ignore JLin warnings using special comments.

4.1.1 Server Side Programming

Application servers are resource sharing environments. All applications and services running
on a server node use the same memory, the same CPU and often the same database
system. This scenario is very similar to the multi-user environment of a mainframe.

Unfortunately, Java differs from the mainframe world in one crucial point:

Java does not enforcement of resource limits upon the applications. There are no quotas for
CPU-time or allocated application memory. As a result, every single application may bring
down the entire server node.

Resources are shared by all applications on a server node. There is no limit for
an application how many resources it can use.

4.1.1.1 Memory Usage
Memory consumption is a constant issue in server environments. The Java language itself is
one of the major reasons for memory problems because it fosters the creation of many
temporary objects on the heap. There is also a certain overhead due to the general usage of
Unicode and automatic memory management (garbage collection).

An application uses the memory resource as follows:

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 864

● Memory footprint

The amount of memory an application requires during the entire lifecycle in order to
keep its state (data).

● Temporary memory demand

The amount of memory an application requires to perform a specific operation that is
released afterwards. This memory is used for temporary data.

● Garbage throughput

The garbage throughput is the temporary memory demand for a unit that is allocated
and released shortly thereafter, measured in time units. This memory consumption
comes from calculations, like a StringBuffer or a Calendar. There is a direct connection
between the garbage throughput and the temporary memory demand.

How an application uses memory depends on several factors. For the memory footprint it is
important, how much data is kept in memory and how much data is stored in a database or
files.

The temporary memory demand is highly dependent on the used algorithm to perform a
certain operation. Sometimes execution can be accelerated by loading all or a big portion of
the data to be processed into memory, do the processing and store the results in a database
or file. For an isolated view, this is the fastest and easiest approach in the majority of cases.
For the server the approach may be completely different. Because of insufficient memory
resources, competing applications are slowed down significantly. Other applications have to
work "on the disk” because caches are flushed too early.

4.1.1.2 CPU Usage and Threads
Like the memory also the CPU is a shared resource. The good news is that the JVM assigns
processing time to the different competing applications. Nevertheless processing efficiency is
still very important to the performance and scalability of server applications.

Problems may arise when the scheduling system itself is overloaded by creating too many
threads. The management of the threads is taking a significant portion of memory and CPU
time.

Conventions to ensure system stability and responsiveness:

● Make sure that parallel processing brings a benefit in a multi-user scenario. Additional
background jobs are useless, when the CPU load is already high,

● Do not create threads from portal applications.

● Dedicate parallel processing/background tasks to dedicated services, using Message-
Driven Beans.

Performance increases with additional threads in a single user scenario is different to a multi
user scenario. A system with high CPU load will not benefit from additional threads.

Do not create Threads yourself.

Thread creation is one of the core responsibilities of the J2EE container and the
portal on top of it. It is strongly interconnected with the transaction and context
management. Therefore the creation of threads is not allowed for applications.

An application only benefits from parallel processing when the CPU would be
idle otherwise. Message Driven Beans is the technology that should be used to
parallelize tasks.

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 865

Message-Driven Beans
The most common scenario for parallel processing is running a query on multiple external
systems like databases or SAP backend systems. For every query i an I/O request is sent to
the external system and the CPU is waiting time ti for the response to arrive. Without parallel
processing this comes to a total of t1 + … + tk. With concurrency this can be reduced to the
maximum of the response times max(t1, …, tk) – a big difference, when the response times
can not be ignored.

A message-driven bean is an Enterprise Java Beans (EJB) that is executed asynchronously.
A message-driven bean can be used to implement concurrent processing for applications. For
parallel task a message-driven bean is created that will process the tasks in incoming order
with a adjustable number of concurrent working threads. The results of the tasks are put in a
result queue that can be accessed by the client with the JMS API.

JLin rule Thread Creation detects the creation of new threads by portal
applications.

4.1.1.3 Scalability
Once a portal is productive, deployed applications often experience a huge increase in the
volume of managed data and the number of concurrent users on the system. It is important
that the production environment can keep up with the increasing load by adding memory,
CPUs and new cluster nodes.

The following rule of thumb is a good approximation of what scalability is all about. Scalability
can be considered as the increase of the capacity (for example, number of concurrent users
and transactions per second) divided by the required investments in hardware (for example,
number of processors, total memory, number of cluster nodes). The goal is of course to
maximize the scalability value also for big installations.

Scalability = ∆Capacity / ∆Hardware

Scalability indicates how much a system can benefit from added resources. When adding a
CPU to a system, it is important that a maximum portion of the processing work can be done
parallel. Operations that require exclusive access to a resource will create a bottleneck,
because only one thread and therefore one CPU may access it and the others will spend their
time waiting for it to be released. Therefore all data that is shared between users,
applications, services or sessions can interfere with scalability.

Improving scalability:

● Evaluate data structures and algorithms with large amounts of data.

● Limit synchronization to the smallest scope possible.

● Avoid per-request I/O-operations whenever possible.

4.1.1.4 Caching and Deferred Execution
Also software applications follow the famous 80:20 rule. They spent 80% of the execution
time in 20% of their operations. In other words: Only a small part of the code-base is relevant
for the performance of a software system. Portal applications spent most of the time for I/O
operations, for example, accessing a database or communicating with an external system.

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 866

Therefore I/O-intensive operations have to be used with care, especially with the following
APIs:

PCD/Portal Content Directory

UME/User Management Engine

KM/Knowledge Management

JCo/Java Connector for SAP backend system

These APIs involve a lot of database processing and that leads to long execution times.
Therefore, they should be avoided and/or consolidated whenever possible. Use the following
strategies to reduce I/O operations:

● Delay expensive operations and avoid preloading.

● Keep information in memory that is likely to be queried again.

● Consolidate multiple operations to one (for example, SQL statements).

● Avoid file I/O in requests.

4.1.2 Java Programming
This chapter covers aspects of application performance that apply to any Java application,
independent from the execution environment, and suggests general programming rules for
Java development.

For deeper coverage of this topic, please refer to the following books:

• Effective Java by Joshua Bloch [1] [Page 33]

• Java Performance Tuning by Jack Shirazi [2] [Page 33]

4.1.2.1 Program Flow

The Check-and-Get Idiom
A very common idiom is the check-and-get code pattern. The code pattern has the following
steps:

● Check for availability of data that match a query criteria.

● Retrieve the data that match the query criteria.

While the approach to check the availability of data before getting the data is straightforward,
it has a bad impact on application performance.

Example: Check-and-get in maps

if(map.contains(myKey)) { // check
 myValue = map.get(myKey); // get
 ..

The problem with this idiom is that the get operation always includes the activity that is
performed by the check operation. The difference is that the latter does a lookup (Example for
lookup: finding a row in a table, finding a key in a hash-table, locating an object in a list) but
throws away the results. As (in the idiom) the get operation is always called when check was
successful, we have a duplication of efforts in the positive case. The negative case (check
fails) does not compensate this drawback, since a get operation returning no results is (in
most cases) just as complex as a check operation returning false.

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 867

Avoid Extra Checks

Checks like hasChildren, isEmpty, contains and so on should be avoided,
whenever the data/objects whose availability is checked are retrieved later
anyway. This is in particular the case when the availability check involves
complex processing like in database-access or access to connected systems.

Examples for redundant checks (check-and-get idiom)

Applies to Check Operation Get Operation

java.util.Map Contains get

java.util.Collection isEmpty Iterator

com.sapportals.wcm.repository
ICollection

hasChildren getChildren

SQL select COUNT(ID)
from ... where

Select ID, COL1,
COL2, COLn from …
where

Null-Checking and NullPointerException
The creation and throwing of exceptions is an expensive operation in Java. Therefore
exceptions should not be provoked without good reason.

Some programmers avoid explicit null-checks by catching the corresponding runtime
exception NullPointerException, thinking the source code is executed faster because an if-
statement has been saved. In fact the cost of the exception is so huge that a single null value
in 1.000.000 cases will be enough to eradicate the performance advantage of the saved if
statements. So this technique does not save time but will lead to noticeable performance
degradation when null values occur more often.

Conclusion: NullPointerExceptions should serve their purpose to indicate programming errors
and nothing else.

The JLin rule NullPointer Check will find the catch blocks for
NullPointerExceptions.

Loops

Counting Loops vs. Iterators
The common denominator of all Collection Classes is the interface Collection, which is
implemented for all lists and sets and for the keys and values of maps. All collections support
sequential iteration using the Iterator interface.

The traditional C-style iteration idiom using an integer index has no advantage in terms of
performance or memory requirements unless the index is also used for another purpose. The
following example shows a popular idiom.

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 868

for (int i=0; i < list.size(); i++) {
 doSomething(list.get(i));
}

The example has following flaws:

• The constant expression size() is repeatedly evaluated.

• The class of the list object is required to implement the List interface (strong
precondition)

• This iteration pattern is very slow for LinkedLists and other implementations that do
not offer fast random access (indicated by the RandomAccess interface).

Use index-based access only when needed. Index-based access often
precludes the use of efficient data structures based on hash-codes or balanced
trees.

Following implementation alternatives for the example:

for(final Iterator iter = list.iterator(); iter.hasNext();) {

 doSomething(iter.next());

}

or, if index-based access is needed:

for(int i = 0, n = list.size(); i < n; i++) {

 doSomething(list.get(i));

}

Iterating through maps
A often ignored method in the Map interface is the entrySet method. Many applications
emulate the entrySet method by using the keySet method and get for every entry in the set:

Iterator iter = map.keySet().iterator();

while (iter.hasNext()) {

 Object key = iter.next();

 Object value = map.get(key);

 …

}

This work around does the job but the performance is less not acceptable. Consider that the
lookup operation get is called for every element in the map.

We recommend the following implementation that works without a lookup:

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 869

Iterator iter = map.entrySet().iterator();

while (iter.hasNext()) {

 Map.Entry e = (Map.Entry) iter.next();

 Object value = e.getValue();

 …

}

Use the JLin Rule Map Iteration to find suspicious places in your source code.

Repeated Evaluation of Invariant Expressions
Everything inside a loop is processed with every loop. Therefore the loop must contain only
statements that have to be processed in the loop. Each expression that does not change
during the loop execution should be evaluated and assigned to a local variable before the
loop is entered.

for (Iterator iter = list.iterator(); iter.hasNext();) {

 MyObject obj = (MyObject) iter.next();

 PropertyName pn = new PropertyName(
 bean.getPortalCustomNamespace(),
 Settings.RES_PROPERTY);
 if (obj.getProperty(pn).toString()

 .equalsIgnoreCase(Settings.RES_THUMB) {

 …

 }

}

The statement that violates the rule is highlighted in this example. The only variable that
changes on every cycle is the obj variable. Since this variable is not a parameter of the
creation of the PropertyName object we can be sure that the value of variable pn is the same
for every iteration cycle.

We can also rule out that pn is changed in the cycle, so we can be sure that the meaning of
the loop is not changed when we use the same PropertyName instance on every iteration
instead of several equal ones.

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 870

PropertyName pn = new PropertyName(
 bean.getPortalCustomNamespace(),
 Settings.RES_PROPERTY);

for (Iterator iter = list.iterator(); iter.hasNext();) {

 MyObject obj = (MyObject) iter.next();

 if (obj.getProperty(pn).toString()

 .equalsIgnoreCase(Settings.RES_THUMB) {

 …

 }

}

4.1.2.2 Build-In Types (java.lang)

Strings

Concatenation
Strings are easy to use in Java because they have a built-in concatenation operation and are
thread-safe due to their immutability. This advantage can also become a major bottleneck.

The string concatenation operator + is a convenient way to combine a few strings into one. It
is easy to use for generating a single line of output or for constructing the string
representation of a small, fixed-size object. Unfortunately the immutability has some
significant side effects:

• For every concatenation a new string instance has to be created (creating garbage
objects).

• All characters, not only those that are added, have to be copied to the new string.
This leads to quadratic complexity when concatenating in a loop.

Example: Consider the following method that constructs a string representation of a statement
by concatenating a line for every item:

 public String statement() {
 String s = "";
 int n = numItems();
 for (int i = 0; i < lines; i++) {
 s += lineForItem(i);
 }
 return s;
 }

This kind of implementation will have to perform n² copy-character operations during the
creation of a result string s of length n. Therefore the method performs very badly with a large
number of items. By concatenating the strings using a StringBuffer the complexity is reduced
to just n:
 public String statement() {
 final int n = numItems();
 final StringBuffer s = new StringBuffer(n * ESTIMATED_LINE_WI

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 871

DTH);
 for (int i = 0; i < n; i++) {
 s.append(lineForItem(i));
 }
 return s.toString();
 }

The JLin rule String Concatenation will find improper use of the string
concatenation operator in your source code.

Creation
It is not necessary to create new string instances explicitly (new String(“text”)), except
in some very rare cases where equal strings are considered different when they belong to
different objects (the == operator is used for comparison).

The JLin rule String Creation will find places where strings are explicitly
instantiated.

Accessing Individual Characters
The method substring extracts arbitrary character sequences from a string. To extract a single
character though, the method charAt() should be used.

The JLin rule Substring will look for method substring() where charAt() is
more appropriate.

Arrays
Arrays have the advantage to be type-safe but have the following disadvantages:

● There is no contains() method.

● Arrays do not allow to insert or delete elements.

● Arrays are not embedded in the collections framework.

● Arrays cannot be write-protected.

By the way - type safety can also be achieved by type safe wrappers and by Java Generics in
the future.

Example:
 StringTokenizer tokenizer = new StringTokenizer(poolIDs, ", ");
 String[] ids = new String[tokenizer.countTokens()];
 for (int i = 0; tokenizer.hasMoreTokens(); i++) {
 ids[i] = tokenizer.nextToken();
 }

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 872

 for(int i = 0; i < ids.length; i++) {
 addEntryToList(ids[i]);
 }

In this example the only purpose of array ids is to allow iteration-by-index idiom. Here is an
alternative:
 StringTokenizer tokenizer = new StringTokenizer(poolIDs, ", ");
 for (int i = 0; tokenizer.hasMoreTokens(); i++) {
 addEntryToList(tokenizer.nextToken());
 }

Object Class
The root class Object represents the basic infrastructure of the Java object model.
Descended classes inherit the following methods:

● Identitiy concept: equals

● Support for hash codes: hashCode

● String representation: toString

● Duplication: clone

See book Effective Java [1] [Page 33] for more details and examples.

The equals() Method and Object Identity
The equals() method determines if two objects are equivalent. The identity concept is used
to distinguish keys in maps and to avoid duplication of elements in sets. Also the containment
checks of most utility classes are based on the implementation of the equals method.

As a side effect the implementation of the equals method is a hot-spot whenever the Java
Collection Classes or other container classes are used. Performance is the key for the
implementation of equals.

Use the following recommendations to obtain a fast implementation of the method:

● Check first for identical objects using == and return early.

● Use the hash-code to detect differing objects early (requires fast implementation with
cached hash-codes).

● Compare attributes with high chance to differ (broad range) first.

● Compare attributes of basic types (==) first.

●

The default implementation of equals returns true only for the same instance (x
== y).

Example:

The following class represents a position in a text (like a bookmark). It will offer superior
performance because it will return early for x.equals(x) and compares the fields first that

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 873

are most likely to differ. In this case rows are more likely to be different because there are
usually more rows than columns in a text.
 public class Position {
 private int _row, _col;
 …
 public boolean equals(final Object o) {
 if(o == this) { // succeed early
 return true;
 }
 final p = (Position) o;
 return (_row == p._row) && (_col == p._col);
 }
 }

The hashCode() Method
The hash-code support of Java objects goes hand in hand with the identity concept. There is
a logical relationship between the behavior of the equals method and the hashCode method.

Equal objects have equal hash codes.

For implementations of the hashCode and the equals method the following
holds true:

∀x,y of object type

(1) x.equals(y) ⇒
 x.hashCode() == y.hashCode()

(2) x.hashCode()!=y.hashCode() ⇒ !x.equals(y)

Statement (2) is the conclusion from (1).

The hashCode method is often used in classes that manage groups of objects, like the
following:

● HashMap and LinkedHashMap

● Hashtable

● Properties

● HashSet

Hash codes are the quickest way to lookup objects.

The default implementation of hashCode corresponds to the default equals
implementation and therefore returns different values for different object
instances.

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 874

The JLin rule Equals/Hash Code Test shows inconsistent implementations.

4.1.2.3 Collection Classes (java.util)
The Java Collection Classes offers a powerful set of facilities to deal with groups of objects.
When used consistently in implementations and interfaces they can shorten development
time significantly by releasing the programmer from standard tasks like maintaining lists,
sorting, removing duplicates and finding objects quickly.

Choosing the Right Implementation Class
The performance of code can be affected significantly by choosing the right collection
implementation. Regarding the correct and efficient use of the Java Collection classes, a
significant performance setback comes from the low utilization of implementation classes
other than ArrayList and HashMap. These two implementations are used for almost
everything, although different implementations would be more appropriate in some situations.

The following rules should be applied to select the appropriate collection class:

● Use ArrayList to collect data in order of occurrence (append operation only). Adding
or removing elements at the bottom of the list is very fast on ArrayLists and
LinkedList, but the LinkedList puts a high load on the garbage collector. This is
the most common use case for lists.

● Use LinkedList to maintain lists whenever elements have to be inserted or removed
at positions other than the the bottom of the list. Inserting or removing elements is very
slow for ArrayLists because at average half of the elements in the list have to be
shifted.

● Use LinkedList to maintain lists that contain only very few elements and have a lot
of instances (for example, 5000 lists with 3 elements each). An ArrayList wastes
space for unused slots, a LinkedList needs more bytes per element.

● Never use LinkedList for index-based access. Use only the implementations of
List that also implement the (tag-)interface RandomAccess.

● Use Set types like HashSet and TreeSet to maintain lists that contain no duplicates
(for example, observers). Searching is very quick for sets: O(log n) instead of O(n). The
Set implementation LinkedHashSet combines the preservation of the insertion order
of the List type with the quick lookup of the HashSet type.

The values in the table below show the memory requirements of ArrayList and
LinkedList during an append-only operation. The LinkedList is faster in filling the list but
takes much more time to clean up afterwards. This is due to the complex memory-structure of
a linked list (many objects, many references) and therefore a lot of work for the garbage
collector.

So the real behavior depends largely on the load that is put on the system. When the CPU
load is not high and garbage collections are not frequent, the garbage collection overhead of
the LinkedList is no problem.

When garbage collection takes place as the CPU is busy the time, the garbage collector
needs to work off the memory structure (GC Full Cycle Time in the table) will be added
completely to the execution time of the application, because the program execution is
interrupted until the memory is acquired by the garbage collector.

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 875

Appending 10.000.000 elements to a list.

List Class Memory Garbage Execution
Time1

GC Time2 GC Full Cycle
Time3

ArrayList 45MB 89MB 620 ms < 1ms 140 ms

LinkedList 234MB 0MB 460 ms 230 ms 1.550 ms
1 no garbage collections in the background
2 time required to collect the objects in the list after the reference to the list has been cleared
3 time the garbage collector took to traverse the heap for releasable objects (without finding
any)

See http://java.sun.com/developer/JDCTechTips/2002/tt0910.html for more
details on the garbage collection performance.

Java 1.0 Collections (Deprecated)
These classes exist in the early Java versions and have been replaced by the Java
Collections Framework as of JDK version 1.2. The new classes are integrated into a
framework of types and are not automatically synchronized. The appropriate use of the new
classes improves the design and performance.

For all classes that work with JDK 1.2 or later, we do not recommend to use the old classes
Vector, Hashtable, and Enumeration for the following reasons:

● The access to the members is always synchronized. This is unnecessary when read-
only access is performed concurrently or the context is already synchronized. In other
cases it is not sufficient as this type of synchronization does not secure multi-step
operations like loops.

● They are considered legacy by the Java creator.

● Enumeration behaves unstable when the underlying Vector is modified concurrently.

● The naming scheme is inconsistent.

●

Do not use Vector, Hashtable and Enumeration. These are legacy classes
which have unsolved issues with performance and scalability in a server
environment.

4.1.2.4 I/O Classes (java.io)

File Access
File access from applications must not be used because of performance and security
problems. There are several problems related to file access from servlets, portal applications
or EJBs:

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 876

● Files access is a bottleneck in terms of scalability and performance and is amplified
when accessing files on network shares. There is no pooling and no caching available
and the number of concurrently open files is usually restricted.

● Files access bares a potential security risk because it has no built-in authorization
concept like there is with true J2EE resources (for example, JNDI).

● Files are not transactional and therefore only suitable for static information like
configuration settings. For these types of data, better facilities are offered by the portal,
for example, profiles.

The JLin rule File Access finds code sections that implement access to files.

Buffering Stream Access
For better performance, byte/character data should always be transferred in chunks.
Operating systems use block wise I/O for transfers (files, network), therefore byte-per-byte
access will multiply the overhead generated by Java. When byte wise access is required, the
use of buffering wrappers (BufferedWriter, BufferedReader, BufferedInputStream,
BufferedOutputStream) is mandatory.

Releasing Resources
The operating system usually limits the number of I/O related resources, because even
inactive resources put load on a system. Therefore the garbage collection mechanisms
(finalization) offered by Java are not adequate for the management of operating system
resources. In order to prevent shortages it is necessary to explicitly release these resources
using dedicated methods (often named close).

The following classes represent resources that should be released explicitly:

• InputStream (except for ByteArrayInputStream)

• OutputStream (except for ByteArrayOutputStream)

• Reader (except for StringReader)

• Writer (except for StringWriter)

• Connection

For deeper coverage, see Resource Management [Page 33].

Use JLin Rule Release of Resources to automatically detect suspicious code
sections.

4.1.2.5 Memory Management
Automatic memory management offered by Java makes development much easier because
references do not have to be tracked by the application itself. As soon as an object is not
referenced by a variable, it is ready to be reclaimed by the garbage collector built into the
JVM. As a result, there is no way to reference objects once the memory has already been

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 877

released. This solves the problem of dangling references known in languages with manual
memory management.

The problem that arises is that objects that are not used anymore can only be released when
there are no longer referenced. Keeping references to unused objects cause memory leaks.

The Java memory management has the following basic rules:

● Every object in the JVM has a counter containing the number of variables that actually
refer to it.

● Objects are released by the garbage collector when they are no longer referenced -
that is when the counter is zero, because the object cannot be accessed anymore.

● When an object (including class objects) is released by the garbage collector, all
references contained in the member variables of the object are discarded too (the
reference counter of the referred objects is decremented). When a class is released
(because there is no more instance of the class in the system), all static members
containing references are also cleared. So further objects can be released by the
garbage collection.

● The garbage collector is working asynchronously, in a separate (low-priority) thread.
Therefore the instant the memory is reclaimed cannot be predicted as it depends on
several factors (system-load, available memory and so on).

There are different garbage collector implementations available and the strategy is much
more sophisticated. For more details see:

http://developers.sun.com/techtopics/mobility/midp/articles/garb
age/

Memory Leaks
Memory leaks are created by keeping a reference to objects that are not in use any more.
Often, container objects (like the Java Collection Classes) are the source of such leaks. All
objects or classes that are used to collect information are candidates for memory leaks.
Especially static variables are dangerous, because the class object itself is not released by
the garbage collector. This has to be kept in mind when static lists or maps are introduced.

Example:

Maps (like HashMap or Hashtable) are used when information I has to be associated with
an object instance X, mapping the key X to the value I. As soon as the corresponding object X
is not used anymore, the entry (X I) in the map has to be removed, otherwise X will stay in
the map and the garbage collector recognizes the still existing reference to the map entry.
The concept of weak references helps to resolve these issues. For more details see:

http://java.sun.com/developer/technicalArticles/ALT/RefObj/

Garbage Collection Slowdowns
In Java every object resides in the heap (in dynamic memory). Java treats all objects by
reference. There are no local objects on the stack (compared to local variables of basic type
that disappear when their scope is gone). As a result even temporary objects that are used
only for a short period of time are subject to dynamic memory management and therefore
garbage collection.

This leads to the situation where programs that create a lot of temporary objects put an
enormous load on the garbage collection thread. A backlog of garbage objects is building up
and the available memory is going down. Eventually the garbage collector has to interrupt the
program execution to clean up the backlog. This is called full garbage collection. This kind of
emergency reaction is responsible for long delays in the response time, sometimes even
more than a minute with no visible progress.

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 878

Example of excessive garbage creation (see also Built-in Types [Page 33]):
 String contents = "";
 InputStream is = url.openStream();
 int c;
 while((c = is.read()) != -1) {
 contents += c; // creates a new object
 }
For each transferred character a new string is created and assigned to the variable
contents. For a file that has N characters, N x (N/2) x r bytes of garbage memory will be
created and has to be reclaimed by the garbage collector.

The JVM option –verbose:gc monitors the behavior of the garbage collection and can help
to spot memory leaks.

4.1.2.6 Resource Management
Operating system resources like network connections, file handles or database connections
are a limited resource. Therefore it is more than good etiquette to release resources as soon
as possible. A common misperception is that the garbage collection will take care of that.
While this might be true for a single user system with a lot of spare CPU time, the situation in
a server environment is much more different.

Release limited resources as soon as possible.

Resources with limited availability should be released as soon as possible and
in a reliable way, like calling the release method (for example, close) of the
resource from inside a finally block. This block has to be declared even when
there are no checked exceptions (no try clause).

Because of the high work load typical for application servers, it is more likely that it will take
some time for the garbage collector to finalize an object with a resource. The resource is
unavailable because to the latency of the garbage collector.

To avoid this situation, all classes that encapsulate limited resources offer methods to release
them early.
 InputStream is = socket.getInputStream();
 … // read the file
 is.close(); // release resources early

While this example works fine for local files it does not handle failures.

Example:

The variable is could also point to a network connection that might be interrupted any time -
causing an exception. Even when exceptions occur, our resource should still be released
before it is discovered by the garbage collector.
 InputStream is = null;
 try {
 is = socket.getInputStream();
 … // read the file
 } catch(IOException ex) {
 …
 // important

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 879

 } finally {
 if(is != null) {
 is.close();
 }
 }

4.1.3 Portal Application Programming Model
The portal application programming model describes the life cycle and the execution state of
a portal application.

4.1.3.1 Lifecycle of an Portal Application
The lifecycle of a portal application is important to perform the initialization and clean up of
portal components in an efficient and reliable way. It is composed of three steps:

Initialization

Operation

Disposal

The implementation of these steps depends mainly on the technology chosen for the portal
component.

See the PDK:Java Developer/Documentation for more details.

Initialization
Every portal application implementation has an initialization body. It should contain the coding
to render the component on the Web client.

Delay complex operations.

Complex parts of the portal application that are not used in the initial view
should not be initialized before the user demands it.

Example:

A portal application has a user interface with tab strip that has two tabs. The first tab contains
a clock and the current date. The second tab contains the appointments for the user retrieved
from a backend system.

The initialization should contain the steps to render the first tab. Build the tab control and
initialize the widget for the clock. For the second tab it just checks the configuration for the
connection parameter to connect to the backend system containing the calendar application.

The initialization should not retrieve the appointment data necessary to render the second
tab. This should be done when the user actually requests this tab.

Portal Application Models Initialization
The method called for initialization depends on the super class belonging to the portal
application model. The methods to implement depend on the selected programming model,
so check the documentation for details.

Initialization in portal application models

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 880

Model Basetype Initialize

Handcrafted portal
application

IPortalComponent constructor of the
implementing Java class

(IPortalComponentInitContext)

Standard portal application AbstractPortalComponent init(IPortalComponentIC)

HTMLB portal application DynPage/JSPDynPage

(PageProcessorComponent)

doInitialization()

Operation
In this phase the portal component is initialized and ready to handle requests. Steps that are
not handled in the initialization phase are handled now.

The major objectives for the Operation phase are:

● Proper isolation of users and sessions.

● Limitation of resource requirements.

● Stability and verbose error management.

The methods to implement depend on the selected programming model, so check the
documentation for details.

Initialization in portal application models

Model Basetype Callback

Handcrafted portal
application

IPortalComponent Service
(IPortalComponentRequest,
IPortalComponentResponse)

Standard portal application AbstractPortalComponent on…(…)

HTMLB portal application DynPage/JSPDynPage

(PageProcessorComponent)

doProcessBeforeOutput(),
doProcessAfterInput()

HTMLB portal applications
HTMLB portal applications using JSP implement the class JSPDynPage, otherwise the
DynPage class has to be implemented.

For more details see:

http://<pdk-
server>:<port>/irj/portalapps/com.sap.portal.pdk.htmlb.htmlbmanuals/docs/dynpage-01.html.

Disposal
It is strongly recommended that portal components when shutdown (removed from the
container) release all used resources, especially caches and connections to backend systems
and databases.

All threads created by a portal application, although not recommended, have to be stopped.

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 881

Disposal in portal application models

Model Basetype Callback

Handcrafted portal
application

IPortalComponent destroy()

Standard portal application AbstractPortalComponent destroy()

HTMLB portal application DynPage/JSPDynPage

(PageProcessorComponent)

destroy() – inherited from
Page ProcessorComponent.

POM triggers cleanup when
portal application is removed
from POM tree.

4.1.3.2 Storing Execution State

The portal content is handled stateless. An portal application has to keep track of its current
execution state that includes, for example, the status of data handling. The portal works like a
servlet. It uses a single instance to handle all requests from different users and different
sessions. Therefore the current execution state cannot be kept in the portal application
implementation class.

The following document contains detailed information about the different contexts to store
data and the lifecycle:

http://<pdk-server>:<port>/irj/portalapps/com.sap.portal.pdk.htmlb.htmlbmanuals/
docs/usageofbeans.html

Component Context
The component context can be used for application relevant data but it is not recommended.
Data kept in the component object is not very secure. The component context can be
released anytime by the container and replaced by another instance.

Request Context
Data stored in the request context are available as long as the request object exists. It can be
used to communicate between different components.

The POM node associated with the request object can be used to store custom attributes
andcan be accessed with the method getNode().

Access to request context in portal application models

Basetype Access to IPortalComponentRequest

IPortalComponent The request object is passed as parameter to the
service method.

AbstractPortalComponent The request object is passed as parameter to the do…
methods.

DynPage/JSPDynPage

(PageProcessorComponent)

In the (JSP)DynPage class, the request object is
returned by method getRequest().

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 882

Session Context
The session context can be used to for user specific data. The data is available as long as the
browser session exists. It is accessible over the request object using the method
getComponentSession().

State Management in JSP-based portal applications
The execution state in JSP-based portal components is usually handled with Java bean
objects that are embedded into the page with the jsp:useBean tag. The lifecycle of these
objects is managed by the JSP container according to the scope declared for the bean.

State management in portal application models

Scope Visibility and Lifetime

application The data is shared by all instances of the portal
application. The lifecycle corresponds to that of the
deployed portal application.

page The data is shared by all portal applications contained in
the same page.

session The data is shared by all portal applications that execute
in the browser session.

user The data is user specific. It is visible to all portal
application instances used by the user, also for several
sessions.

Data stored in the user or application space have a long lifetime. Incomplete clean up
procedures can have a significant impact on the performance of the overall system and can
create memory leaks.

4.1.3.3 Portal Application Performance

Observed and Real Performance
Performance can be into performance sensed by the users and performance from a technical
point of view.

Performance sensed by the user is difficult to judge. Several psychological factors come into
play. The most important performance issue for user is the delay between a user action and
the response.

Examples:

● Time from the start of an application until it is ready to use.

● Rendering time of a Web page in a browser.

● Time to load a pop up menu to select user input.

If an operation is more time consuming the user should be informed as follows:

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 883

● What operation is currently in progress.

● Progress bar.

● Percentage already processed.

● Estimated time when the task is finished.

Portal applications using these techniques are usually rated “quick” by the user, although it is
slow from the technical point of view.

When portal applications need information from a backend system it is important that the
applied query is efficient and fast and that the application avoids querying the same
information several times.

Summary:

Technical performance can be improved with efficient algorithms, fast connections
and clever caching.

Caching
The term caching refers to all strategies that hold recently-retrieved data to avoid the
overhead retrieving the data again. For portal applications caching is used then accessing
backend systems.

Example:

A portal application displays the current temperature that is provided by the commercial
weather-service Cats-and-dogs.com based on WebService technology. The portal application
will update the temperature in a five minute interval. Since the temperature is independent
from the username, the values will be queried only once from the weather service and stored
for all users in the portal. The portal application has to do the following:

1. Keep the weather values in an area that is shared by all users on the node: portal
application class.

2. The weather values have to be accessible for five minutes.

Because of the cache the weather-service is called every five minutes and not for every user
that accesses the weather portal application.

Areas relevant to caching are:

Scope: User, role, group, application, area, country

Expiration: fixed interval, time-based, never

Survival criteria: size, usage frequency, last usage

Representation: raw data, business-level data, presentation-level data

Following data sources should be cached:

● Databases

● Connected SAP backend systems

● File I/O

● Any kind of data that is retrieved through network connections.

The representation of the data in a cache is also important. For the weather portal application
example can be implemented with three different cache levels:
...

1. The lowest level would only cache the raw data obtained from the weather service
which is the XML document containing the response to the most recent query. The
advantage is that the entire message is stored and no information is lost. The

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 884

disadvantage is that the needed data entry has to be extracted every time when the
temperature value has to be refreshed.

2. On the business level the object containing the weather data in a normalized form is
cached.

3. On the presentation level the weather data is cached in the form it is displayed. If the
portal application displays the data in a common layout, the entire HTML page with the
current business object state can be cached, instead of generating the HTML page out
of the business level data again and again.

Caching Scopes
As described above the SAP Enterprise Portal offers various places to establish a cache (for
example, request or session context). Generally speaking, a cache context should be as wide
as possible but it must consider the following logical and performance issues:

4. What is the cache eviction (or timeout) policy and how is outdated data handled (prefer
a quick check over notification patterns).

5. A cache must never grow unlimited! The implementation of the cache has to limit the
number of objects / entries kept in the cache. Memory is a very valuable resource that
is needed to process requests and not to store data that has already been accessed
once before.

Deferred Initialization
The rendering time of a portal page is a big issue. A portal page often contains several portal
applications. The user will most likely not use all displayed portal applications. Therefore it is
very important that all portal applications used on a portal page initialize and render fast. The
initial display of an portal application should not collect extensive data. This should be done
on demand. This will improve the overall speed of page rendering for the majority of users.

Portal Applications on the Start Page
The start page is loaded right after the user has logged on to the portal. Because the start
page is displayed quite frequently it must have a good performance. Following rules apply for
the start page:

● Data initialization has to be reduced to the absolute minimum.

● The start page should have a lean layout to speed up the initial rendering.

● The memory footprint must be as low as possible (not more than 1 MB) because there
will be several active instances at once.

4.1.4 Enterprise Portal Services
Some Enterprise Portal services do need more resources and can influence the performance.

4.1.4.1 JCo Client Service
Portal applications that use the JCo-API can create unexpected spikes in the memory
consumption. Especially the method JCO.createRepository() creates a lot of temporary

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 885

objects causing increased garbage collection overhead and even OutOfMemory exceptions
when used carelessly. To minimize the usage of this expensive operation, the caching-
facilities introduced with the latest JCo Client-Service should be used.

JCo is deprecated.

Please note that JCo has been replaced by the SAP Connector Framework
(based on JCA) as of EP 6.0. It is only included for compatibility reasons. For
new developments Connector Frame/JCA must be used.

The call of method JCO.createRepository(0) should be replaced by the method
IJCOClientService.getRepository().

Example of a not recommended implementation:
 String sysId = myProfile.getProperty("SystemIdentifier");
 IJCOClientService clientService = (IJCOClientService)
 PortalRuntime.getRuntimeResources.getService(IJCOClientService.K
EY);
 IJCOClientPoolEntry jcoPoolEntry =
 clientService.getJCOClientPoolEntry(sysId, componentRequest);
 …
 JCO.Client client = jcoPoolEntry.getJCOClient();
 IRepository repos = client.createRepository("mydestination", clien
t);
 …
 client.execute(…);
 …
 jcoPoolEntry.release();

Example of recommended implementation:
 String sysId = myProfile.getProperty("SystemIdentifier");
 IJCOClientService clientService = (IJCOClientService)
 PortalRuntime.getRuntimeResources.getService(IJCOClientService.K
EY);
 IJCOClientPoolEntry jcoPoolEntry =
 clientService.getJCOClientPoolEntry(sysId, componentRequest);
 …
 JCO.Client client = jcoPoolEntry.getJCOClient();
 IRepository repos = clientService.getRepository("mydestination",
 componentRequest);
 …
 client.execute(…);
 …
 jcoPoolEntry.release();

An introduction to the JCo client service is available on the SDN at:
https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/com.sapportals
.km.docs/documents/ a1-8-4/JCo%20Client%20Service

4.1.4.2 User Management Engine (UME)
The user management engine (UME) offers a comprehensive API to manage user, roles,
groups and the associates access control lists (ACLs). The implementation is based on the
Portal Content Directory (PCD) and inherits some of its characteristics.

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 886

The UME API works with persisted data and the data has to be consistent on different portal
nodes. This makes calls to the UME API rather complex. Performance often depends on the
structure that is used to represent the data and is also affected by the cluster-communication
to synchronize the collaborating nodes.

Checking for Existence of UME Entities
Currently the UME API has no method to check if a user, role or a group is known in the
system. The straightforward workaround to get the corresponding IUser, IRole or IGroup
object cannot be recommended because this will also load the associated attributes.

Recommended code to search for a user:
 boolean existsUserByUniqueName(final String uname) throws UMExcepti
on {
 final IUserFactory userFactory = UMFactory.getUserFactory();
 final IUserSearchFilter filter = userFactory.getUserSearchFilter
();
 filter.setUniqueName(uname, ISearchAttribute.EQUALS_OPERATOR, fa
lse);
 return userFactory.searchUsers(filter).hasNext();
 }
The code also works for roles and groups simply by replacing the searchUsers() method
to searchGroup() or searchRole().

User-Role Assignment
The internal representation of the assignment between users and groups has a significant
influence on the performance of the UME. User and role are in a bidirectional relationship and
can be associated in two directions. Due to the internal data management of the UME, links
from the role to the user (add user to role) are handled faster when multiple users have to be
processed.

Example of a not recommended implementation:
 UMFactory rf = UMFactory.getRoleFactory();
 rf.addUserToRole("petermueller", "role1");
 rf.addUserToRole("annefranklin", "role1");
 rf.addUserToRole("norasmith", "role1");

Improve performance and save memory with this approach:
 UMFactory rf = UMFactory.getRoleFactory();
 IRole role;
 role = rf.getMutableRole("role1");
 role.add("petermueller");
 role.add("norasmith");
 role.add("annefranklin");
 role.save();
 role.commit();

See SAP Note 746682 (Performance problems when assigning roles/groups via UME API).

User-Group Assignment
User group assignment is similar to user-role assignment.

See SAP Note 746682.

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 887

4.1.4.3 Logging
Logging must be implemented with the PRT Logging API. Printing to the standard output
streams will slow down performance and the information is hardly noticed by the
administrator. The logging API of the portal generates diagnostic information in an efficient
way and stores the information in a database for easy retrieval.

The preparation of the logging messages can take some time to collect and format the
information. Avoid unnecessary overhead by checking the log level before you request
additional information. Benefit from the hierarchy of the log levels (inclusion relationship).

ALL

INFO

WARNING

SEVERE

The levels can be described in a mathematical formula as follows:

SEVERE ⊂ WARNING ⊂ INFO ⊂ ALL.

For a Java program this can be translated int the integer value associated with the level:
SEVERE.intValue()<WARNING.intValue()<INFO.intValue()<ALL.intValu
e()

A special level is the pseudo-level OFF (not in the picture) that indicates that logging is turned
off. It has the lowest integer value, so no extra checking is required. Therefore a message of
level m is logged when the configured logging level L is greater or equal: L = m.
 ILogger lg = PortalRuntime.getLogger(); // get default logger
// check if the logger is configured to include INFO messages
 if(lg.getLevel().intValue() >= Level.INFO.intValue()) {
 String hostname = resolveHostname(myAddr);
 lg.info("connecting to: "+hostname);
 }

4.1.5 Database Access

Managing Connections
Portal applications that have to access databases directly should not try to create connections
themselves. Portal application must use the built-in connection pools in order to limit the
number of concurrent connections and to prevent possible low resources that would affect
other applications.

The SAP Connector Framework comes with a JDBC adapter that can be used to manage
databases like regular J2EE resources under control of the application server. This will
positively affect the server performance and stability.

A good approach would be to extract the database logic from the portal application and put it
to a Enterprise Java Bean (EJB) or at least a portal service, using portal applications only as
front-end components. EJBs offer a superior infrastructure to wrap backend systems. The
separation of front-end and business logic is the best solution to increase performance and

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 888

reduce maintenance. Also business logic wrapped in an EJB is easier to reuse by other
application and can easily be published as Web Service.

4.1.5.1 Releasing JDBC Objects
It is good practice to release database resources as soon as possible because the number of
database connections is limited and active statements and result sets need memory. If you do
not close resources explicitly they may be blocked for a longer period which leads to a
bottleneck when the load on the server becomes higher.

See also Resource Management [Page 33] for general rules about resource management.

4.1.5.2 Transactions
A single logical operation can result in several operation for the database. The transaction
guarantees that the database stays consistent during these operations. A transaction contains
several database operations that are either executed all at once or not at all.

The transaction ensures the following:

● Atomicity: The operations are executed all at once, or not at all.

● Consistency: The affected data is kept in consistent state.

● Isolation: The software is protected from external manipulations to shared data (the
degree may vary though).

● Durability: Once a transaction has been confirmed, the result is stored and will not be
reversed.

Transactions also improve the performance.

 Connection conn = … // get connection from pool
 conn.setAutoCommit(false);
 … // do several updates
 conn.commit();

4.1.5.3 Harnessing SQL
Relational databases and the SQL language offer superior capabilities to filter large amounts
of information. The SQL interpreter is directly located at the data source, so database
operations are executed much faster than database operations from a connected application,
like a Java program using JDBC.

In order to improve execution times and save memory it is mandatory to delegate every
possible processing work to the database system. Use the following SQL features to improve
the performance significantly:

● Joins

● Sub queries

● Sorting

● Column functions

Keep in mind that complex SQL statements may be demanding for the database. For more
details and background information on database performance review the SAP help at:

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 889

http://help.sap.com/ and search for the terms:

”SQL Performance”, ”Database Performance” or “Open SQL”.

Example of a not recommended implementation:

A Java program scans the entire table to find out when a user performed his latest activity.

 String query = "SELECT * from ActivityLog WHERE User = '"
 + value + ´"'";
 long timestamp = 0;
 ResultSet rs = _dbAccess.query(query);
 while (rs.next()) {
 timestamp = rs.getLong("TIMESTAMP");
 }
 return timestamp;

The example has following flaws:

● The database is queried to return all columns (SELECT *) although only the
TIMESTAMP column is needed.

● A Java iteration instead of the column functions of SQL that iterates over an entire
column is used, to find the latest entry.

Example of a recommended implementation:

 String query = "SELECT MAX(TIMESTAMP) FROM ActivityLog WHERE User =
 '"
 + value + ´"'";
 ResultSet rs = null;
 try {
 rs = _dbAccess.query(query);
 if(rs.next()) {
 return rs.getLong(1);
 } else {
 return -1;
 }
 } finally { // see section Resource Management
 if(rs != null) {
 rs.close();
 }
 }

The columns referenced by the WHERE or the ORDER BY clause should have an index.

4.1.5.4 Prepared Statements
To invoke an SQL statement with different parameters, JDBC offers the prepared statements
feature. Prepared statements are SQL statements that contain question marks for every
parameter. The SQL statement has to be precompiled by the DBMS and on every execution
the current values are filled in. Prepared statements have the ability to insert also values that
cannot be expressed in SQL (as string), like BLOBS.

Example without prepared statements:
 Collection newMembers = …;

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 890

 Connection conn = …;
 Statement stmt = conn.createStatement();
 for(final Iterator i = newMembers.iterator(); i.hasNext();) {
 Member m = (Member) i.next();
 stmt.executeUpdate("INSERT INTO Members VALUES ('"
 +m.getName()+"', '"
 +m.getAddress()+"', '"
 +m.getCity()+"')");
 }
 stmt.close();

The example has following flaws:

● A new string in created in the loop.

● Performance is lost because the database does not know that there are more
statements of the same structure.

Example of recommended implementation:

By applying prepared statements we can save the entire string processing and our database
(or driver) can perform the operations quicker. The best solution is to prepare the statement
once and not each time before the execution.

 Collection newMembers = …;
 Connection conn = …;
 PreparedStatement stmt = conn.prepareStatement
 ("INSERT INTO Members VALUES (?,?,?)");
 for(final Iterator i = newMembers.iterator(); i.hasNext();) {
 Member m = (Member) i.next();
 stmt.setString(1, m.getName());
 stmt.setString(2, m.getAddress());
 stmt.setString(3, m.getCity());
 stmt.executeUpdate();
 }
 stmt.close();

The JLin rule Candidates for PreparedStatements checks where prepared
statements could be used.

4.1.5.5 Stored Procedures
Stored procedures are written entirely in SQL and are executed on the database system.

Stored procedures are not recommended by SAP.

Stored procedures are not recommended by SAP. The reason is that stored
procedures put the load on the database, the central resource, and therefore
restricts the scalability of the whole cluster / system.

Ensuring Quality March 2006

Developing Well Performing Portal Applications

Running an Enterprise Portal 891

Stored procedures can only be considered as quick correction of an architecture
/ database design problem in a customer project that uses one database.

4.1.6 Enterprise Portal Performance Ruleset for JLin
The rules in this document for the static code analysis plug-in JLin Autocheck are available on
the SAP SDN. They can be installed in the SAP NetWeaver Developer Studio by extracting
the ZIP file EP_JLin_Rules.zip to the root folder of the JDT installation directory, for
example,

C:\Program Files\SAP\JDT

After restarting the SAP NetWeaver Developer Studio, the JLin settings will show a new set of
rules calles eptf tests. Activate all tests in this rule set by selecting the check-mark. Now
you can run a static code analysis by invoking the menu entry as follows:

Run → Run As → JLin.

The EP Taskforce rule set

Rule Short Description

Usage of Threads Indicates creation of new threads. This is
forbidden for portal application.

File access Indicates file I/O. This is a bad practice and
has critical performance impact when
performed on every request.

Iteration over Map entries Marks inefficient idioms for map iteration.

String concatenation Alerts bad usage of the + operator for strings.

Prepared Statements Indicates non-prepared SQL statements in a
loop.

Release of resources Looks for coding where limited resources are
not released appropriately.

Unnecessary creation of String objects Looks for coding where strings are explicitly
instantiated using new String("…")

Unnecessary sub strings Looks for the usage of method substring for
the extraction of individual characters.

NullPointer Check Indicates where NullPointerExceptions are
caught to avoid null-checking.

Usage of obsolete collections Marks places where obsolete collection
classes Vector, Hashtable, Enumeration are
used.

Loop condition Looks for repeated evaluation of constant
expressions in loop conditions.

For example, i < size().

Ensuring Quality March 2006

File Access

Running an Enterprise Portal 892

4.1.7 Checklist for Reviews
This section contains a check list for a step by step code review.

Prepare Project in NetWeaver Developer Studio
● Create a project in the SAP NetWeaver Developer Studio to improve the efficiency of

the code review.

● Configure and use JLin (see section Enterprise Portal Performance Ruleset for JLin
[Page 33]) to get a list of suspicious coding that should be processed with priority.

Database
● Look for non-prepared statements and evaluate according to section Stored

Procedures.

● Check SQL statements for efficiency

● See if connections are released properly and result sets are closed soon.

4.2 File Access
● Look for file access happening in the application (File, FileInputStream,

FileOutputStream).

4.2.1 Ensuring Supportability with Metrics and Audits
Maintainability is the key issue for the long-term success of software projects and is an
important part of the quality process in software projects. Software metrics and audits capture
typical shortcomings in the field of error handling and complexity. So it is often necessary to
reduce consolidate the current version before further changes are made. This process is
called Refactoring [6] [Page 33].

JLin is the primary tool for SAP NetWeaver developers to ensure the supportability and
robustness of the program code while writing it. JLin comes with plenty of rules that help
finding potential risks for maintenance and robustness in the program code. Unfortunately
these rules have to be configured by hand to be really effective.

Use strict settings to enforce maintainability right from the beginning. Static code
analysis is a powerful quality assurance tool especially when working with
freelancing software developers.

The following tools can be used to generate metrics and audits from source code.

● JLin: Is supported in the SAP NetWeaver Developer Studio.

● PMD: Open-source plug-in that can be used to detect copy&paste coding. Not available
in the SAP NetWeaver Developer Studio – can be installed separately.

● JDepend: Open-source plug-in that can be used to create design metrics and detect
cyclic dependencies between packages. Not available in the SAP NetWeaver
Developer Studio – can be installed separately.

In addition to metrics, every component should be profiled before it is used
productively. For every click and scenario measure the following:

...

Ensuring Quality March 2006

File Access

Running an Enterprise Portal 893

■ How much CPU is used?

■ How much memory (garbage) is used?

■ Are there memory leaks?

●

●

Metrics

Lines of Code (LoC)
The LoC is the sum of all code lines in a compilation unit or class. For Java, empty lines,
Javadoc and comments are not counted. Methods with a high LoC count will most likely
cause problems if they have to be changed, fixed, or extended.

Cyclomatic Complexity (CC)
The Cyclomatic Complexity measures the program complexity. There is a strong connection
between this indicator and error density. Cyclomatic Complexity is defined as the number of
decisions (if, for, while and do statements) per method or function, + 1. Switch statements do
not increase the Cyclomatic Complexity in this definition so a method or function has a
minimum CC of 1.

A CC value in the range of 10-15 should be considered as maximum. Values below 7 are
satisfactory, below 5 would be good.

Methods with a CC over 15 should be refactored following the Extract Method pattern before
the next change or enhancement. For more details see:

http://www.refactoring.com/catalog/extractMethod.html

Refactoring in the SAP Netweaver Developer Studio

The SAP Netweaver Developer Studio contains Refactoring tools that can be
used to safely break up complex methods or classes into smaller entities.
Keeping software manageable is no magic with these tools and a catalogue of
patterns for refactoring.

For more details see: http://www.refactoring.com/

A practical use case is described at:
http://www.onjava.com/pub/a/onjava/2004/06/16/ccunittest.html

The JLin rule Cyclomatic Complexity Metric can check for thresholds. Before
using CC this rule should be reconfigured with INFO_LEVEL=7,
WARNING_LEVEL=16 and ERROR_LEVEL=30.

Ensuring Quality March 2006

File Access

Running an Enterprise Portal 894

The disadvantage of CC is that it counts conditional and iteration statements only. So a
method with 200 statements and method calls has a CC of 1. For more information on CC
please have a look at the following Web page:

http://www.sei.cmu.edu/str/descriptions/cyclomatic.html.

Depth of Nesting
This test procedure counts how deep if, switch, for, while, and do statements in a constructor
or method are nested. Every loop-nesting level means another level of complexity. A method
of complexity O(n) explodes to complexity O(n³) when called in two nested loops and
becomes a performance problem. A value of 3 should be considered as maximum.

The JLin rule Max nesting level per method can check for deeply nested
methods. Before using this test this rule should be reconfigured with
INFO_LEVEL=4, WARNING_LEVEL=6 and ERROR_LEVEL=50.

If a the depth of nesting value is very high it could be necessary to refactor the code
according to Replace Conditional by Polymorphism. For more details see:
http://www.refactoring.com/catalog/replaceConditionalWithPolymorphism
.html

Number of Parameters
This test procedure counts the parameters of a constructor or method. A value of 7 should be
considered as maximum.

The JLin rule Arguments per method checks the number of parameters for a
method or constructor. Before using this test this rule should be reconfigured
with INFO_LEVEL=8, WARNING_LEVEL=11 and ERROR_LEVEL=20.

Number of Attributes
Classes with a very high number of attributes often represent a flat composition of several
entities. It is recommended to extract groups of related attributes and their methods to classes
and use composition instead.

Number of Operations
If a class has a high number of operations, it should be considered to split up the method.

Ensuring Quality March 2006

File Access

Running an Enterprise Portal 895

The JLin rule Methods per Class checks classes that are candidates for
decomposition. Before using this test the rule should be reconfigured with
INFO_LEVEL=30, WARNING_LEVEL=50 and ERROR_LEVEL=100.

For more details see:
http://www.refactoring.com/catalog/extractClass.html.

Audits
Audits apply pattern matching to Java source code to find common mistakes and
maintenance flaws.

Copy & Paste Programming
Copy and paste is a popular way to reuse existing functionality in a different context. Unlike a
method, class, or package, there is no formal interface (signature, scope, type) between the
pasted code and its environment, so copy and paste is pretty unsafe.

Problems of copy & paste:

● Change Management

Copying program code also copies the bugs. To keep track of the locations where the
duplicated code has been used is quiet impossible.

● Productivity

Changes made to any part of the code must be applied to the other methods where the
code has been copied to.

● Stability

Side effects may break "proven code" because the environment is different. This
applies especially to copied code snippets.

● Reusability

Differences and similarities of replicated code sections are difficult to find because they
are hidden in the code and sometimes slightly altered. Copy and paste also prevents
reuse in dependent parts of a program because it wraps common behaviour in different
interfaces.

● Overall design

New classes can be created very fast with copy and paste and can lead into spending
less effort on good and reusable design and results in long and complex methods.

For more details see:
http://www.onjava.com/pub/a/onjava/2003/03/12/pmd_cpd.html

This is certainly a very controversial topic. For more details refer to the book Anti Patterns
[Page 33].

Ensuring Quality March 2006

General Rules and Guidelines for Managing Exceptions

Running an Enterprise Portal 896

Cyclic Dependencies between Packages
For more details see:

http://www.clarkware.com/software/JDepend.html

4.2.2 References/Bibliography

 Author Title Publisher Year

[1] Jochua Bloch Effective Java Addison-Wesley 2001

[2] Jack Shirazi Java Performance Tuning – 2nd Edition

http://www.javaperformancetuning.com

O’ Reilly 2003

[3] William J.
Brown

Anti Patterns John Wiley &
Sons

1998

[4] Glen
McCluskey

Using ArrayList and LinkedList Sun Microsystems 2002

[5] Arthur H.
Watson,
Thomas J.
McCabe

Structured Testing: A Testing
Methodology Using the Cyclomatic
Complexity Metric

NIST - National
Institute of
Standards and
Technology

2000

[6] Martin Fowler Refactoring – Improving the Design of
Existing Software

Addision-Wesley 1999

4.3 General Rules and Guidelines for Managing
Exceptions

Exception handling influences the quality of Java programs because:

● It ensures that the program can continue in error conditions.

● It allows the user to find the problem, which caused a thread to terminate. An exception
that caused the termination of a portal application should lead to the causing problem
by giving meaningful information.

Coding Rules

Rule Error Example Explanation

Always
pass the
original
exception

catch (IOException e) {

 throw new
RuntimeException("Problem
in I/O.");

}

The original problem may be hidden if
you do not do this. The original
exception can be passed on by adding it
to the message:

("message: " + e);

It is better to use a constructor that can
take an exception as argument as well,
for example:

new
PortalRuntimeException("Error

Reference March 2006

General Rules and Guidelines for Managing Exceptions

Running an Enterprise Portal 897

in I/O.", e)

Always
include a
message

throw new IOException();

There is always additional information
which is useful to the user. If possible
this information should be constructed
dynamically. However, this should not
introduce problems. The following
example produces a
NullPointerException if the context is
null:

throw new
RuntimeException("Error in "+
context.getComponent());

Do not
make
wrong
assumptio
ns

catch (NamingException e) {

throw new
PortalRuntimeException("Reg
istry not found:" + e);

}

There are many subclasses of
NamingException and the reason may
be other

Do not
have
empty
exception
handlers

catch (Exception e) {

 // ignore

}

Do not
only print
the stack
trace

catch (NamingException e) {

 e.printStackTrace();

}

If stdout is not redirected, the exception
is only visible on the console. The
console, however, may not always be
there or accessible, for example the
application was started using javaw
which does not open a console. In
addition, there is sometimes too much
output on the console thus making it
impossible to follow the output. The
exception should be logged.

Log
important
Exception

catch (IOException e) {
 throw new
RuntimeException
("Exception while reading
service parameters: " + e);
}

In general, when important information
is lost in an exception handler because it
is not passed on, it should be logged.
The following line logs the stack trace of
the exception above:
PortalRuntime.getLogger().seve
re(e, " Exception while
reading service parameters.");

5 Reference
This section contains the following:

● APIs [Page 33]: Javadocs for portal and portal runtime APIs

Reference March 2006

Portal APIs

Running an Enterprise Portal 898

● Samples [Page 33]: Sample code for portal applications

5.1 Portal APIs
The Javadocs for the portal and portal runtime APIs are located on the SAP Developer
Network (SDN) at https://www.sdn.sap.com/irj/sdn/javadocs.

5.2 Samples
Code samples for portal applications are included within the NetWeaver Developer Cockpit, a
portal business package that can be downloaded from the SAP Developer Network (SDN).

For more information, go to the Downloads section at http://sdn.sap.com.

